9010A Language
Compller

eeeeeeeeeeee

eeeee
Litho

NOTICE

This manual describes unpublished Software which contains the tradesecrets
and confidential proprietary information of John Fluke Mfg. Co., Inc. and
which embodies substantial creative effort, ideas, and expressions. THE
SOFTWARE IS PROVIDED UNDER LICENSE FROM FLUKE. Fluke grants
Licensee a perpetual non-exclusive license to use this material and make up to
three copies for backup purposes without written permission from Fluke.

THIS SOFTWARE IS LICENSED FOR USE ON A SINGLE COMPUTER
SYSTEM.

LIMITED WARRANTY

Fluke warrants that the Software has been properly recorded on non-defective
diskettes. Fluke does not warrant the Software to be error free. Fluke will
replace such diskettes without charge if Fluke in good faith determines that
such diskettes were not subject to misuse and if returned to a Fluke Technical
Service Center, within ninety (99) days of shipment. Refer to your 90I0A
Operator Manual for a listing of locations. Fluke reserves the right to change
the specifications and operating characteristics of the Software it produces,
over a period of time, without notice.

FLUKE GRANTS NO OTHER WARRANTIES, EITHER EXPRESSED OR
IMPLIED, INCLUDING ANY IMPLIED WARRANTIES OF MERCHANTABIL-
ITY OR FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO EVENT
SHALL FLUKE BE LIABLE FOR ANY LOSS OF DATA, USE, PROFITS OR
GOODWILL, OR FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL,
CONSEQUENTIAL OR OTHER SIMILAR DAMAGES AS A RESULT OF ANY
MATTER RELATED TO THIS AGREEMENT, REGARDLESS OF THE FORM
OF THE ACTION.

Copyright (2)1983 John Fluke Mfg. Co., Inc.,
P.O. Box C9090, Everett, Washington 98208

Contents

1 INTRODUCTION ... i 1-1
Introduction to the 9010A Language Compiler -3

The Host Computer Systemooviiiiiiinnn. .. 1-4

How the Compiler Works -5
Language EXtENSONScooiiiiiiiiiiiiin I-6

/~ The 9010A Language Compiler Package -7
Disk Verification Programccccuu... [-7
Compiler -7

File Transfer Programcciiiiiiiiiiannn, 1-7

Pod Data Files ...t 1-8

Use Withthe 9005A 1-8

2 HOW TO USE THIS MANUAL 2-1
Introductiont 2-3
Organizationottt i e e 24
Suggested Use ..o e e 2-5

3 GETTING STARTED ...coiiiiiiiiiiiiiens 31
INtroductionot 3-3

Huke 1720A Ingrument Controller 34
INtroductionot 34

What YouNeedt 3-4

Backing Up the Program Diskette 34

Veifying the Working Diskette 3-5

Hooking Up the Systemt 3-6

System Dependencies 3-8

Test Editor ... 3-8

DIk Spaceo 3-8

Compiler Organizationc.ccovvinvann.. 3-8

[(continued on page ii)

CONTENTS, continued

Fluke 1722A Instrument Controller
Introduction e
What YouNeed ... *
Backing Up the Program Diskette
Veifying the Working Diskette - . . 5. e
Hooking Up the System %
System Dependencies - ... oo

Text Editor ...
DIk Space . ..o * *

IBM Persona Computer i,
Introduction ...t
What YouNeed ...
Backing Up the Program Diskette . ..**..*
Veifying the Working Diskette ..ot
Hooking Up the System ...t
Sysem EditorF

RETURN Key . . e * x
CP/ M Operdting &/stems
Introduction o

What You Need
Backing Up the Program Disketteoovvviinnn,
Veifying the Working Diskette -o X,
Hooking Up the Systemoooiiiiinns.
Ingdling Software ...
Editor e
4 WRITING PROGRAMS,
Introduction e S
Pat 1. Generd Program FOMME v
INtrOdUCHION o4 vuuvveervsrnsnnrrnnonreecessnnasnssos
Important Detalls ...
Program Comments ...t
QOIOAPrOgramsovvviiii
Address Space Information
Setup Information ...
Pod Data Filesooooiiii
9010A/Pad Interaction ,........ yeeeeeeeen yeemaeeeaas
Sample Program ...
Pat 2. Coding Shortcuts ...l
Introductionc i
Optiona Keywords and Keyword Abbreviations.
Unay Operator Shorthand ,---------- yereeenaaaeaan
Defallt Entriescooviiii i
File Incdusonooiiiiin

