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A "Trick” with RUN UUT

by Randy Mather

Here is a revelation of yet another
Fluke 8010A “trick” that may not be
known to many users.

“ As the pod manuals have pointed
out, the pod cannot operate with the
Unit Under Test (UUT) and the
mainframe at the same time. The
microprocessor (uP) in the pod
spends most of its time monitoring
the mainframe waiting for a
command from the Troubleshooter.
During this “overhead” time the pod
is sending out read operations at the
reset address so that any UUT
refresh activity may take place. This
overhead time occurs between READ
or WRITE commands. (Remember
that all of the 8010A functions like
LEARN, RAMP, DTOG, etc. are
comprised of the basic READ and
WRITE functions).

In designing tests for a uP-based
UUT, this overhead time may make a
9010A built-in test or test sequence
ineffective for socme applications. For
example, you may feel that the RAM

SHORT test takes too long to
execute for a 64K-byte section of
RAM. In this case, you might test a
smaller section of RAM with the
built-in test and then download a
UUT program into the tested portion
of RAM. This UUT program would
then test the rest of RAM using the
RUN UUT function. Interrupt testing
is another situation in which you
might have to resort to executing a
UUT program.

When you use the RUN UUT
function, the uP in the pod takes
commands only from the UUT and
effectively cuts off all communication
with the mainframe. The mainframe
has no way of knowing when the
UUT program has finished. This lack
of communication, between the pod
and mainframe, can present
problems when the RUN UUT
command is used within a 9010A
program. The following program is a
typical example of this RUN UUT
problem.

PROGRAM XX
*

L]

WRITE @ 5056 = 34
RUN UUT @ 5000
READ @ 5057

L ]

*

The WRITE statement may be the
last in a string of WRITE commands
that was used to download a UUT
program into RAM. The first
instruction of the UUT program is at
address 5000, so the RUN UUT
command must be at that address.
For this example, when the UUT
program is run it will test the
remainder of RAM and then write the
results of the test into address 5057.
The 9010A program above will read
address 5057 and branch accordmg A
to the results of the test. e

The problem with this program’is
that the READ @ 5057 will stép RUN
UUT approximately 10 milliseconds
after it starts. After the’ RUN UUT
command, the mdinframe, not
knowing if the UUT program is
finished or not, blindly moves on to
the next step. The READ @ 5057,
being a pod-related statement, stops
RUN UUT. This is fine if the run time
of the UUT program is less than 10
milliseconds. If it is longer, the READ
operation interrupts the RUN UUT
execution, stopping the UUT
program.

One way to get around this
problem is to place a STOP just after
the RUN UUT command and have
the operator press CONTinue when
he or she feels that enough time has
elapsed for the UUT program to
finish.

However, the STOP method is
somewhat clumsy and leaves too
much to chance with the operator
interaction. You can devise a
program that senses when the UUT
program has stopped. The “trick” to
this is based on the fact that even
though the uP within the pod is
executing UUT machine code, the uP
within the 9010A mainframe
continues executing the 9010A high-
level language. As long as the
mainframe program does not require
any pod action, the UUT program
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will continue to run uninterrupted.
One way to use this trick is to have
the 9010A execute a time delay
program that is just a little bit longer
than the run time of the UUT
program, as in the following example.

PROGRAM XX
L]

*

WRITE @ 5056 = 34
RUN UUT @ 5000
EXECUTE PROGRAM YY
READ @ 5057

[ ]

PROGRAM YY

REG 1 =45

LABEL 1

DEC REG 1

IF REG 1 >0 GOTO 1

The mainframe will set the UUT
program in operation with the RUN
UUT command and then execute
program YY, which decrements
register 1 down to zero. Then the
mainframe will execute the READ @
5057 statement. The initialization
value for register 1 in program YY
will have to be adjusted so that
program YY runs just a little jonger
than the UUT program. In this
example the 9010A sets the time
delay (instead of the operator, as in
the previous example).

This program may work fine for
those UUT programs that run a
specified length of time, but would
be totally unsatisfactory when the
UUT program is controlled by
asynchronous events, like interrupts,
etc. The next example shows how to
take care of this problem.

The next method, using our RUN
UUT trick, requires some changes in
both the 9010A program and the
UUT program. It requires finding a
node on the UUT that is controlled
by the uP but is not used by the UUT
program (i.e., unused decoder
outputs, unassigned address lines,
peripheral outputs, etc.). Once you
find such a node, design your UUT
test program so that the last thing it
does is set this node to a specified
level. if the node is not latched, you
will have to design your UUT
program to continually loop while
sending stimulus to that node.

In this example, the 9010A program
will be designed to continually look
at the probe level, instead of
executing a time delay program.

PROGRAM XX

..
-*
WRITE @ 5056 = 34
DPY-PROBE PIN x U y
STOP .
RUN UUT @ 5000
EXECUTE PROGRAM ZZ
READ @ 5057
L ]

PROGRAM ZZ
SYNC FREE RUN

READ PROBE

LABEL 1

READ PROBE ,

IF REG 0 AND 4000000 = 0 GOTO 1

After placing the probe on the
desired node, according to the
displayed message, the operator
presses CONT and the pod sets the
UUT program in motion, in response
to the RUN UUT command. Program
ZZ is then executed, looking at the
node where the probe is placed and,
in this case, waiting until the LOW bit
in register 0 is set (reg 0 = 4000000).
A mask of 1000000 is used if you
want to check for a HIGH level. Once
a LOW level is detected, then.
program ZZ will complete, and
execution will return to program XX,
executing the READ statement.

Find that bus short

One important thing-about
program-ZZ is that you must sync the
probe to FREE-RUN. If you are
synchronized to any other mode (i.e.,
ADDRESS or-DATA) the 9010A will
not enable the probe. In RUN UUT
mode, no sync signal is sent to the
probe from the pod. However, in
FREE-RUN, 1-kHz pulse is sent to
the probe, allowing it to see any level
change at the node. (It may be
necessary to insert another SYNC
command after the EXECUTE
PROGRAM ZZ statement to put the
probe back into the previous sync
mode.)

One other method of using the
RUN UUT trick is to look at the
“character received” bit'in the RS-232
status word. This can be used if the
UUT has an RS-232 port and your
9010A has the RS-232 option. In this
case, the last thing the UUT program
must do is send a character out
through the UUT’s RS-232 port to the
8010A. With the two RS-232 ports
tied together, the 9010A program will
sense thata character has been
received and then branch back to the
READ instruction, as before.

This trick in using the RUN UUT
instruction effectively gives the user

‘the power of two processors working

at once for added flexibility and
performance. The possible uses are

- limited only by your imagination.

by Howard Kaplan

When troubleshooting uP-based
systems with a 9000-Series Micro-System
Troubleshooter, there will be a class of
errors that point to a device or.devices on.a
common bus having a low-impedance fault
(a short) to Ve, to ground, or between
devices. With this type of fauit (especially
among soldered-in devices), it is-extremely
difficult to locate the actual failed
component, )

A technique is needed to locate the
offending component or trace, without
having to desolder IC s (and run the risk of
destroying the PCB). This article describes
such a technique that usés the diagnostic
capability of the Troubleshooter along with
its logic probe and a Hewilett Packard
Model 547A Current Tracer.

The problem can be divided into two
basic parts: locating the faulty node or
nodes using the Troubleshooter, and
isolating the failed component using
current-tracing techniques.

Locating the Faulty Node

The Troubleshooter will generally report
two classes of error messages, depending
on whether the fault is directly on the uP
bus or is beyond address and data buffers
present in the system.

For errors that are directly on the uP
bus (drivability errors), BUS TEST should
always be used to locate the fauit. The
following are several types of BUS TEST
error messages with corresponding fault
descriptions:

MESSAGE FAULT
ADDRBITOTIED LOW - LOOP? AQ tied low
ADDRBIT 1 TIED HIGH - LOOP? A1 tied high
ADDRBITS 3AND 4 TIED - LOOP? A3 and A4 tied
DATA BIT 1 TIED LOW - LOOP? D1 tied low
DATA BIT 2 TIED HIGH - LOOP? D2 tied high
DATABITS 3AND 4 TIED - LOOP? D3 and D4 tied

Once an error has been found, the
procedure for locating the faulty
component consists of LOOPing on the
indicated error and applying the current-
tracing technique (described later) to the
indicated faulty node or nodes.
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For errors that are beyond the address
and data buffers, the problem of
diagnosing the error becomes more
complex. In general, a good methodis to
perform a RAM SHORT test over the RAM
address space of the UUT until a fault is
identified by the Troubleshooter. Then look
at the Troubleshooter display to see if the
MORE indicator is on and, if it is, press the
MORE key to display the additional
information. Using this information, decide
which node is at fault on the UUT and then
use the current-tracing technique

_ (described later).

Troubleshooting Examples

The following examples illustrate the
technique for locating the faulty node ina
system that has RAM at 8C00-8FFF (hex).

Example 1: Data bits D3 and D4 shorted
together.

