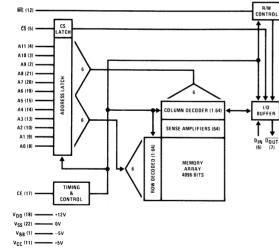
NMOS RAMs

MM5280 4096-Bit (4096 × 1) Dynamic RAM

General Description

National's MM5280 is a 4096 word by 1 bit dynamic RAM. It incorporates the latest memory design features and can be used in a wide variety of applications, from those which require very high speed to ones where low cost and large bit capacity are the prime criteria.

The MM5280 must be refreshed every 2 ms. This can be accomplished by performing a read cycle at each of the 64 row addresses (A0–A5). The chip select input can be either high or low for refresh.

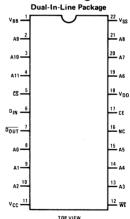

The MM5280 has been designed with minimum production costs as a prime criterion. It is fabricated using N-channel silicon gate MOS technology, which is an ideal choice for high density integrated circuits. The MM5280 uses a single transistor cell to minimize the device area. The single device cell, along with unique design features

in the on-chip peripheral circuits, yields a high performance memory device.

Features

- Organization: 4096 x 1
- Access time 200 ns maximum
- Cycle time 400 ns minimum
- Easy system interface
 - One high voltage input—chip enable
 - TTL compatible—all other inputs and output
- Address registers on-chip
- TRI-STATE® output
- Simple read-modify-write operation
- Industry standard pin configuration

Block Diagram


Memory Inverts From Data In to Data Out

Pin Names

A0-A11	Address Inputs *	V _{BB}	Power (-5V)
CE	.Chip Enable	vcc	Power (+5V)
<u>cs</u>	Chip Select	V _{DD}	Power (+12V)
DIN	Data Input	٧ss	Ground
DOUT	Data Output	WE	Write Enable
NC	Not Connected		


^{*} Refresh Address A0-A5

Connection Diagram

Order Number MM5280N Order Number MM5280J See NS Package N22A See NS Package J22A

Logic Symbol

Absolute Maximum Ratings (Note 1)

Operating Conditions

	MIN	MAX	UNITS
Operating Temperature Range	0	+70	°C
V _{DD} Voltage	10.8	13.2	V
V _{CC} Voltage	4.5	5.5	V
V _{BB} Voltage	-5.5	-4.5	V

DC Electrical Characteristics

Power Dissipation

 $T_A = 0^{\circ} C \text{ to } + 70^{\circ} C$, $V_{DD} = +12 V \pm 10\%$, $V_{CC} = +5 V \pm 10\%$, V_{BB} (Note 2) = $-5 V \pm 10\%$, $V_{SS} = 0 V$, unless otherwise noted

1.25W

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
ILI	Input Load Current	V_{IN} = 0V to V_{IH} max, (All Inputs Except CE)		0.01	10	μΑ
I _{LC}	Input Load Current	$V_{IN} = 0V$ to V_{IHC} max		0.01	10	μΑ
lloi	Output Leakage Current Up For High Impedance State	CE = V_{ILC} or $\overline{CS} = V_{IH}$, $V_O = 0V$ to 5.25V		0.01	10	μΑ
I _{DD1}	V _{DD} Supply Current During CE "OFF"	CE = -1V to +6V, Note 4		110	300	μΑ
I _{DD2}	V _{DD} Supply Current During CE "ON"	$CE = V_{IHC}$, $T_A = 25^{\circ}C$		20	40	mA
IDD AV1	Average V _{DD} Current	$T_A = 25^{\circ}C$ Cycle Time = 400 ns, $t_{CE} = 230$ ns		35	60	mA
I _{DD AV2}	Average V _{DD} Current	Cycle Time = 1000 ns, t_{CE} = 230 ns		15	30	mA
I _{CC1}	V _{CC} Supply Current During CE "OFF"	$CE = V_{ILC} \text{ or } \overline{CS} = V_{IH}, (Note 5)$		0.01	10	μΑ
I _{BB}	V _{BB} Supply Current Average			5	100	μΑ
VIL	Input Low Voltage	t _T = 20 ns (<i>Figure 4</i>)	-1.0		0.6	V
V _{IH}	Input High Voltage		2.4		V _{cc} +1	V
VILC	CE Input Low Voltage		-1.0		1.0	V
V _{IHC}	CE Input High Voltage		V _{DD} -1		V _{DD} +1	V
VoL	Output Low Voltage	I _{OL} = 2.0 mA	0.0		0.45	V
V _{OH}	Output High Voltage	I _{OH} = -2.0 mA	2.4	1	Vcc	V

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: The only requirement for the sequence of applying voltage to the device is that V_{DD}, V_{CC}, and V_{SS} should never be 0.3V more negative than V_{BB}.

Note 3: Typical values are for $T_A = 25^{\circ}$ C and nominal power supply voltages.

Note 4: The IDD and ICC currents flow to VSS. The IBB current is the sum of all leakage currents.

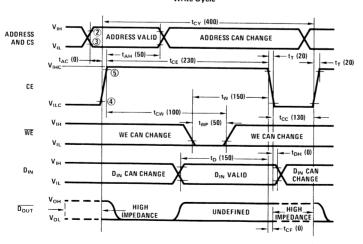
Note 5: During CE "ON" VCC supply current is dependent on output loading, VCC is connected to output buffer only.