(continued on page iii) i

3-9
39

3-10
3-10
3-12
3-12
3-12
3-13
313
3-13
3-14

4-18 ~

CONTENTS, continued

Sample Program 4-20
Pat 3: Symbolic Names ..., 4-22
Introduction ..o 4-22
Symbolic Program Namescoovinnn. 4-24
Symbolic Labels ... 4-26
Symbolic Register Namesoue. 4-28
Predefined Register Namess. 4-29
Sample Program ... 4-30
USING THE COMPILERot 5-
1700 18 o 1o T 5-3
Preparing the Source File ...t 5-4
Compiling ... 55
Interactive Mode ...t 5-6
Command Line Mode ..., 5-8
Liging Fle Optionsccoiiiiiiiiiiiinns. 5-10
Syntax Errors ... 511
Tranderring Programs coiiiiiiiiii 5-12
Transferring Programs to the 9010A 5-12
Transferring Programs from the 9010A 5-14
Source Format ... 5-14
Hex Formato 5-16
LANGUAGE REFERENCE 6-I
INtrodUCtiON .« v v 6-3
Syntax Diagram Notationcooin 64
Specid Symbols ... 6-5
Symbolic Names ... 6-6
EXPressionsc.oiiii i 6-8
AQArESSES - v v v et 6-10
Gengrd Information 6-11
Statement FOrmMat .. vovveeie e 6-1 1
Program CommentSc.coiriiiiiiiiinannean.n. 6-1 1
Fle Indusioncoiiiiiiiiii i, 6-12
SOURCE FILE SYNTAX . i 6-13
Source Fle .o e 6-15
SHUD i 6-17
AddressSpaceoviii i 6-19
Address DESCriptor ... vovoeeee e 62 1
Globd Declaaioncciiiiiiiii 6-23
Symbolic Register Name Declaration 6-25
90I0A Programeii i 6-27
Program Body 6-29

11 (continued on page iv)

CONTENTS, continued

Locd Dedlarationc.c.ouiieiiii..
Binary Program
Indude DIrective . ..ovvii e

SETUP PARAMETERS ...

BED
BUS TS oottt e e e e
Enable

Ato

(continued on page V) v

Vi

CONTENTS, continued

APPENDICES

A KeyWords ..o A-l
B Predehed Regiter Names B-I
C Optiond Keywords and Keyword Abbreviaions C-l
D Default Setup Parameters D-I
E Paamaer Limits ..., E-l
F EmMor MESSAgES ...oviit i it iee F-1
INDEX

vivi

Section 1

Introduction
CONTENTS
Introduction to the 9010A Language Compiler 1-3
The Host Computer Systemcviiiiveiinn... 14
How the Compiler Worksot -5
Language EXtenSonscoiiiiiiiiiniiiiian., [-6
The 9010A Language Compiler Package 1-7
Dik Verificaion Program [-7
Compiler e 17
File Trander Programccoiiiiinan... |-7
Pod Data Files ... -8
Use Withthe 9005A i e -8

1-1/1-2

INTRODUCTION TO THE 9010A LANGUAGE COMPILER

The 9010A Language Compiler package is used to creste test and
troubleshooting programs for the Fluke 9010A Micro-System

Troubleshooter.

The 9010A is an excdlent tool for interactive troubleshooting, and

many users may want to take advantage of its power by writing

extensve test programs. While the 9010A itsdf is very convenient for

entering relatively short programs, it may be advantageous to creste

and maintain large, eaborate, or complex programs usng a host

computer’s editin? and file management facllities The 9010A
er

Language Compi

dlows 9010A programs to be developed

conveniently on a host computer system and then transferred to the

9010A for execution.

Introduction

THE HOST COMPUTER SYSTEM
The illugtration shows the 9010A connected by an RS-232-C serid
interface to a host computer system. Huke currently supports the
90I0A Language Compiler on the following computer systems.
e Huke 1720A and 1722A Instrument Controllers
0 Most 280 CP/M sysemswith ~ 8inchdisk drives

e Kaypro Il

e |IBM Personal Computers (PC and XT)

Registered Trademarks:
Z-80: zilog
CP/ M: Digital Research Inc.
Kaypro: Kaypro Corp.
IBM: International Business Machines

1-4

=

Introduction

HOW THE COMPILER WORKS

The 9010A is adle to read and write test programs via its auxiliary RS
232-C interface. The entire contents of the 9010A program memory,
including setup parameters and address space descriptors, are
transferred through the serid interface in a specid hex data format.
The 9010A Language Compiler takes advantage of this ability of the
9010A to read programs in hex format.

The test programmer develops the test programs on the host computer

system in an ASCII source program form using the full power of the

editing and file storage capabilities of the host system. In this sense, a
9010A program on the hogt system is much like a program written in

any other programming language, such as BASIC, FORTRAN, or

Pascal.

Once the program has been written in source form, the 9010A
Language Cogg;)iler program converts the source program into the hex
format required for trandfer to the 9010A.

The program is then transferred to the 9010A using a transfer program
that is supplied with the compiler package, and the hex format
program is read into Troubleshooter memory by pressing the AUX
I/F and READ keys on the 9010A.

1-5

Introduction

LANGUAGE EXTENSIONS

The 9010A Language Compiler accepts any program that can be
entered through the 9010A keyboard. In fact, the syntax of the 9010A
Language is compdtible with program ligings obtained from the
9010A using the AUX I/ F SETUP, AUX I/F LEARN, and AUX I/ F
PROGM commands described in the 9010A Operator Manual.

In addition to the standard 9010A commands, however, the 9010A

Language Compiler provides some powerful

extendons. These

additional features are designed to make it much easier to develop and
maintain large 9010A programs. Some of the key features are:

0 Program Comments

Keyword Abbreviations, Op-
tiond Command Keywords,
and Shorthand Notation for
Unary Operators

File Indusion

Symbolic Names for Programs,
Labds, and Regigers

Allows the test programmer to
incorporate documentation into
the program itsdf

Minimizes the typing required to
enter a test program on the host
gystem

Permits common programs to
be conveniently shared by many
source files, reducing the time
required to develop test
programs for new gpplications

Allow programs to be written
more clearly, making them
easier to understand and
maintain

introduction

THE QOIOA LANGUAGE COMPILER PACKAGE

The 90] OA Language Compiler package congsts of this manua and a
diskette that contains severd programs and data files. The key
software elements of the package are as follows:

Disk Verification Program

The Disk Veificaion Program is a utility program that verifies the
integrity of compiler package files. This program is used to assure that
there are no files missng, that the files are not corrupted, and that they
are compdtible versons.