TEST OR DISPLAY
KEY STROKE MESSAGE
RAM SHORT @ RAM BITS 3 AND
8C00 - 8FFF 4TIED - LOOP?
ENTER/YES RAM BITS 3 AND
4TIED

Then locate the source of D3 or D4 and
apply the actual current-tracing technique,
moving away from the source of either D3
or D4.

Example 2: Address bits A3 and A4
shorted together.

TEST or DISPLAY
KEY STROKE MESSAGE
RAM SHORT @ RAMDCD ERR @
8C00 - 8FFF 8C00BIT 3 - LOOP?
CLEAR/NO RAM DCD ERR @
8C00BIT4 - LOOP?
ENTER/YES RAM DCD ERR @

8C00 BIT4

Then locate the source of A3 or A4 and
apply the current-tracing technique,
moving away from the source of A3 or A4.

Isolating the Failed Component
(Current-Tracing Technique)

‘Once a suspect node has been identified,
the procedure to isolate the failed
component can be broken into the
following steps:

1) Identify the source of the problem logic
signal. If there are multipie possibilities,
arbitrarily choose one as the source.

2) Set the Troubleshooterto the ADDRESS
SYNC or DATA SYNC mode, depending
on the function of the signal being
traced. The Troubleshooter should be
LOOPing on the error.

3) Connect the Troubleshooter probe as
close as possible to the chosen source
of the logic signal. Set the
Troubleshooter to pulse HIGH and LOW.

4) With the HP 547A Current Tracer as
close as possible to the Troubleshooter
logic probe, adjust its threshold control
until the indicator light is at
approximately % intensity.

5) Gradually move the Current Tracer away
from the Troubleshooter probe, following
the PCB traces. If this is not possible, use
other IC pins on the node as test points.
Do this until a point is reached where the
Current Tracer light goes out. At this
point you have gone beyond the point of
the low-impedance fault and need to
back up to the point where the light just
comes on. Continue in this manner,
always stopping at points where the light
goes out (no fault) and back-tracking to
the point where the light is on (fault). The
pointat which you reach a dead end with
the light on, or a transition from on to off
with no other possible paths to trace, is
the location of the short.

Current Tracing Example

The following example illustrates the
currenttracing technique. Assume we have
a uP system with an unbuffered data bus
that has multiple devices capable of driving
the bus (see figure 2). One of the devices is
driving the bus when it shouldn’t be and we
are attempting to locate the actual device at
fault.

HE 5474
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Figure 1. Current-Tracing Procedure.

uz
o >—

P
?ua

Figure 2. Fault for Example.

1) Perform a BUS TEST with the
Troubleshooter. The result indicates we
have DO TIED LOW. Locate the source of
DO (hex bit 01).

2) Set the Troubleshooter to DATA SYNC
mode. Restart the BUS TEST and LOOP
on the DO TIED LOW error message.

3) Connectthe Troubleshooter probe to the
DO line as close as possible to the uP
socket or to the 9000A-7201 Probeable
Socket (PN648907). Set the Trouble-
shooter to pulse HIGH and LOW,

4) Set up the HP 547A Current Tracer and
adjust the threshold control for 34
intensity with the Current Tracer at the
Troubleshooter probe location (see
figures 1(a) and 3).
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Figure 3. Current Tracer Adjustment.

5) Move the Current Tracer along the DO
trace (see figure 1) until the light goes |
out. In this case, first at U2 (b), which !
indicates that the fault is not in that
direction. Proceed tracing back at the
junction going toward U3 and U4, noting
that the light comes back on again.
Continue on to U3 (c), and note that the
light goes off, indicating that U3 is not at
fautt. Go back to the U3/U4 junction and
continue toward U4. You will then
discover that the light stays on all the :
way to the location of U4 (d). The :
conclusion is that U4 is drawing the fauit
current.

At this time, one should not immediately
assume that U4 is at fault. The inputs to
U4 should be verified for correct condi-
tions to decide if the input circuitry is at i
fault orif there really is an internal short !
in U4.

In conclusion, the technique outlined
above combines the powerful diagnostics
capabilities of the 9000-Series Micro-
System Troubleshooter with the Hewlett
Packard 547A Current Tracer into an easy-
to-use method for isolating low-impedance
fauits, without having to desolder
suspected components.
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Figure 3. 8085 Pod Support Fixture

Testing the Digital Assembly

Once the Pod Support Fixture has been
constructed, the address, data, and control
lines are available for use in testing the UUT.
In applying the Troubleshooter to this type
of testing problem, the object istosetup a
bit pattern at the inputs of the UUT and then
read back the resulting outputs from the
UUT. The result can then be compared to
an expected value and a pass/fail decision
can be made.
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The address, data, and control lines can
also be used to take care of special
requirements of your digital assembly. For
example, the address lines could be
decoded and used with a write control line
to latch the data you send out to the UUT.
This could be useful for setting up input
buffers on a card edge connector.

A Cable Tester

The following exampie demonstrates
how non-uP digital testing can be
implemented (see figure 4). The UUT is a
cable with up to 64 lines. This particular
UUT could be tested using most any
interface pod. The Z80 pod was chosen
only because it was convenient. On the left
of figure 4 you will recognize the Z80 Pod
Support Fixture circuitry of figure 1.

There are two 64-pin cable connectors
shown; the lower one is the output (WRITE)
side and the upper one is the input (READ)
side. The data lines are buffered through
line drivers(741.S541) to both the output
latches (74LS374) and the input line drivers
(also 74LS541). Only four address lines are
used. A15 is used as a fixture select and
AQ-A2 allow selection among the eight
different 8-line test groups on the cable.
(Additional address lines can be used to
expand the Cable Tester to a much larger
number of cable lines.)

To use the Cable Tester to test a cable,
simply connect the cable between the two
connectors and WRITE selected data
patterns to the addresses 8000-8007 (hex),
and then READ the data at the other end.
With a cable, two failure conditions are
possible: lines that are open and lines that
are tied together. We could write a
Troubleshooter program to check for these
two error conditions, but let's analyze the
problem a little closer first.

The Cable Tester actually works as a
RAM device: it latches (writes) data ata
specified address and then tries to read it
back. The Troubleshooter has powerful
RAM-testing capabilities, so why not use
them? For a simple straight-through cable,
the Troubleshooter’s built-in RAM LONG
test will check for both of the failure modes,
opens and shorts.

If the cable is expected to have
interconnections among the lines, then a
program can be written to check that those
interconnections (and no others) are
present.

This example is provided to help get you
started on your unique applications. Your
imagination’s the only limit. .

Detecting
address -
aliasing

The program to be described here is for
users who have one of the new interface
pods with the Quick RAM Test (i.e.,
68000, 8086, or 8088), or for users who
want to download an assembly-language
RAM test into the Unit Under Test (UUT)
RAM to test the RAM area faster. Al-
though the Quick RAM Test will detect
address-aliasing errors, it will not-identify
which address line caused the problem.
This program will identify the faulty ad-
dress line, and do it-much more quickly
than RAM SHORT. Users who write their
own RAM test code should run this pro-
gram before downloading that code into
UUT RAM. This program will detect ad-
dress-aliasing problems which could
corrupt.the downioaded code.

This program can also be used by
anyone who just wants a fast address-
aliasing test. The program as written
prompts the user for the starting address,
the ending address, the test address, and
the address increment/toggle pointer.
These values can be programmed in for
frequent use on a common system. The
test address is the failure address
reported by the Quick RAM Test. If you
don't have a suspect address, use the
starting address for the test address. The
address increment should be either 1 or 2
(0001 or 0010 binary). The address incre-
ment is used as the initial value of a
pointer to the address bit to be toggled.

After inputting the four parameters, the
program then zeroes the byte or word at
the test address. The main program loop
starts at Label 3. The first three lines do
an exclusive -OR of the values of the
test address and the toggle pointer. This
effectively toggles the address bit in-
dicated by the pointer.

If this new address is within the
specified address range, a value of FFFF
(hex) is written to the new address and
the test address is read. If its value is still
zero, the pointer is shifted left one bit and
the test is repeated. If its value is not zero,
the pointer is shifted left one bit and the

by Tom Locke
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test is repeated. If its value is not zero, the
address bit indicated by the pointer is
flagged as the bad address bit.

If the new address is less than the
starting address, the write and read are
skipped, the pointer is shifted, and the test
continues. If the new address is greater
than the ending address. the program is
terminated with no errors detected.

The listed program can easily be
modified to read the special addresses
associated with the Quick RAM Test to
find its starting address, ending address,
and error address. If a separate program
executes the Quick RAM Test, it could call
the new program when it receives an F1
error code (indicating an address-aliasing
problem). This would provide a better
diagnosis of which address line caused
the problem.