AC Electrical Characteristics $T_A = 0^{\circ}C$ to +70°C, $V_{DD} = 12V \pm 10\%$, $V_{CC} = 5V \pm 10\%$, $V_{BB} = -5V \pm 10\%$

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS			
READ, WRI	READ, WRITE, READ/MODIFY/WRITE, AND REFRESH CYCLE								
t _{REF}	Time Between Refresh				2	ms			
t _{AC}	Address to CE Set-Up Time	t _{AC} is Measured From End of Address Transition	0			ns			
t _{AH}	Address Hold Time		50			ns			
t _{CC}	CE "OFF" Time		130			ns			
t _T	CE Transition Time		10		40	ns			
t _{CF}	CE "OFF" to Output High Impedance State		0			ns			
READ CYC	LE								
tcy	Cycle Time		400			ns			
t _{CE}	CE "ON" Time		230		3000	ns			
tco	CE Output Delay	C _{LOAD} = 50 pF, Load = 1 TTL Gate, Ref = 2.0V,		İ	180	ns			
tACC	Address to Output Access	$t_{ACC} = t_{AC} + t_{CO} + 1 t_{T}$			200	ns			
twL	CE to WE		0			ns			
twc	WE to CE "ON"		0			ns			

AC Electrical Characteristics (Continued)

 $T_A = 0^{\circ} C$ to $+70^{\circ} C$, $V_{DD} = 12V \pm 10\%$, $V_{CC} = 5V \pm 10\%$, $V_{BB} = -5\% \pm 10\%$


SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
WRITE CYC	CLE			L		
t _{CY}	Cycle Time		400			ns
t _{CE}	CE "ON" Time		230		3000	ns
tw	WE to CE "OFF"		150			ns
t _{CW}	CE to WE	t _T = 20 ns	100			ns
t _D	D _{IN} to CE Set-Up		150			ns
t _{DH}	D _{IN} Hold Time		0			ns
t _{WP}	WE Pulse Width	-	50			ns

Switching Time Waveforms

Read and Refresh Cycle 1

Write Cycle

Note 1: For refresh cycle, row and column addresses must be stable before t_{AC} and remain stable for entire t_{AH} period.

Note 2: V_{IL} max is the reference level for measuring timing of the address, \overline{CS} and D_{IN} .

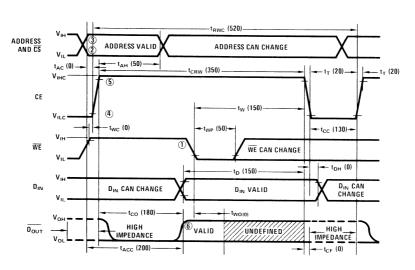
Note 3: V_{IH} min is the reference level for measuring timing of the addresses, \overline{CS} and \overline{D}_{IN}

Note 4: V_{SS} + 2.0V is the reference level for measuring timing of CE.

Note 5: V_{DD} - 2V is the reference level for measuring timing of CE.

Note 6: V_{SS} + 2.0V is the reference level for measuring the timing of D_{OUT} for a high output.

AC Electrical Characteristics (Continued)


 T_A = 0°C to +70°C, V_{DD} = 12V ±10%, V_{CC} = 5V ±10%, V_{BB} = -5% ±10%

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
READ/MOD	DIFY/WRITE CYCLE			<u> </u>		L
t _{RWC}	Read Modify Write (RMW) Cycle Time		520			ns
t _{CRW}	CE Width During RMW		350		3000	ns
twc	WE to CE "ON"		0			ns
t _W	WE to CE "OFF"		150			ns
t _{WP}	WE Pulse Width	$t_T = 20 \text{ ns, } C_{LOAD} = 50 \text{ pF, Load} = 1 \text{ TTL Gate,}$ $Ref = 2.0V, t_{ACC} = t_{AC} + t_{CO} + 1 t_T$	50			ns
t _D	D _{IN} to CE Set-Up	The property of the property o	150			ns
t _{DH}	D _{IN} Hold Time		0			ns
t_{CO}	CE to Output Delay				180	ns
two	WE to D _{OUT} Invalid		0			l
tACC	Access Time				200	ns
CAPACITAN	NCE (Note 1)	T _A = 25°C				1
CAD	Address Capacitance, CS	V _{IN} = V _{SS}		2		pF
C_{CE}	CE Capacitance	V _{IN} = V _{SS}		15		pF
C _{OUT}	Data Output Capacitance	V _{OUT} = 0V		5		рF
C _{IN}	D _{IN} and WE Capacitance	V _{IN} = V _{SS}		4		pF

Note 1: Capacitance measured with Boonton Meter or effective capacitance calculated from the equation $C = I\Delta t/\Delta V$ with the current equal to a constant 20 mA.

Switching Time Waveforms (Continued)

Read Modify Write Cycle

Note 1: $\overline{\text{WE}}$ must be high until end of t_{CO} .

Note 2: V_{1L} max is the reference level for measuring timing of the address, \overline{CS} , D_{1N} and \overline{WE} .

Note 3: V_{IH} min is the reference level for measuring timing of the address, \overline{CS} , \overline{D}_{IN} and \overline{WE} .

Note 4: V_{SS} + 2.0V is the reference level for measuring timing of CE.

Note 5: V_{DD} ~ 2V is the reference level for measuring timing of CE.

Note 6: V_{SS} + 2.0V is the reference level for measuring the timing of $\overline{D_{OUT}}$ for a high output.