Compiler

The compiler is a program that accepts the source file representation of
9010A programs, Including setup parameters and address descriptors,
and produces a corresponding hex format file that can be read into the
9010A.

The compiler chejks for coding errors in the source file and displays an
error message whenever an error is detected. If the source file contains
erors, then a hex file is not created.

In addition to the hex format output file, the compiler can produce a
liging file containing a modified of the source file. The liging file
can be requested in severa optiond formats that make the processing
performed by the compiler more visble to the test programmer.

File Transfer Program

The compiler package contains a utility program that is used to
transfer 9010A programs between the host system and the 9010A. The
primary purpose of the file trandfer program is to transfer hex files
produced by the compiler to the 90 10A for execution, but it can also be
used to transfer programs from the 9010A to the host system.

Introduction
9010A Language Compiler Package

Pod Data Files

Some of the Setup commands of the 90I0A Language refer to
information that is specific to particular 9010A interface pods. Pod-
specific information includes the endbleable forcing lines, bus test
address, and RUN UUT address.

The 9010A Language Compiler package contains a pod data file for
each interface pod currently available from Fluke. The pod data files
provide the information required by the compiler to process the pod-
gpecific Setup commands.

By smply creating new pod data files, the compiler can be updated to
accommodate new pods which are developed in the future.

USE WITH THE 9005A

1-8

Hex files that are produced by the 9010A Language Compiler are
compatible with the 9005A as well as the 9010A. However, programs
that are trandferred from the host system to a 9005A cannot be edited
on the 9005A, nor can they be written to a cassette tape as they can with
a 9010A.

Section 2
How to Use This Manual

CONTENTS
INtroduCtioN ... 2-3
Organizationoiiii i 24
Suggested USe ..o 2-5

2-1/2-2

B i

How to Use This Manual

INTRODUCTION

This manud is the reference source for the 9010A Language Compiler
and the 9010A Language. It is written with the assumption that the
reader is dready familiar with the operation of both the 9010A Micro-
System Troubleshooter and the host computer system.

If you are not familiar with the 9010A, you should refer to the 9010A
Operator Manua and the 9010A Programming Manud and learn how
to use the 9010A before proceeding in this manud. Of coursg, if you are
not familiar with the host computer system, you should read the
indruction manuds provided with your system.

2-3

How to Use This Manual

ORGANIZATION

The 90I0A Language Compiler User Manud is divided into the
following sections

1. INTRODUCTION Introduces the 90I0A Language
Compiler and the 9010A
Language and describes basc
features.

2. HOW TO USE THIS MANUAL Describes the sections of the
manud and recommends how
each section should be used.

3. GETTING STARTED Describes what you need to get
started using the 9010A
Language Compiler with your
particular computer.

4. WRITING PROGRAMS Gives an overview of the 90I0A
Language and describes how to
create 9010A source files.

5. USING THE COMPILER Describes how to use the
compiler and the file trandfer
program.

6. LANGUAGE REFERENCE Provides detailed information
on the 9010A Language syntax
in a quick-reference format.

APPENDICES A-F Provides other information
about the 9010A Language.

2-4

How to Use This Manual

SUGGESTED USE

The sections in this manud appear in the order in which they are
intended to be read by a fird-time user of the 9010A Language
Compiler. Section 1, Introduction, provides an overview of the
features of the 9010A Language Compiler. If you are a firgt-time user
of the compiler, the introduction gives you an idea of what to expect.

This section, How to Use this Manud, provides guidance in using the
manua o that you can quickly and correctly begin to use the 9010A
Language Compiler.

Section 3, Getting Started, provides you with the information you need
to get your new compiler running. Before atempting to use the
compiler, it is essentid that you read this section thoroughly so that
you can avoid problems. Getting Started shows you how to set up your
host computer system and how to connect it to the 9010A.

Section 4, Writing Programs, uses explanaions and examples to
introduce you to the 9010A Language and demonstrates how to create
9010A program source files. Everyone should read this section &t least
once. When you become more familiar with the 9010A Language, you
will rely less on Section 4 and more on Section 6.

Section 5, Usng the Compiler, provides information on how to use the
compiler and. the file transfer program. This will enable you to creste
hex files and transfer them to the 9010A for execution.

Section 6, Language Reference, contains much of the same
information as Section 4, but the information is more detailed, and it is
organized to enable quick reference. This section is designed for use
when you are in the middle of a program and need specific syntax
information in a hurry.

Appendices A through F provide detalled information about the

9010A Language. You will probably use the appendices for quick
reference after you have learned how to use the language.