STATEMENTS COMMENTS

! reg 8=test addr

| reg A==start addr

1 reg B=end addr

1 reg 1=pointer to
compiemented: bit

1: LABEL 1
DPY-ENTER STARTING ADDRESS/A
DPY-ENTER ENDING ADDRES/8
IF REGB>> REGA GOTO 2
DPY-#ILLEGAL ADDRESS COMBINATION
STOP
GOTO 1

! put start addr into reg A
! put end addr into reg B
! end addr > start addr, proceed

~

LABEL 2

DPY-ENTER TEST ADDRES/8
DPY-ENTER ADDRESS INCREMENT/1
DPY-LODKING FOR ADDRESS ALIAS
WRITE @ REGB=0

LABE| 3

REGF=REGT CPL AND REGS
REG2="REG8 CPL AND REG1
REGF =REGF OR REG2

IF REGF > REGB GOTO 6

IF REGA > REGF GOTO 4
WRITE @ REGF =FFFF
READ @ REG 8

iF REGE>0 GOTO 5

! put test addr into reg 8

| addr inc|= start value of toggle ptr
| disp operating message

! zero test addr

w

! next 3 lines do:

! reg F==reg 1 XOR reg 8,

! which toggles addr bit sefected by reg
1 new addr>>end addr, finished

! start addr>new addr, skip next write

! write 16 1's to new addr

! read al test addr

! test data >0, disp error message

Ed

LABEL 4
SHL REG1
GOTO 3

LABEL 5
DPY-¥ERROR AT ADDRESS BIT §1
GOTO F

! shift pointer to next: bit
! continue test

o

o

LABEL 6
DPY-NQ ERROR DETECTED
FiLABEL F

———

Adapt your pod to

different wPs

by Bob Cuckier

Microprocessor (uP) systems that
are directly supported by the
available Fluke 9000-Series interface
pods are not the only systems that
can be tested with 9000-Series
mainframes. Many uPs have very
similar pin-outs and operating
characteristics. As a result of this,
some uP systems can be interfaced
to a 9000-Series mainframe through
an interface pod meant for a different
type of uP. This can often be done
with a minimal amount of wiring or
hardware (external to the interface
pod). This hardware is called an
interface pod adapter.

6500 Family

An Interface pod adapter can
consist of something as simple as
two DIP sockets connected together
in a way that adapts the pin
configuration of a particular interface
pod to that of the uP in the system to
be tested. Processors that are part of
a generic “family” of uPs are often
very good candidates for this kind of
adapter. The 65XX family of uPs is a
good example of such a processor
family. The timing characteristics of
the uPs in this family are the same;
only the functions of each processor
differ.

Several members of the 65XX
family can be adapted from the
9000A-6502 Interface Pod using a
pinout transtation chart as a guide
for constructing the adapter. You can
construct adapters for 6503-, 6507-,
or 6512-based systems using the
pinout translation chart in Table 1 as
a guide. These three processors were
chosen as examples, but other
members of the 65XX family can also
be adapted to the 6502 Interface Pod
using a similar chart.

-For the 6503 and the 6507
adapters, several of the pins on the
6502 Interface Pod are not used. For
example, the 6502 Pod has 16
address lines (ABO-AB15) and a valid
address range of 0-FFFF (hex). The
6503 has only 12 address lines (ABO-
AB11) and has a valid address range
of 0-FFF. The 6507 uses 13 address
lines (AB0-AB12) and has a valid
address range of 0-1FFF. Both the
6503 and the 6507 lack the SYNC
and SO lines of the 6502. The 6503
and the 6507 also have only one
clock output (as compared to the
two-phase clock output of the 6502).

In addition, the 6507 also lacks the
IRQ interrupt line.

The 6502 and the 6512 uPs are
almost identical. The 6502 requires a
single phase clock input and
produces a two-phase clock output,
while the 6512 requires a two-phase
clock input and produces no clock
output. The DBE output of the 6512
is not present on the 6502 (or the
6502 Interface Pod). Thus the
adapted pod cannot support DBE
activities of the 6512 Unit Under Test
(UUT). On most 6512 UUTs, the DBE
line is connected to CLK2; this
arrangement will present no problem
to 6512 adapter users. However, if
the UUT relies on any DBE activity
beyond the use of the CLK line,
testing problems may result.

Signal 6502 6503 6507 6512
Name Pod Pin 4P Pin 4P Pin uP Pin
Vss 1 2 2 1
RDY 2 5 3 2
CLK1(out) 3 — — 3"
IRQ 4 3 4 4
[ ] 5 — — 5*
NMI 6 4 4 6
SYNC 7 — — 7
Vee 8 5 4 8
ABO 9 6 5 9
AB1 10 7 6 10
AB2 11 8 7 11
AB3 12 9 8 12
AB4 13 10 9 13
ABS 14 11 10 14
AB6 15 12 11 15
AB7 16 13 12 16
AB8 17 14 13 17
AB9 18 15 14 18
AB10 19 16 15 19
AB11 20 17 16 20
Vss 21 2 2 21
AB12 22 — 17 22
AB13 23 —_ — 23
AB14 24 — - 24
AB15 25 — — 25
DB7 26 18 18 26
DB6 27 19 19 27
DBS 28 20 20 28
DB4 29 21 21 29
DB3 30 22 22 30
DB2 31 23 23 31
DB1 32 24 24 32
DBO 33 25 25 33
RMW 34 26 26 34
[ ] 35 — — 35*
] 36 — - 36*
CLKO(in)** 37 27 27 37
S0 38 — - 38
CLK2(out) 39 28 28 39
RES 40 1 1 40

Notes: A dash (—) means no pin exists
B 6502 pin not named ,

* Do not connect pins 3,5,35, or 36 of 6512 uPto 6502
**Called CLK2 on 6512

Table 1: 6502 Pod Adapter wiring guide
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NSC800

Although Fluke does not manufac-
ture an NSCB800 Interface Pod, 9000-
Series products can still be used to
test and troubleshoot NSC800-based
micro-systems. This example shows
how an existing interface pod can be
adapted (through the use of circuitry
external to the pod) to. an NSC800-
based system. Even if you don’t have
to repair NSC800-based systems, this
example might give you some
general ideas about adapting existing
9000-Series Interface Pods to your
particular micro-system.

The NSCB800 features a bus
structure and a signal set that are
almost identical to those of the 8085
microprocessor (uP). The read/write
cycle timing characteristics of the
NSC800 are also very similar to those
of the 8085. These similarities in bus
structure and cycle timing make the
9000A-8085 Interface Pod the logical
choice for adapting to an NSC800-
based Unit Under Test (UUT).

The circuitry required for an
adapter will depend on the
requirements of the particular UUT
involved. For example, if the NSC800
UUT does not use a certain signal
line, the circuitry used to adapt that
line to the 8085 pod will not be
necessary. As you read through the
example, you should refer to the
timing diagram of Figure 1. Refer
also to the schematic diagrams of
Figures 2, 3, and 4.

NOTE: The NSC800 is a CMOS uP,
which allows it to be operated at
power supply voltages other than
+5V. The 8085 pod (and the
troubleshooter probe) operate at TTL
signal levels. If the NSC800 UUT
uses a power supply voltage other
than +5V, level-shifting circuitry will
have to be included for every line
(except ground) connected between
the UUT and the 8085 pod. This
circuitry is not shown in the
schematic diagrams of this example.
If buffer circuitry is necessary, the
ability of the pod to check for
drivability errors may be affected.

The Clock Circultry. The clock
requirements for the NSC800 and the
8085 pod are basically the same:
both uPs can be driven directly by a
crystal or by a UUT-generated clock
signal. The minimum and maximum
operating frequencies of the NSC800
fall within those of the 8085 pod, so
no clock division or multiplication
circuitry is required.

Both uPs generate a single-phase
clock output signal. A quick
comparison of the clock signals for
the pod (shown in Figure 1) and the
NSCB800 shows that the 8085 pod
CLK output signal must be inverted
for use on the NSC800 UUT. This will
allow the 8085 pod bus signals to be
synchronized with those on the UUT.
If the CLK signal is not used on the
UUT, no inverter is necessary.

NOTE: If a crystal is used on the
NSC800 UUT for generating clock
signals, the length of the 8085 pod
cable lines (and the adapter cable
lines) may make it necessary to
include a clock oscillator in the
adapter circuitry. For more
information regarding the generation
of 8085 Interface Pod clock signals,
refer to the Fluke Technical Data
bulletin titled "Guide to 8085
Microprocessor-Based System
Testing.” Contact your local Fluke
Sales Office or Representative for a
copy. Ask for Application Information
bulletin BO151.

T, T, T,
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Figure 1. Timing differences between
NSCB800 and 8085 signals.

The Address and Data Buses. The
address and data bus structures of
the 8085 pod and the NSC800 are
basically identical. Both multiplex the
low-order address bits with the data
bits. The timing of the multiplexing
with relation to the clock signal is the
same. The Address Latch Enable
(ALE) signals are also identical.
Therefore, no adapter circuitry is
required for the address/data buses
or the ALE signal. .

Read (RD) and Write (WR) Control
Signals. The RD control signal of the
NSC800 is nearly identical to that of
the 8085 pod. However, Figure 1
shows that the WR _control signals
are different. The WR pulse of the
NSCB800 begins one-half clock period
(T-state) /ater than the WR pulse of
the 8085 pod. The trailing edge of
each write pulse occurs at the same
point in the cycle.