2-5/2-6

9010A Language
Compiler

FLUKE
®

Section 3
Getting Started

CONTENTS
[571000 8o: 10 8 WA AU 3-3
Fluke 1720A Ingrument Controller 34
[5710070 8o: 10 8 NPIPIP PSP 3-4
What YOU NG -+ - v vii i 34
Backing Up the Program Diskette - ----v-ovvnvvnnnnnn. 3-4
Verifying the Working Diskefte -« ---vvvvvveneennnn, 3-5
Hooking Up the System « -« vvvvvrininniniann. .. 3-6
System Dependencies - v vvviiiiiii i 3-8
Test EitOr o ovvvvvieeeiiii i 3-8
DiSK SPACE - v evtee e 3-8
Compiler Organization « -« vvvvvvieiiiiniiinn, 3-8
Fluke 1722A Ingrument Controlleroooo.... 3-9
INtrodUCION -+ v v v v e ettt 3-9
What YouNeed -« - v e i 39
Backing Uﬁethe Program Diskette -« -« evveiiiiinnn. 39
Veifying the Working Diskefteovvevnenin.... 3-10
Hooking Up the Sygem - 3-10
Systemn DependenCies -oeeverrnie e, 3-12
Text EdIOr -« v vvvee et et 3-12
DISK SPBCE -+t ettt 3-12
IBM Persond Computer 3-13
12i80'0 8 o110 o NI 3-13
What YOUNEEd ..o 3.13
Backing Up the Program Diskette -« ..-cvvvvveean... 3-14
Veifying the Working Diskette - - -« vvvvvevnnnnnn. 3-14
Hooking Up the System ------oooooeeieee, 3-15
SYSEEM EQITOr - v vveeee e 3-16
RETURN K& .viiii i 3-16

CONTENTS, continued

3-2

CP/ M Operating SYSemS ovviiriiiiiiieieenn. 3-17
121500 8 o110 o NI 3-17
What YOUNEEd - i 3-17
Backing Up the Program Diskette - ...vovvvnvnnnnnn., 3-18
Veifying the Working Diskette -« ... vovvivvevnainnnn. 3-18
Hooking Up the Systemoovevniiiii 3-19
Ingdling Software ... 3-20
EItOr w et 3-20

Getting Started

INTRODUCTION

This section provides the information needed to set up your host
computer system to work with the 9010A Language Compiler. For
each verson of the compiler, the following informetion is presented:

e What You Need Describes the hardware configuration
required to use the compiler package

e Backing Up the Provides the information needed to create
Program Diskette a working copy of the program diskette

e Hooking Up the Describes how to connect the 9010A to the
System host system and how to set the RS-232-C
serid interface parameters

e Sydem Dependencies Presents other information that is unique
to a particular host system

You should carefully read the ingtructions that apply to your host
sysem. It is not necessary for you to read the materid that relates to
other host systems.

3-3

Getting Started

FLUKE 1720A INSTRUMENT CONTROLLER

Introduction
The following information applies to the 1720A verson of the 9010A
Language Compiler.

What You Need
The following equipment is needed in order to use the compiler
package:

1. Fluke 9005A or 9010A Micro-System Troubleshooter with
Option 9010A-001, RS-232-C Interface

2. Fluke 1720A Instrument Controller (Option 1720A-001,
128K-Byte E-Disk is recommended.)

3. Fuke Y1705 RS-232-C Null Modem Cable and Y1707 RS
232-C Interface Cable

4. 9010A-9209010A Language Compiler, 1720A/ 1722A Verson

Backing Up the Program Diskette

The 9010A Language Compiler package conssts of this manud and a
write-protected program diskette containing the compiler itsdf and
various other programs and data files.

Before usng the compiler, you should make a copy of the program
diskette. This copy should be used for norma day-to-day operations,
while the origind program diskette should be kept in a safe place as a
backup so that the working copy can be restored if it is ever damaged.

Complete ingtructions on how to copy diskettes can be found in the
1720A File Utility User Manudl.

34

Getting Started
1720A Instrument Controller

Verifying the Working Diskette

Once you have created a working copy of the program diskette, you
should verify the integrity of its files by running VERIFY, one of the
programs included in the compiler package. To run the VERIFY

program, type
VERIFY (RETURN)

in response to the 1720A Console Monitor program prompt.

The VERIFY program checks the contents of the 1720A System
Device (SYQ) to verify the integrity of the Compiler package files. It
cdculates a checksum for each of the files and compares it to the
checksum contained in the VERIFY.DAT file. VERIFY.DAT is an
ASCII file that contains a ligt of filenames and checksums for each of
the files in the compiler package.

Reaults from the VERIFY program are printed in tabular form as each
file is checked. Missing files or checksum errors (that could indicate
either corrupted files or incorrect verson numbers) are reported. If
such problems occur, recopy the diskette and run the VERIFY
program again. If problems persst and you are unable to run any of the
programs, contact a Fluke Technica Service Center.

3-5

Getting Started
1720A Instrument Controller

Hooking Up the System

The 1720A must be connected to the 9010A whenever you want to
trandfer the hex files produced by the compiler to the 9010A for
execution.

1. Use an RS232-C inteface cable and an RS-232-C null modem
cable to connect the auxiliary interface of the 9010A to one of
the serid ports on the 1720A.

KBI: or KB2: can be chosen as the serid port on the 1720A.
XFER, the file trandfer program descri in Section 5,
Compiler Usage, dlows you to specify the port name to be used
when trandferring files to the 9010A.

Since XFER defaults to KBI:, it is more convenient to connect
the 9010A to KBI: if KBI: is not dready being used for some
other purpose.

2. Set the RS-232-C auxiliary interface parameters on the rear
pand of the 9010A. Suggested settings are:

9600 baud (switch setting 7)
Parity: even

Data bits: 8

Stop hits: 1

Parity: on

9010A Setup parameter NEWLINE must be set to OOOOODOA
(the 9010A default vaue) for trandferring files.

3. Sat the parameters of the serial port on the 1720A to
correspond to those of the 9010A. SET, a 1720A system
program, is included on the program diskette for this purpose.
Refer to the 1720A Set RS-232-C Utility User Manud for a
complete description of how to use the SET utility.

Getting Started
1720A Instrument Controller

NOTE
The STALL option must be enabled on the 1720A tfanyfires
are to be transferredfrom the 9010A to the 1720A. This option

is not required tffiles are only transferred from the 1720A to
the 9010A.

Some early versions of the 1720A Set RS-232-C Utility
program do not implement the STALL option. Be sure to use
the Set RS-232-C Utility program that is contained in the
9010A Language Compiler package.

The End of Line character should be set to 10 and the End of
File character should be set to 26 (the 1720A default values).

The following example demondrates how the SET utility can
be used to select the parameters that correspond to the above
9010A settings.

H#SET

*KBI: BR9600DB8PBESB1SIESOE
*EX

Since the 1720A seria port parameters must be reestablished
every time the 1720A is turned on, you will probably want to
incorporate the necessary commands into a syssem command
file. The 1720A Hoppy Disk Operating System User Manud
contains information on how this is done.

3-7

Getting Started
1720A Instrument Controller

System Dependencies
Text Editor

In order to create and maintain source files on the host system, a
eneral-purpose text editor is required. The Editor Accessory program
filename ESX) is the recommended editor for use with the 1720A.

A copy of the Editor Accessory program is included on the program
diskette, and a copy of the Editor User Manud is included with the

compiler package.

Disk Space

After using the Editor or Compiler programs, it may be advantageous
to pack the disk contents, using the /P option in the 1720A File Utility
program, to provide as much free disk space as possible. Refer to the
1720A File Utility User Manud if you need help with packing the disk.

The message
?Read/ write past physcd end of file

means that there was not enough contiguous disk space to cregte the
output files. Delete any unnecessary files, pack the disk, and try again.

Compiler Organization

3-8

The Compiler program is constructed of overlayed program segments,
some of which must be loaded during program execution. Therefore, if
the Compiler program is being used from a floppy disk, the disk must
reman in the disk drive while the Sﬂreccajgram is running. Do not remove

the disk until the program is fini
If the overlays are not avalable when needed, the fata error message
lUnable to load overlay

will be displayed.

Getting Started

FLUKE 1722A INSTRUMENT CONTROLLER

Introduction
The following information gpplies to the 1722A verson of the 9010A
Language Compiler.

What You Need
The following equipment is needed in order to use the compiler
package:

1. Fluke 9005A or 9010A Micro-System Troubleshooter with
Option 9010A-001, RS-232-C Interface.

2. Huke 1722A Instrument Controller.

3. Fluke Y1705 RS-232-C Null Modem Cable and Y1707 RS
232-C Interface Cable.

4. Huke 9010A-920 9010A Language Compiler, 1720A/1722A
Verson.

Backing Up the Program Diskette

The 9010A Language Compiler package condsts of this manua and a
write-protected program diskette containing the compiler itsdf and
various other programs and data files.

Before using the compiler, you should make a copy of the program
diskette. This copy should be used for norma day-to-day operations,
while the original program diskette should be kept in a safe place as a
backup so that the working copy can be restored if it is ever damaged.

Complete ingructions on how to copy diskettes can be found in the
1722A Sysem Manud.

3-9

Getting Started
1722A Instrument Controller

Verlfying the Working Diskette

Once you have created a working copy of the program diskette, you
should verify the integrity of its files by running VERIFY, one of the
programs included in the compiler package. To run the VERIFY

program, type
VERIFY (RETURN)

in response to the 1722A FDOS prompt.

The VERIFY program checks the contents of the 1722A System
Device (SYQO:) to verify the integrity of the compiler package files. It
cdculates a checksum for each of the files and compares it to the
checksum contained in the VERIFY .DAT file. VERIFY.DAT is an
ASCII file that contains a list of filenames and checksums for each of
the filesin the compiler package.

Reaults from the VERIFY program are printed in tabular form as each
file is checked. Missng files or checksum errors (that could indicate
either corrupted files or incorrect verson numbers) are reported. If
such problems occur, recopy the diskette and run the VERIFY
program again. If problems perdst and you are unable to run any of the
programs, contact a Fluke Technicad Service Center.

Hooking Up the System

310

The 1722A must be connected to the 9010A whenever you want to
transfer the hex files produced by the compiler to the 9010A for
execution.

1. Use an RS232-C interface cable and an RS-232-C null modem
cable to connect the auxiliary interface of the 9010A to the
serid port on the 1722A.

2. Set the RS-232-C auxiliary interface parameters on the rear
pand of the 9010A. Suggested settings are:

9600 baud (switch setting 7)
Parity: even

Data hits: 8

Stop bits: 1

Parity: on

!

Getting Started
1722A Instrument Controller

The 9010A Setup parameter NEWLINE must be set to
OOOOODOA (the 9010A default vaue) for transferring files.