The leading edge of the NSC800
WR pulse occurs when the data on
the bus is guaranteed to be valid.
This is not true of the 8085 pod WR
pulse. If the NSC800 UUT only
latches data on the trailing edge of
the WR pulse, the above mentioned
timing difference is not important. in
that case simply connect the WR pin
of the 8085 pod to the WR line of the
UUT. However, if the UUT performs
some special action on the leading
edge of the WR pulse, the 8085 pod
WR pulse may have to be modified
such that the leading edge occurs
when valid data is on the bus.

The WR puise of the 8085 pod can
be adjusted to begin at almost the
same point as the WR pulse of the
NSCB800. Note from the NSC800 .
timing diagram that the NSC800 WR
pulse has a duration of about one T-
state. Thus a rising-edge-triggered D
flip-flop can be used to delay the
start of the 8085 pod WR pulse by
one-half T-state. The CLK output of
the 8085 pod is used to clock the
flip-flop. The circuit necessary for
this function is shown in Figure 2.

CLK
(8085 Pod- cK @

Pin 37) 74LST4A
WA ~
(8085 Pod- D Q
Pin 31)

WR
(NSC800 UUT-
Pin 31)

Figure 2. Circuit for adapting the 8085
Pod WR Signal to an NSC800 UUT.




Note that connecting the flip-flop
between the 8085 pod and the
NSC800 UUT defeats the pod’s
ability to check for drivability errors
on the WR control line. For this
reason, the circuitry of Figure 2
should be used only if the UUT
requires it.

1/0 Reads and Writes. The 8085
pod and the NSC800 feature identical
input/output (1/0) bus structures.
However, there is a difference in the
timing of 1/0 operations. The
NSC800 automaticaily extends the
1/0 read or write cycle by inserting a
wait state. The 8085 does not have
this characteristic; wait states must
be generated by externai circuitry. If
the NSC800 UUT requires this extra
wait state, the adapter will need to
include the circuitry necessary for
generation of an 8085 wait state.
Figure 3 shows an example of a wait
state generation circuit for the 8085
pod. The wait state will only be
generated during an 1/O operation.
Note that the circuit of Figure 3 also
allows wait states to be generated by
the UUT through the use of the
NSC800 WAIT line.

WAIT

ALE O
(8085 Pod Pin37)  (NSC 800)

(8085 Pod-
Pin 30)

74 CK " Q I—CK Q

LS08

— 74LS74A TALST4A
10/M

D Q

READY.
(8085 Pod
Pin 35)

(6085 Poo- [} D cLrQ
Pin 34) 4BV

Figure 3. Wait state generation circuit for
an 8085 Pod/NSCB800 adapter.

If the UUT does not require the
extended 1/0 cycle of the NSCB800,
simply connect the WAIT line of the
NSC800 directly to the READY pin of
the 8085 pod. (Refer to Figure 4.)

8085 Pod/NSC800

8085 Adapter NSC800

Pod Socket
Signai Pin Pin Slignal
X1 | < 11 XIN
X2 2 f————— < 10 X
RESET OUT 3 >—————————> 37 RESET,OUT
SOD 4 S—— 5 28 RFSA
SID 5 ——— 2 33 PS
TRAP 6 M 21 WM
RST 7.5 7 <——o<}———< 24 RSTC
RST 6.5 8 é—0<}—< 23. RSTB
RST55 9 e——0<}—< 22 RSTA
INTR 10 e——-————o<}-< 25 TR
NTA "> > 2 INTA
ADO 12 12 ADO
AD1 13 13 AD1
AD2 14 14 AD2
AD3 15 15 AD3
AD4 16 16 AD4
ADS5 17 17 ADS
ADS 18 18 AD6
AD7 19 19 AD7
Vss 20 20 Vss
A8 2 > 5 7 A8
A9 2 S5 2 A9
A10 23 S5 3 AN
A1l 24 S5 4 AT
A12 % > S 5 A2
A13 % S 56 A3
A14 27 S 5 7 A1R
A5 % >— S5 Al5
S0 29 5>—— 5 29 50
ALE 30 >—¢————> 30 ALE

——— %
WB 31 >rmmmmmmmem— wx——--> 31 WH
RD 2 >— 5 3 RD
s 33 > 5 27 S§1 _
o/M ¥ 55 3 1OM
READY K i ~< 38 WAIT
RESETIN 36 < < 33 RESETIN
cLk 87 >—L—D°—> 8 CLK
——— DAk

HLDA 38 >—{>0—H 35 BACK
HOLD 39 % 36 BREQ
Vee 40 €&————————< 40 Ve

+See text and figure 3
**See text.and figure 2

Figure 4. Adapter WIring. «..se toxt anc tigure 2:ana 3

Dynamic RAM Refresh Signals.
The NSCB800 uP features on-chip
dynamic-RAM refresh control
circuitry, but the 8085 pod does not
support dynamic-RAM refresh. Few
NSC800 UUTs use this capability, but
if yours does, you might have to
design refresh control circuitry into
the adapter. In that case, the 8202
Dynamic RAM Controller should be
considered for use in the adapter, as
it is designed to be compatible with
8085 uP characteristics.

The Refresh (RFSH) control signal
of the NSCB800 is used to alert
circuits on the UUT that a refresh
operation is taking place. If your
NSC800 UUT uses the RFSH line,
you may wish to use the 8085 pod to
activate this line for testing purposes.
To do this, connect the Serial Output
Data (SOD) pin on the 8085 pod to
the RFSH: line on the UUT.

Connecting the RFSH line to the
SOD line is useful only for testing the
drivability of the RFSH line, using the
WRITE CTL and BUS TEST functions
of the troubleshooter. During normal
troubleshooter operation, however,
the RFSH line should be tied to Vcc,
if it is to be held active.

The Power Save Line (NSC800).
The Power Save (PS) line of the
NSC800 has no counterpart on the
8085 pod. However, many NSC800-
based UUTs activate this pin to force
the NSC800 into the “Power Save”
mode. To use the 8085 pod to detect
an active level on this line, connect
PS line on the UUT to the SID (Serial
Input Data) pin on the 8085 pod. A
READ STS command from the
troubleshooter keyboard can then be
used to detect activity on this line.

Adapting Interrupt Lines. Ali of the
interrupt lines on the NSC800 UUT
can easily be adapted to the 8085
pod. Figure 4 shows that only
inverters are used to adapt these
lines. If the UUT does not use an
interrupt signal of the NSC800, tie
the corresponding pin on the 8085
pod to its inactive (low) level.

Adapting DMA lines. There is a
slight timing difference between the
DMA signals of the NSC800 (BACK
and BREQ) and those of the 8085
(HLDA and HOLD), but this timing
difference is not critical. These lines
can be adapted through the use of
inverters (see Figure 4). If your UUT
doesn't use the BREQ and BACK
lines, tie the HOLD line of the 8085
pod to its inactive (low) level.

Constructing the Adapter. To
construct the adapter, you'll want to
use a Fluke Pod Adapter Packaging
Kit. The kit is described in the “Now
Available” section of this newsletter.

Using the Adapter with the 8085
Pod and the Troubleshooter. This
adapter allows the use of virtually all
of the functions.of the 9000-Series
Troubleshooters. Refer to the
Operator Manual for instructions
regarding the troubleshooter. Refer.
to the 8085 Interface Pod Instruction
Manual for instructions about using
the pod. Some points of caution are
described in the paragraphs beiow.
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The RUN UUT Mode. The RUN
UUT mode of the troubleshooter
cannot be used in the usual way.
This is because the instruction set of
the NSC800 uP is a superset of the
instruction set of the 8085. Therefore
the 8085 pod cannot execute NSC800
code.

In many cases, however, the RUN
? UUT mode of the troubleshooter can

be used. 8085 instructions can be
M loaded into UUT RAM using the
| troubleshooter WRITE function. The
' RUN UUT mode can then be used to
execute the 8085 code, starting with
the initial RAM address of the code.

Status and Control Lines. The
RFSH, INTA, RESET OUT, and
BACK lines of the NSC800 UUT can
all be “written to” using the WRITE
CTL function of the troubleshooter.
The RSTC, RSTB, RSTA, PS, RESET
IN, INTR, NMI BREQ, and WAIT lines
of the UUT can all be “read” using
the READ STS function.

Remember that those NSC800 uP
input or output lines with inverters
between the UUT and the pod will
have opposite Status or Controi bit
values.

The Probe. The troubleshooter
probe can be used normally on the
NSC800 UUT — if the UUT signal
levels are compatible. CMOS signal
levels are probe-compatible if the
CMOS circuitry is operated with Vcc
equal to +5 volts.

~
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2650 UUTs

This article describes an interface pod
adapter that allows 9000-Series Micro-
Systemn Troubleshooters to test and trouble-
shoot a popular slot machine controller.
The controller is based on the Signetics
2650 microprocessor (uP). Since Fluke
does not manufacture an interface pod for
2650-based systems, it was necessary to
construct the adapter to allow an existing
interface pod to communicate with the
Unit Under Test (UUT).