. Set the parameters of the serial port on the 1722A to

correspond to those of the 9010A. The Set Utility program
(SET), a 1722A system program, is included on the program
diskette for this (Jourpose. Refer to the 1722A System Manud
for a complete aescription of how to use the SET utility.

NOTE
The STALL option must be enabled on the 1722A ifany files
are to be transferredfrom the 9010A to the 1722A. This option
is not required iffiles are only transferred from the 1722A to
the 9010A.

The End of Line character should be set to 10 and the End of
File character should be set to 26 (the 1722A default values).

The foIIowigg example demondrates how the SET utility can
be used to sdlect the parameters that correspond to the above
9010A settings.

H#HSET
*KBl: BR9600ODB8PBESB1S ESOE
*EX

Since the 1722A serid port parameters must be reestablished
every time the 1722A is turned on, you will probably want to
incorporate the necessary commands into a system command
file. The 1722A Sysem Manua contains information on how
this is done.

3-11

Getting Started

1722A

Instrument Controller

System Dependencies
Text Editor

In order to create and maintain source files on the host system, a
genera-purpose text editor is required. The Editor Accessory program
(filename EDIT) is the recommended editor for use with the 1722A.

A copy of the Editor Accessory program is included on the program
diskette, and ingructions for usng the editor are included as an
Addendum to this manud.

Disk Space

32

After usng the Editor or Compiler programs, it may be advantageous
to pack the disk contents, using the /P option in the 1722A File Utility
program, to provide as much free disk space as possible. Refer to the
1722A Sysem Manud if you need help with packing the disk.

The message
?Read/ write past physicd end of file

means that there was not enough contiguous disk space to create the
output files. Delete any unnecessary files, pack the disk, and try again.

Getting Started

IBM PERSONAL COMPUTER
Introduction

The following information applies to the IBM Persond Computer
(PC) version of the 9010A Language Compiler.

What You Need

The following equipment is needed in order to use the compiler
package:

1. 9005A or 9010A Micro-System Troubleshooter with Option
9010A-001 RS-232 Interface.

2. IBM Persond Computer (modd PC or XT) with:

a A monochrome or color display.

b. Veson 1.1 or 2.0 of the IBM DOS Operating System.
¢. Atleast 128 K bytes of RAM.

d. A disk drive. We recommend using two disk drives or a
fixed Winchester technology disk drive.

e. An RS-232-C interface.

3. Fluke Y 1705 RS-232-C Null Modem Cable and Fluke Y 1707
RS-232-C Interface Cable.

4. Huke 9010A-923 9010A Language Compiler (IBM PC
verson).

3-13

Getting Started
IBM Personal Computer

Backing Up the Program Diskette

The 9010A Language Compiler package conssts of this manud and a
write-protected program diskette containing the compiler itsef and
various other programs and data files.

Before usng the compiler, you should make a copy of the write-
protected program diskette. This copy is used for norma day-to-day
operations, while the origind program diskette should be kept in a safe
place as a backup so that the working copy can be restored if it is ever
damaged.

Complete ingructions on how to copy diskettes can be found in the
IBM Disk Operating System (DOS) User Manual.

Verifying the Working Diskette

3-14

Once you have crested a working copy of the program diskette, you
should verify the integrity of its files by running VERIFY, one of the
programs included in the compiler package. To run the VERIFY
program, put the working diskette in drive a and then type

aVERIFY (RETURN)
in response to the IBM system prompt.

The VERIFY program checks the contents of the copy to verify the
integrity of the compiler package files. It caculates a checksum for
each of the files and compares it to the checksum contained in the
VERIFY.DAT file. VERIFY.DAT is an ASCII file that contains a list
of l1:ilenarnas and checksums for each of the files in the compiler
package.

Reaults from the VERIFY program are printed in tabular form as each
file is checked. Missing files or checksum erors (that could indicate
either corrupted files or incorrect verson numbers) are reported. If
such problems occur, recopy the diskette and run the VERIFY
program again. If problems persst and you are unable to run any of the
programs, contact a Fluke Technica Service Center.

Getting Started
IBM Personal Computer

Hooking Up the System

The IBM PC must be connected to the 9010A whenever you want to
transfer the hex files produced by the compiler to the 9010A for
execution.

1. Use an RS-232 interface cable and an RS-232 null modem
cable to connect the auxiliary interface of the 9010A to a sevid
port on the IBM PC.

2. Set the RS-232 auxiliary interface parameters on the rear pane
of the 9010A. Suggested settings are;

2400 baud (switch setting 5)
Parity: On

Data hits: 8

Stop bits: 1

Parity: Even

3. Set the parameters of the serid port on the IBM PC to
correspond to those of the 9010A.

You may use the IBM MODE command to configure the serid
port.

Refer to the IBM ingruction manuds for help.

4. The NEWLINE setup #oarameter should be set to 10000D0A
for trandferring files. If trangmisson erors occur, it may be

necessary to change the timing delay to a larger vaue. See the
9010A Operator Manud for more information.

5. The 9010A setup parameters STALL and UNSTALL should
be set to 13 and 11 respectively(the9010A default values) when
tranderring files

Getting Started
IBM Personal Computer

System Editor

In order to creste and maintain source files on the host sysem, a
generd-purpose text editor is required. Any generd-purpose editor
may be used with 9010A language source files.