The Z80 Interface Pod was chosen for
use with this. particular adapter due to
some basic similarities between the Z80
pod and the 2650 uP. For example, the
Z80 pod has a 16-bit address bus, and
the 2650 has a 15-bit address bus. Both
the Z80 pod and the 2650 P have a
separate 8-bit.data bus. Both require a
single-phase clock signal. Also, the timing

of a Z80 pod bus cycle is similar to the
timing of a 2650 bus cycle. These similar-
ities allowed many Z80 pod lines to be
connected directly to the UUT, including
the address and data bus lines. Thus out-
put lines connected directly between the
pod and the UUT can be properly checked
by the pod for drivability errors.

NOTE: The 9000-Series Trouble-
shooters include an automatic “drivability
diagnostic in most tests. Direct connec-
tion of the uP output lines to the interface
pod allows the Troubleshooter automatic
tests to check the UUT for the proper
“drivable” condition of these output lines.
Having to include a buffer or other logic
on these lines would mean that the auto-
matic bus-drivability tests would check
the buffer circuitry on the adapter rather
than the UUT circuitry, and actual UUT
errors of this type would then be reported
as errors in the RAM, ROM, or l/O tests.
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NOTES:

1. ARROWS ON SIGNAL LINES
INDICATE SIGNAL DIRECTION.

. POWER (VCC) AND GROUND ARE
SUPPLIED BY THE UUT.

. NC MEANS NO CONNECTION.

»

g%

U4=74L811

A 224F (OR SIMILAR VALUE)
DECOUPUING CAPACITOR
SHOULD BE PLACED
ACROSS VCC AND GND
PINS OF EACH OF U1,

U2, U3, and U4,

o

FROM TO
Z80 POD 2650 UUT
SIGNAL SIGNAL
NAME PIN # PIN # NAME
A ES) 14 ADR @
A a1 13 ADR 4
A2 52 12 ADR 2
NEY 33 I ADR 3
A 34 10 ADR 4
a5 26 9 ADR 5
AB 36 8 ADR &
A7 37 7 ADR 7
A8 ES 8 ADR &
A9 as 5 ADR 9
a0 40 4 ADR 10
Al 1 3 ADR 11
Az 2 2 ADR 12
FNEY 3 19 ADR I13-E/RE
PNT & 8 ADR 14-Y T
Daé 14 33 DBUS @
ot '5 32 DBUS 1
D2z 2 31 cBUS 2
D3 a £ pguUSs
pa 7 29 oBUS 4
DS 9 28 oBUSS
D6 10 21 DBUS&
D7 3 26 DBUS?
cLocK [ 38 cLocK
iNT 16 17 T
GND 29 21 GND
vec i = =S
NI
1 SENSE
RESET
16 RESET
TRa NG ¢ 37 BPAUSE
NG ¢ 36 TPATK
NC ¢ 25 GBUSEN
NC e 1S ADRE]
NE ¢ 35 RUN/ WATT
20 M/ TO
NG 3 40 FLAG
MREQ F 34 INTACK
Mi 24 OPREQ
RFSH
23=3
23 R/w
R
u3
25 5 y NG 3300 Uz z2 WRP
HALT 18 5 NC = TE)
BUSACTK 23 L NG i
300 pF
BUSREG 25 ANA iy
WATT, w T L =

Figure 1. Z80 POD/2650 Adapter Circuit Diagram.




The principle design goal of any inter-
face pod adapter should be to allow the
pod to perform individual read and write
cycles on the UUT. To achieve this goal
with the siot machine controller, several
780 pod control lines had to be adapted
with digital logic to emulate the control
lines of the 2650 uP. A schematic diagram
of the adapter circuitry is-shown in Figure
1. Note that the adapter circuitry is really
rather simple, considering the differences
between the Z80 pod and the 2650 uP.

NOTE: /In 9000-Series literature, control
lines are lines (other than address or
data. lines) that are output from the pod.
Status lines are lines (other than data
lines) that are input to the pod.

__To allow read and write strobes, the
WR and RD control signals of the Z80
pod are fed into a SET/RESET flip-flop
constructed from two NAND gates. The
output of this flip-flop emulates the R/W
line of the 2650. The same scheme is
used to create the M/IO line of the 2650
from the MREQ and IOREQ lines of the
Z80 pod. The timing characteristics: of
these arrangements are slightly different
from those of the 2650 uP, but this is often
not critical and has worked well on this
slot machine controller.

The OPREQ line of the 2650 is
emulated by the logical combination of
several Z80 pod control lines. The WRP
line is emulated by the logical combination
of the CLOCK and WR lines of the Z80
pod. Note that the RC circuit between the
two gates (that create the WRP line) is
used to create a small amount of delay.
This allows the timing characteristics of the
WRP line to be emulated more accurately.

To allow the troubleshooter mainframe
to report the activity of the SENSE,
RESET, and INTREQ lines, each of these
three lines is connected to the appropriate
status line input of the Z80 pod. The
RESET and SENSE lines are inverted
between the UUT and the ped to match
the logic level convention of the cor-
responding Z80 status line inputs. Refer to
the Z80 interface Pod Instruction Manual
for information on the methods used by
the pod and the Troubleshooter to report
activity on these lines.

|
Two 780 pod address lines are used to
emulate two of the 2650 1/O control lines.
The A14 line of the Z80 pod emulates the
ADR14-D/C line of the 2650. The A13 line
of the pod emulates the ADR13-E/NE line.
This results in the address space of the
Z80 pod being partitioned into additional
sections as defined in Table 1 below.

ADDRESS DESCRIPTION

0 -7FFF Memory Address Space
10000 1/0 Control

12000 1/O Data

14000 - 140FF 1/O Extended
(140xx, where xx is
the desired 8-bit
2650 1/O address)

Table 1. Z80 Pod/2650
Adapter Address Spaces.

The complete address space of the
Z80 pod consists of 0-FFFF for memory
accesses and 10000-1FFFF for 1/O ac-
cesses. Note that this address space is
not fully used by the 2650 adapter. At-
tempted accesses outside the valid
adapter address space may not work —
even if the access is still within the
valid Z80 pod address space.

Note that seven 2650 uP lines (IN-
TACK, PAUSE, OPACK, DBUSEN,
ADREN, RUN/WAIT, and FLAG) aren't
emulated by the adapter. These lines
aren't used on this UUT (or don't need
to be adapted for test purposes), and
therefore don’t need to be adapted to
the pod. Also, the Z80 pod lines HALT,
BUSACK, and A15 are not connected to
the adapter, and the pod lines BUSREQ
and WAIT are tied to Vcc. None of these
lines are required by this particular UUT.

This adapter successfully performs
reads and writes on the UUT for which it
is designed. Remember that most other
9000-Series functions such as ROM TEST,
RAM TEST, RAMP, WALK, etc. are com-
posed of individual reads and writes on
the UUT; those functions have been used
with equal success. The 9000-Series RUN
UUT function cannot he used properly,
however, since the instruction sets of the
2650 and Z80 nPs are not compatible.

This adapter was designed for use in
one particular 2650 application, but the
ideas presented in this article might be
useful for other 2650 users — and other
pod adapter designers as well. If you are
interested in constructing your own pod
adapter for a 2650-based micro-system,
you should carefully determine what your
UUT's testing and timing requirements are

versus the characteristics of the adapter
described in this article. This adapter may
not work “as is” on your 2650-based
UUT, and even a different interface pod
may be a better choice for your adapter.
For more information, consult the 2650 uP
Data Book and the appropriate Fluke in-
terface pod manuals. Also, a Technical
Data Bulletin is available on Interface Pod
Adapters. Contact your nearest Fluke

Sales Office or Representative and ask for

Technical Data Bulletin #B0156.
Remember that Fluke provides the

9000A-200 Pod Adapter Packaging Kit to
make the building of a pod adapter easier.
The kit contains the necessary hardware
for mounting and housing adapter com-
ponents and for connecting the adapter
between the Interface Pod and the UUT.
Contact your nearest Fluke Sales Office or
Representative for pricing and delivery
information.

b
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LEARN:

A detailed discussion

by Mike Renneberg

The LEARN algorithm is a tool
designed to be used when first
encountering a new Unit Under Test
(UUT). It provides the information
that is needed when using the
automatic RAM, ROM, and 1/O
(input/output) tests and can provide
hints to the technician on how the
microprocessor (uP) system is
structured (to supplement typical
UUT documentation). The LEARNed
information can aiso be entered
manually or changed via the VIEW
keys on the 9010A keyboard.
Although the LEARNed information
is very simple, the LEARN algorithm
is not. The complexity is due to the
fact that there are probably as many
different uP system designs as there
are designers and each one uses
different tricks to enhance
performance or to reduce cost.

The LEARN algorithm
automatically determines the
locations of RAM, ROM, and I/C by
performing write and read operations
at all possible memory addresses. At
each location, it stimulates the UUT
and determines which bits, if any, are
read-writable. Memory is tested in
64-byte blocks, and those that are
identifiable are classified as RAM,
ROM, or 1/0, using the following
rules:

RAM Blocks of memory that are at
least 64 continuous bytes long
in which all bits are read-
writable and all locations are
distinct (i.e., writing to any
location will not affect the
contents of any other location
of the 64 bytes).