RETURN Key
References to the RETURN key in this manud refers to the

\ /

/

key on the IBM Personal Computers.

3-16

Getting Started

CPM OPERATING SYSTEMS

Introduction

The following informaion gpplies to the verson of the 9010A
Language Compiler for CP/ M systems.

CP/ M (Contral Program for Microcomputers) is a product of Digita
Research, Inc. It is a general-purpose operating system that runs on a
wide variety of host computers.

What You Need
The following equipment is needed in order to use the compiler
package with a host computer running the CP/ M operding system:

1. 9005A or 9010A Micro-System Troubleshooter with Option
0 IOA- 1 RS232 Interface

2. CPIM compdtible 280 based host computer system with:

a. At leest one eight-inch IBM 3740 format disk drive. We
recommend using two disk drives.

b. Standard CP/ M Operating System software (version 2.2).
c. An RS-232-C interface.

3. An RS232-C Interface Cable suitable for connecting your
host computer system to the 9010A. For example, use a Fluke
Y 1709 RS-232-C Interface Cable to connect a Kaypro Il
Personal Computer to a 9010A.

4. Fluke 9010A-921, the version of the 9010A Language
Compiler package for CP/M on eght inch disks, or 9010A-
922, the version for the Kaypro 1l Persona Computer with
CP/M on a 5-1/4 inch disk.

3-17

Getting Started
CP/M Operating Systems

Backing Up the Program Diskette

The 9010A Language Compiler package consts of this manud and a
write-protected program diskette containing the compiler itsef and
various other programs and data files.

Before usng the compiler, you should make a copy of the write-
protected program diskette. This copy is used for norma day-to-day
operations, while the originad program diskette should be kept in a safe
place as a backup so that the working copy can be restored if it is ever
damaged.

Verifying the Working Diskette

Once you have created a working copy of the program diskette, you
should verify the integrity of its files by running VERIFY, one of the
programs included in the compiler package. To run the VERIFY
program, type

(VERIFY RETURN>

in response to the CP/M system prompt.

The VERIFY program checks the contents of the copy to verify the
integrity of the compiler package files. It cadculates a checksum for
each of the files and compares it to the checksum contained in the
VERIFY .DAT file. VERIFY.DAT is an ASCII file that contains a ligt
of filenames and checksums for each of the files in the compiler
package.

Reaults from the VERIFY program are printed in tabular form as each
file is checked. Missing files or checksum errors (that could indicate
either corrupted files or incorrect verson numbers) are reported. |If
such problems occur, recopy the diskette and run the VERIFY
program again. If problems persst and you are unable to run any of the
programs, contact a Fluke Technica Service Center.

—

Getting Started
CP/M Operating Systems

Hooking Up the System

The host computer must be connected to the 9010A whenever you
want to transfer the hex files produced by the compiler to the9010A for
execution.

1.

Use an RS232 interface cable to connect the auxiliary
interface of the 9010A to a seria port on the host computer.

Set the RS-232 auxiliary interface parameters on the rear pane
of the 9010A. Suggested settings are:

9600 baud (switch setting 7)
Parity: Even

Data bits: 8

Stop hits: 1

Parity: on

The NEWLINE setup parameter should be set to 10000D0A
for trandferring files. If trangmisson errors occur, it may be
necessary to change the timing delay to a larger value. See the
9010A Operator Manud for more information.

The 9010A setup parameters STALL and UNSTALL should
be set to 13 and 11 respectively (the 9010A default values) when
trandearing files.

Set the parameters of the serid port on the host computer to
correspond to those of the 9010A.

Refer to Inddling Software in this section for further
information on setting the RS-232 parameters.

3-19

Getting Started
CP/M Operating Systems

Installing Software

Editor

3-20

On CP/IM sygems, the File Trander utility program (XFER) uses
information from a data file for corrfigurigg RS-232-C tranders. This
file, CONFIG.PRT, is automaticaly created for each system the first
time that the File Transfer program is used.

The program will prompt for information about RS-232-C port
parameters, and use the information that you enter to creste the data
file on the system default disk.

Refer to the host computer's ingruction manuas if you need further
information to answer the prompts.

Once the CONFIG.PRT data file is avalable on the disk, it will
automaticaly be used for subsequent file trandfers with the XFER
program. This file contains port status and data addresses, an optiona
baud rate address, and SIO initiaization bytes.

To change the RS-232-C configuration in the CONFIG.PRT file, use
the Configure option (C) in the File Transfer program. The prompts
will be repeated to dlow you to redefine the configuration.

Note that the CONFIG.PRT file will be crested on the system default
device. The system disk must not be write-protected at this time.

In order to create and maintain source files on the hogt system, a
generd-purpose text editor is required. Any generd-purpose editor
may be used with 9010A Language source files.

N Section 4
Writing Programs

CONTENTS

Introduction ... 4-3

Pat 1. General Program Format 44
Introduction i 4-4
Important Detals0 L 4-5
Program Commentsccciiiiiiinn.. 4-7
90 1 OA Programst e 4-8
Address Space Information 4-8
Setup Information 4-9
Pod Data Fles ... 4- 1
9010A/Pad Interactioncvvuiiniinn.. 4-12
Sample Program 4-13

Pat 2. Coding Shortcutscccvveinnn.. 4-16
Introduction ... 4-16
Optiona Keywords and Keyword Abbreviations 4-17
Unay Operator Shorthand 4-18
Default Entries 4 8
Fle Inclusonl 4-19
Sample Program 4-20

Pat 3: Symbolic Namesccceet. 4-22
Introduction 4-22
Symbolic Program Names 4-24
Symbolic Labes 4-26
Symbolic Register Names 4-28
Predefined Register Names 4-29
Sample Program 4-30

4-1/4-2

Writing Programs

INTRODUCTION

This section provides the information you need to write programs for
the 9010A Language Compiler. The section is divided into three parts.
Each part is self-contained and describes increasingly more advanced
features of the 9010A Language.