No bits are read-writable, and
there appear to be 64 bytes
that are fully decoded (i.e., all
64 locations appear to be
distinct from any other block
of 64 bytes).

ROM

1/0  One or more bits are
unconditionally read-writable,
but one or more of the
conditions for RAM are not
met. The bits that are read-
writable are the reported 1/0
bits.

The 9010A LEARN algorithm
analyzes the data read and eliminates
certain types of data that fail the
above three tests. Addresses
containing only the following types of
data are thus eliminated and not
reported by LEARN:

1. All bits of each address are logic
zero, such as that data read from
unused addresses when pull-down
devices are connected to the data
bus.

2. All bits of each address are logic
one, such as that data read from
unused addresses when puli-up
devices are connected to the data
bus.

3. The data byte at each address
exactly matches the low-order bits
of the address word, such as that
found under certain circumstances
upon reading from uPs with a
multiplexed address and data bus
(e.g. 8085).

4. All address blocks of 64 bytes
exactly match another, previously
recorded, block of 64 bytes. If
RAM, writing to any address in
one block will also write the same
data to a duplicate address
position in the previously located
block. If ROM, all data read from
one block exactly matches the
data in a previously located block.
(This is very commonly found in
UP systems where only a portion
of the address space available is
used and the product designer has
not decoded all bits of the address
word — causing a mirror image of
the RAM or ROM to appear in
address space that is not used).

The multiplexed bus

In order to improve package size
and density some of the newer uPs
have implemented a multipiexed bus
configuration where some of the
address bits are multiplexed with the
data bits on the same pins of the uP
(e.g., 8085 and 8086 uPs). In a typical
READ operation the uP first places
the low order bits of the address
word on the bus, for external
circuitry to latch, and then enables
the external circuitry to drive the bus
with the data to be read.

Stray capacitance
to other circuitry

Leakage resistance
to other circuitry

Mn.‘-\\_a.,\.-\\_r\r.jh L PPN
LtlJlllll 3 3
TTFYTFTFFFT 2

BO

Bl No
8085 B2 | bus drivers
uP B4 at this

BS

B6

B

memory
address

TIIITILL
LLlll 232332232
ITEFET 22T TET2TS

TT o i 2
v v

Stray capacity to ground Leakage resistance to ground
(or power supplies) (or power supplies)

Fig. 1
¢ For those address locations that

are not used in a particular UUT,
nothing drives the data bus, and it
appears as in Figure 1 (an open or
tri-state bus condition). During a
read operation to one of these
unused addresses, the uP first places
the low order bits of the address
word on this bus, then attempts to
read a data byte from the bus. Under
most circumstances the data read
from this “floating” bus will be one of
the easily eliminated types discussed
above. However, it is difficult to
control the stray capacitance and
leakage resistance of the bus, and,
depending on these parasitic values,
the data can appear as something
other than the trivial data. Bus lines
with low-value pull-up or pull-down
devices quickly change to the pullied
level after the address byte has been
removed from the bus and before the
uP performs the remainder of the
read operation. Bus lines with high
impedance pull-up or pull-down
devices (or none at all)} change state
slowly, and may still retain the low
byte of the address at the instant the
uP is completing the read operation.
In either of these cases the LEARN
algorithm will recognize this
condition and eliminate these
addresses from the reported memory
map.
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However, because these parasitic
parameters are difficult to control
(dust accumulation or a wet
fingerprint can represent a significant
amount of leakage resistance), it is
possible for one or more of the data
lines to float in a logic direction
different than the others. This causes
the read operation to obtain data that
appears as acceptable data and the
LEARN algorithm to report a block of
ROM data — since the data appears
as ROM data would. The data read is
very dependent on the sequence and
timing of the read operations. The
sequence of operations in ROM test
is different than in LEARN, and thus
the non-existent ROM addresses will
usually fail the ROM test, even when
done on a known-good UUT. This
ROM data is usualiy reported as
many small ROM blocks and thus is
easily recognizable. They are also
easily eliminated by using the VIEW
ROM and DELETE keys on the
9010A. This characteristic only
appears in the LEARN algorithm
because LEARN, by its very nature,
must access all possible uP address
space, while the UUT or the 9010A,
under normal operation, never
accesses the unused address space.

If, when using LEARN, many small
blocks of ROM are reported and it is
suspected that this is the cause, then
providing low-value puti-up or pull-
down devices on the data bus will
easily eliminate the false ROM
reporting. (Resistors with a value
between 1 kilohm and 20 kilohms are
usually adequate for this purpose.)
This can easily be implemented with
a socket adapter that plugs into the
uP socket. Or you can use a clip-on
device that attaches to another
device on the uP data bus. Ali
multiplexed data lines and either a
+5-volt line or ground must be
availabie. If the system design
includes bus buffers, the pull-up or
pull-down devices are attached to the
same side of the buffers that other
bus drivers are, i.e., the same side as
the RAM and ROM components
(Figure 2). These puli-up or puli-
down resistors are only attached
when using LEARN and are not
needed for any other testing.

Bus Buffers
L5V

B. With Bus Buffers

A. Without Bus Buffers

Fig. 2

Finding the elusive
write-only-memory
(LEARN and the system 1/0)

1/0O circuitry is very much custom-
designed for each product appli-
cation. As discussed before, LEARN
is designed to iocate 1/O that is read-
writable at a particular address,
whether one bit or all bits. If the uP
implements special 1/0 memory,
separate from RAM memory space
(as with. the 8080, 280 and 8085), the
9010A will exercise this also and
report the read-writable 1/0 it finds.
Many common PIA’s contain read-
writable registers and thus are
reliably reported by LEARN. This
information, used with a schematic,
gives hints as to how the 1/0 space
may be organized. The limitations of
LEARN are primarily due to the fact
that closing the loop between
stimulus and response can occur
only via the uP socket. Thus write-
only and read-only 1/O registers are
not detected.

As mentioned before, there are as
many techniques of organizing UUT
address spaces as there are uP
system designers and, therefore, uP
systems can be very complex.
LEARN is one of the many tools
within the 9010A that help the
technician understand a new product
being tested for the first time.

RAM SHORT or
RAM LONG...

i

e

which, when, and

b

To meet the needs of a wide
variety of users, the 9010A contains
two Random Access Memory (RAM)
testing programs. RAM SHORT
provides a fast test for finding
shorted or open bus lines and gross
failure of RAM chips. RAM LONG
provides a complete checkout of all
RAM circuits and components.

The RAM tests on the 9010A do
not need specific knowledge about
what type of RAM is in the Unit
Under Test (UUT). The tests work
equally well with static or dynamic
RAMs from all manufacturers. Since
RAM accesses occur at the speed of
the microprocessor in the UUT, the
dynamic characteristics of the RAM
are exercised, revealing faults that
might otherwise go unnoticed.

RAM SHORT performs these tests:
(1) a read/write test (to check the
basic functioning of the RAM), (2) a
tied-data-lines test (to locate shorted
or open data lines), and (3) a fast
decoder test (to locate shorted or
open address lines).

RAM LONG provides (1) a
read/write test, (2) a tied data lines
test, (3) a thorough decoder test, and
(4) a pattern sensitivity test (to find
subtle, intermittent RAM cell failures.

The tests are performed in order. |f
any test faiis no further tests are
performed, because subsequent test
results cannot be trusted if previous
errors have not been corrected.

The read/write test is performed by
both RAM SHORT and RAM LONG.
This test insures that each bit at
every RAM address can store both 1
and 0. At each address in the tested
range, a zero is written to the RAM,
and then the location is read to
check that all bits are zeroes. A word
of all 1’s is then written to the

location and read back to check that

all bits are 1’s. If there are any bits
that cannot be driven to both states,
a diagnostic message is printed.

The tied-data-lines test also is
performed by both RAM tests. This
test checks that data lines to the
RAM chips are not tied together. The
test is performed at the first address
in the tested range. Each data line is
tested by being written to the

W\
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why?

by Kurt Guntheroth
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opposite state from all other data
lines. Then the data is read back. For
example, on an 8-bit data bus, the
following patterns would be written:

00000001
} data bit 0 tested
11111110

00000010
} data bit 1 tested
11111101

01000000
} data bit 6 tested
10111111

The last data bit (7) does not need
to be tested since it would already
have been reported as tied to some
other bit. If a data line is tied to the
tested line, one of the lines will be
pulled into a state opposite to the
one in which it was written. For
example:

Data Bit 3 Test

Data Written 00001000 11110111
Data Read 00001000 10110111
bits tied

In this example, data line 6 was
forced low when data line 3 went
low, indicating that data lines 3 and 6
are tied together.

RAM SHORT contains a fast

"~ decoder test. A pattern of data bits is

written at each address in the range
to be tested. This pattern contains
information about the address at
which it was written. Next, each
location is read back to see if the
data there is what was originally
written. If the data read back
matches the pattern that was written,
everything is fine. If the data read
back differs from the written pattern,
it is because two locations in RAM
have become connected or “aliased”
to each other. The typical cause of
this is failure of the address-decoder
circuitry — an address line either
shorted or open, or-a failure of

|
internal RAM decoding logic. The
faulty address line is identified in a
diagnostic message. Its functioning
can be quickly verified with the

probe.

RAM LONG uses a different
decoder test which tests each
address location in the following
way: The current location is first
zeroed, and then a word of all 1's is
written to each location which differs
from the current location by a single
address bit. After each of these
locations is written, the current
location is read to check that all data
bits are still 0's. If any bit has
changed to a 1, the current location
is aliased to the test location in that
bit. As above, address-aliasing is
caused by an-open.or shorted
address line or internal failure in the
RAM chip.

RAM LONG also contains a test for
pattern sensitivity. A RAM cell is
pattern sensitive if writing a certain
data pattern at one address causes a
change in data at another address.
Pattern sensitivity may be caused by
manufacturing defects in the RAM
chip, operation at temperature
extremes, or marginal circuit design.
Repair of a pattern-sensitivity failure
generally involves replacing a RAM
chip. In the pattern-sensitivity test,
the RAM is written with a sequence
of data patterns that guarantees to
drive any two bits in the tested
address range to opposite states at
some time during the test. Thus, if
writing to one cell causes a change
in any other cell in the RAM, the
pattern-sensitivity test will report this
fact.

RAM SHORT detects all failures of
external address-decoder circuitry
and finds data lines that are stuck or
tied together. It also finds the
majority of RAM chip failures,
because these failures typically have
obvious symptoms. There are some
failures that RAM SHORT is not able
to detect. If RAM SHORT passes, and
the technician still suspects a RAM
failure, then RAM LONG should be
run.

The length of time RAM SHORT
takes to run is directly proportional
to the number of words or bytes of
memory tested. This means that
running RAM- SHORT on 16K bytes
of RAM takes just 16 times as long as
running RAM SHORT on 1K bytes of
RAM. RAM LONG, on the other
hand, takes time proportional to the
number of words tested times the

number of patterns it writes, which
increases with the size of the address
range tested. This means that it takes
22 times as long to test 16K bytes of
RAM as it does to test 1K bytes and
over 100 times as long to test 64K
bytes as it does to test 1K bytes.

It is very unlikely that a pattern-
sensitivity failure will occur in two
RAM locations that are on separate
chips. This means that if you have a
32K-byte block of RAM that is
composed of four 8K-byte banks,
running RAM LONG on the four
banks separately is faster and just as
effective as running it on a single
bank of 32K bytes.

Both RAM tests perform the tied-
data-lines test only once, at the first
address in the tested range. However,
if the RAM being tested consists of
several banks of RAM chips, tied data
lines on some banks will not be
diagnosed correctly. For example,
consider a system with two banks of
RAM, where all data lines are OK to
the first bank of RAM, but one line is
open to the second bank. A single
RAM test over the entire address
range will not correctly diagnose the
stuck data bit, because the tied-data-
lines test is performed only at the
tirst address of the first bank of RAM.
The problem will, instead, be
incorrectly diagnosed as a read/write
error in that data bit. A RAM test over
the second bank alone would
correctly diagnose the problem as a
stuck (open) data line. If a read/write
failure is reported at the beginning of
a data bank, the test should be
repeated for that bank alone.

RAM LONG may be the most
economical use of your time if you
have a board that is failing due to a
suspected failure of RAM chips. RAM
SHORT is more appropriate for
troubleshooting compietely dead
boards or for production testing.
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New uP/pods test large
RAMs 20 times faster

by Tom Locke

The 68000, 8086, and 8088 inter-
face pods have built-in Quick
Memory Tests to allow the user to
test the potentially large memory
areas much faster. In addition to
greatly reducing test time, the Quick
Memory Tests also provide: (a) a
choice of byte or word tests for the
16-bit microprocessors (uPs), (b) a
choice of address increment size, (c)
automatic checking for inactive data
bits in the Quick ROM Test, and (d)
more flexibility under program
control. Each of these capabilities is
discussed in detail below, followed
by a short explanation of how to use
the tests, and a comparison with the
normal troubleshooter tests.

The speed was increased by
putting more intelligence into the
interface pod, eliminating the need
for communication between the pod
and the troubleshooter on every
transaction. This reduces the RAM
test time by a factor of about 20.

The combined choice of byte or
word addressing and of address
increment size gives the user more
flexibility. For a RAM test, he can
specify byte addressing with an
address increment of 1, thus testing
every byte individually and checking
the ability of the UUT to do single-
byte writes without altering the
adjacent byte. This mode also causes
maore activity during the RAM test,
increasing the chance of detecting
pattern-sensitivity errors. For a ROM
test, he can specify byte addressing
and an address increment of 2,
allowing separate checksums for
individual ROMs on either the high or
low byte of data. The address
increment of 2 specifies every other
byte, thereby testing either all odd or

all even addresses, depending on the

value of the starting address.

The Quick ROM Test will look to
see that every data line is valid both
high and low sometime during the
test. If not, it will set an error flag
and allow the user to see a mask of
which line, or lines, were inactive. An
inactive data line doesn’t always
indicate an error, but when an
incorrect checksum is received, this
flag and mask will be strong evidence
of a shorted line or a bad data buffer.

The added flexibility under
program control is a result of the way

these tests are implemented. Because
the Quick Memory Tests are
contained in the interface pod and
not in the mainframe, they cannot be
accessed directly by the normal
troubleshooter test keys. Instead they
are initiated, controlled, and
examined by reads and writes to
“special”’ addresses (outside the uP’s
address space). When the pod
receives an instruction to read or
write at one of these special
addresses, it is interpreted as a
special function command. Thus all
commands and examinations are just
a series of reads or writes as far as
the troubleshooter is concerned. This
allows full control and decision-
making while under program control.

Following this paragraph is a short
explanation of these tests. For more
details, look in the Operating
Information section of the
appropriate interface pod instruction
manual, under Special Functions. If
you haven’t read the Operating
Information section yet, we
recommend that you read the entire
section. It contains other worthwhile
information unique to operating your
particular interface pod.

Two commands are-required to
initiate a Quick Memory Test: the
first one to specify the starting
address of the block to be tested,
and the second one to specify the
ending address and the address
increment. The format of each
command is as follows:

WRITE @ t aaaaaa = x y , where

t = test code (2 for Quick RAM Test,
3 for Quick ROM Test)

aaaaaa = beginning or ending 6 digit
address

x-= address increment (only when
specifying the ending address. 0
means use default increment)

y = address type (0 for starting -
address, 1 for ending address)

The complete address is prefixed
with a test code (t) to specify
whether RAM or ROM is to be tested.
The write data specifies the address
type (starting or ending). When
specifying the ending address, the
higher order digit of the write data

specifies the address increment to be
used. If the write data is 01 (or just
1), the default address increment
specified in the pod manual is used.
The pod initiates the test upon
receiving the ending address, so the
starting address must be specified
first.

NOTE: With some microprocessors
(e.g., 8086, 68000) the address
specification determines the data size
(word or byte). Refer to the
appropriate Interface Pod Instruction
Manual for details.

For example, to perform a Quick
RAM Test on an 8086 pod over the
address range of 0 to FFFF (hex)
using byte addresses and an address
increment of 1, execute the following
two instructions:

WRITE @ 2800000 = 0
WRITE @ 280FFFF = 11

The first instruction specifies the
starting address and the second
specifies the ending address and the
increment, and begins the test.

To see the progress or results of
the test during or after execution,
press READ, then ENTER. In general,
Ax means test Aborted, Bx means
Busy (test not finished), Cx means
test Complete (no errors), and Fx
means test Failed. These codes are

~ explained in more detail in the

manual. If the test failed, or you're
just curious, related data is available
at other special addresses as
described in the manual. This data
includes the specified starting and
ending addresses and the status
code. The ROM test also makes
available the checksum of the last
block tested and a hex mask of any
inactive bits. The RAM Test data
includes the failure address, the
expected data at that address, the
actual data read, and a hex mask of
bad data bits.

The Quick RAM Test will find any
errors that RAM SHORT will find. It
will also allow testing the RAM space
of a 16-bit uP one byte at a time,
which RAM SHORT/LONG won't. It
is a two-pass RAM test. The first pass
(pass 0) tests the read/writability of
every bit, both high and low. A status
code of FO means the test has failed
the first pass and has found a RAM
location which has a read/write

%
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problem. The second pass (pass 1)
reads every location again, looking
for the unique data last written into
that location. A failure of this pass
usually means an address-aliasing
problem, but could also be caused by
noise, refresh, or pattern-sensitivity
problems. This pass will find all hard
address-aliasing problems, but it is
not as good as RAM LONG for
detectinig or identifying soft errors
(i.e., intermittent, pattern-sensitive,
etc.). )

The Quick ROM Test provides a
checksum of the block tested.
Though not as complete a test as the
CRC signature of the troubleshooter,
it is sufficient to detect most ROM
errors.

Because of the extra address
encoding and having to read at
special addresses to see the results,
the Quick Memory Tests are-a little
harder to use in Immediate Mode
than the standard troubleshooter
tests. But programs can be written to
make execution of these tests as
easy as executing standard tests.
When large blocks are tested, the
greatly enhanced speed will justify
the small increase in operator
difficulty.

9010A & 9020A.
What's the difference”?

by Ken Hallmen

That is a question we often hear about
the 9020A and the 9010A. When 9010A
and 9020A Micro-System Troubleshooters
are sitting side by side, the most obvious
difference is the keyboard. The 9020A
doesn’t have any of the Test. Sequencing,
Arithmetic, Tape, or AUX-IF keys of the
9010A. The LEDs on the right side of the
display on the 9020A are also different,
replacing the PROGMING and EXECUTING
LEDs of the 9010A with- REMOTE and
SRQ on the 9020A. The 9020A also
does not have a tape drive.

A major functional difference is that
the 9020A has a machine-to-machine
software interface, whereas the 9010A
was designed to enable the user to obtain
information directly about the 9010A
memory and operator-entered programs.
The 9010A may have an optional RS-232
interface which allows the user to print
out a stored memory map, listings of pro-
grams, and setup parameters. it also
allows the uploading or downloading of
the entire stored program memory. The
9020A, on the other hand, can be con-
figured with either an IEEE-488 or an
RS-232 interface. It was designed to work
in conjunction with a system controller,
allowing the system controller to gain ac-
cess to the Unit Under Test (UUT) for func-
tional testing and troubleshooting.

Operation of the 9020A may be
thought of as a sequence of remote
keystrokes. All of the keyboard functions
available in local operation are duplicated
by remote commands; including complete
controi over the probe stimulus. In addi-
tion, there are functions available only
through the remote interface; such as
BLOCK READ and BLOCK WRITE. The
controller provides the command se-
quencing and stores these commands in
its own storage medium. Since all com-
mands for the 9020A originate from the
controller, the 9020A does not need to
have memory for storing. programs.

The keyboards on both the 9010A and
the 9020A allow the user to interact with
the UUT to troubleshoot faults. The error
messages that appear on the display are
the same for both models. When the
9010A detects a hardware error, such as
a read /write error in a RAM test, it pre-
sents the operator with an error message.
it is then up to the operator to take some
action to troubleshoot the UUT. If the RAM

test was run from a program, program ex-
ecution is suspended until the entire list of
errors is presented to and handled by the
operator. The 9020A, on the other hand,
when it is being remotely controlled, sends
error status information to the controller,
allowing the controller to handle different
types of errors differently. When the
9020A detects a read/write error, for ex-
ample, it will send the first error status to
the controller. The controller can then
abort the RAM test and immediately start
troubleshooting the UUT by guiding the
operator in the use of the probe.

Can 9010A Programs Run on
the 9020A?

The quick answer to this question is
“no”. The 9010A was designed as a com-
pletely integrated stand-alone hardware
and. software environment. The 9020A
was designed to be part of an integrated
test and troubleshooting system. The
9020A accepts ASCII read or write com-
mands from the IEEE-488 bus or from an
RS-232 port. It then performs the in-
dicated operations on the UUT hardware
and returns information to the controller. In
the-case of a READ command, the status
is returned to the controller first, followed
by the data read from the UUT.

One difference between the 9010A and
the 9020A is that, in the EXECUTING
mode, the 9010A performs the read or
write operation on the UUT and stores the
data read in Register E. Register E can
then be tested by the 9010A program and
the flow of control modified according to
the results. The 9020A, on the other hand,
only performs the read or write operation
on the UUT and then sends results back to
the controller.

What Can You Accomplish Using the
9020A?

Programming a test on the 9010A is
very simple to do but the language for
troubleshooting faults is somewhat limited.
The 9010A has comparatively few regis-
ters for storing intermediate results of a
test. Because of this, the 9010A does not
have an easy way to store a large number
of signatures or levels from a good UUT to
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compare against an unknown UUT. The
9010A Ianguage controls the flow of
testing in a very. easy-to-understand
method by using GOTOs and LABELs. But
modern system controllers, like the Fluke:
1720A, utilize a richer control structure,
one which allows the testing and trouble-
shooting of UUTs to be much:easier. The
1720A also makes available hundreds of
different variables and thousands of sub-
scripted variables in the Enhanced Fluke
BASIC language.

Because of the capability of the 9020A
to -handle-any error.in the UUT. and still .
allow the controller to-control the testing, it
is possible to generate complete Guided. .
Fault Isolation (GFl) test programs forthe
UUT. The controller can store-signatures
and levels from a known good UUT, ai-
lowing straightforward generation of
9020A GFl test programs.

Using the 9020A, hybrid boards-with
both analog and- digitat sections can be
checked out at the same production test
station, as shown in figure 1. ,

The controller can use a system
counter-to verify-the clock rate of the mi-
croprocessor (xP) and of any program-
mable timer outputs from the -UUT. First
the BUS; ROM, .and-RAM are verified and
then the 1/0O testing can-begin. The analog
outputs can be routed to a system digital

multimeter, .allowing gain or offset adjust- .- -

ments to be made. Ih-most systems with -
analog inputs and. outputs, these ‘analog. -
nodes can be staticaily controlled, be-
cause the:related data is latched, making -
the timing associated with the analog
nodes unimportant. in-these cases, the
9020A can set up the output and the sys-
tem DMM can measure the programmed
value. In some situations, however, the uP
must perform a series of reads. and writes:
in a very precise manner to insure‘that the
analog measurement-or stimulus wil-be .
fully tested “at speed”. In these cases; the

necessary uP-code (contained in the UUT -

ROM or downloaded:into the UUT"RAM). .
can be executed using the RUN. UUT
command

| 9020A l |

POWER < TYOLT
TROUBLESHODTER

SUPPLY HETER H COUNTER |

|EEE~488 BUS

INSTRUMENT
- _.CONTROLLER

Figure 1. Hybrid Test System

Design Margin Verification

~One of the more challenging parts of
the design process for any uP-based

~.system is the verification of the"allowed
““margins. of ‘error, ‘called design margins.

These design margins include parameters
like the allowable timing skew-in signals
arriving at a-gate, or the effective remain- -

-ing noise threshold at any logic node.

Small design’ marglns are often the cause
of latent hardware problems iin the field.:
By changing the conditions under which

‘the’hardware operates, such problems.

can be brought to the surface and fixed. If
the hardware is tested as a system in its
normal configuration (not as separate
PCBs), the variation-of components and
their mutual- interactions ¢an be fully X
tested. Tests of these margins need to be
made in more than just-one location in the
system. Besides the uP-associated cif-
cuitry, other logic and 1/O sectlons require
many separate tests.. -

 A-unique testing procedure for verify- .
ing system design margins over the

IEEE-488 bus is possible using the Fluke
9020A. An IEEE-488-based automatic test:
system can control the system clock fre-

quency, the supply voltages, and the am= "
bient temperature (see figure 2). The first = |

step would be to set the supply voltages ~
and ambient temperature to nominal
values ‘and vary the clock frequency to

| check the timing margins. Thie 9020A can

be used to. verify that the ROM, RAM, and

associated ‘circuitry- are’all meetlng the ne---
‘cessary timing requirements, Theri, as the

clock frequency:is: slowly increased, -at -

_-some point the hardware: will fail one of

the ROM or'RAM tests. This gives a good
indication of the margin of error for the -
timing under one ‘set of test conditions.

Now,. by changrng the supply voltages ‘
and repeating the same tests, the margin
of error.can be checked against supply

“voltage variations. The: last parameter to

be varied is the. ambient temperature.

. Since temperature stabilization of the

system can take a long time, test time can
be reduced if the other parameters are-’

varied at each ambient temperature setting.

Examining many systems can increase
the level of confidence in the results of o
these tests.

e INSTRUMENT
CONTROLLER

PRINTER ’

ZaN

|EEE-488 BUS

9020A

PONER CLOCK -
TROUBLESHOOTER “SUPPLY LGENERATUR ] I THERMOMETER |

“vee CLOCK

OVEN

Figure 2. Design’ vMargin T‘est Environment

Repetitive design-margin-testing, if done
manually, can-be very time-consuming, te-
dious, and prone to data errors. The
9020A Micro-System Troubleshooter,
combined with an I[EEE-488 system to

-control.the clock frequency, power supply

voltages,.and temperature, provides a sim-
ple meanis to.check the design margins
for these three test parameters. If other
parameters:are important to the operation
of your system, then additional IEEE-488-
controlled stimulus-or measurement equip-

‘mentwill be required. The:system-can be

sub;ected ,,to continuous testing while the
fesults-are:monitored over- the duration of

- a life:test. To-increase the number of

UUTs tested, multiple: test systems on a

| -common-{EEE-488 bus can be empioyed
1.-and tontrolied by a single controller. Sys-
~tem configurations employing the 9020A
_provide for:faster throughput, ‘error-free
data gathering, error data manipulation,
-and hardcopy results.
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