The three parts cover the following topics.

PART 1. GENERAL PROGRAM Destribes how to write smple

FORMAT prograns using the sandard
features of the 9010A
Languege

PART 2: CODING SHORTCUTS Introduces some extended
features of the 9010A
Language which reduce the
amount of typing required to
enter programs

PART 3. SYMBOLIC NAME Allows programs to be made
more readable and eader to
mantan by usng mnemonic
names for programs, labels,
and regigers

The best way to learn the 9010A Language is to start by reading
through Part 1 of this section, and then skip directly to Section 5, Using
the Compiler. You should use the compiler to compile the example
programs provided in Pat 1, and then try writing some smple
programs of your own.

Once you fed comfortable with the concepts covered in Part 1, you can
return a any time to this section and proceed with the more advanced
concepts covered in the remaining parts. The compiler can be used
productively & any of the three levels.

4-3

Writing Programs

PART 1: GENERAL PROGRAM FORMAT
Introduction

4-4

The 9010A Language Compiler dlows you to create source files
identicd to those that the 9010A AUX I/F functions send via the RS-
232-C auxiliary interface. These files can contain the entire contents of
the 9010A memory - not only 9010A programs but adso any available
address space and setup information.

In source files for the 9010A Language Compiler, address

information, setup information, and programs are descri in
separate blocks. These blocks are identified with compiler keywords,
such as SETUP INFORMATION. This section provides information
about usng the various blocks and shows some sample source files.

In the 9010A Im?uage, program statements use an expanded syntax to
take advantage of the flexibility of the host system text editor and to
provide enhanced readability. Program lines may contain comments
and symbolic names. More information about source files and
program lines is found throughout this section. Section 6, Language
Reference, contains detaled information on the syntax and usage of
each 9010A program statement.

The following is an example of a short source file containing two vaid
9010A programs and no address space or setup information:

PROGRAM 0

DPY-THIS IS AN EXAMPLE
EXECUTE PROGRAM 10
DPY-OF A VALID 9010A PROGRAM

PROGRAM 70

REGI = 40
0: LABEL O
DEC REGI
IF REGI > 0 GOTO 0

Writing Programs
General Program Format

Important Details

When writing programs for the 9010A Language Compiler on your
computer, you will find that it is necessary to pay attention to some
detalls that you could ignore when entering programs using the9010A
keyboard. These important rules are;

Each 9010A datement must be on a separate line. Continuation
lines are not alowed.

A daement may begin in any column.

Spaces and tabs are ignored, except when they occur in DPY or
AUX datements.

Blank lines are ignored.

Adjacent keywords, symbolic names (described in Part 3 of this
section), and numbers must be separated by at least one space.

EXAMPLES:
VALID INVALID

READ PROBE READPROBE
DTOG @ IOOF=80BIT7 DTOG @ IOOF = 80 BIT7
Uppercase and lowercase characters can be used interchangesbly.
EXAMPLE:
The following program datements are al equivaent:
WRITE @ 100FA =1
write @ 100fa = 1
Write @ 100FA =1

4-5

Writing Programs
General Program Format

4-6

In afew cases, the 9010A Language does not correspond exactly to
the keys that would be pressed if the program were being entered
on the 9010A keyboard.

For example, INC REGS is a legd statement accepted by the
compiler. However, the keystrokes used to create this statement on
the 9010A are INC 5, which would not be accepted by the compiler.

As another example, REGA = REGA INC is a legd statement
accepted by the compiler, but the keystrokes used to create this
datement on the 9010A are REG A INC, which would not be

accepted.

In generd, the keywords of the 9010A Language are not identical
to the wording that appears on the 9010A keyboard.

For example:
KEYBOARD 9010A LANGUAGE
DISPL DPY
COMPL CPL
RPEAT REPT
TOGGL DATA DTOG

In al cases, however, the keywords accepted by the compiler are
competible with listings produced by the 9010A through the RS-
232-C auxiliary interface.

Writing Programs
General Program Format

Program Comments

The 9010A Language Compiler dlows you to add comments to your
programs, making the programs more readable and easer to maintain.

The rules for usng comments are:

e Comments gart with an exclamation point (1), and they extend to
the end of the line.

e A comment can be on the same line as a 9010A statement, or it can
be on a separate line.

o If acomment extends over severd lines, each line must begin with
an exclamation point.

e A comment cannot be placed in the middle of a 9010A statement.
EXAMPLE:

! This example demonstrates the use of comments.

PROGRAM 0 ! Main program
DPY-THIS IS AN EXAMPLE | DPY statements can have comments
EXECUTE PROGRAM 10 | Execute the delay routine

DPY-OF A VALID 9070A PROGRAM

PROGRAM 10 ! Delay routine

REG1 = 40 I Initialize AEG1?1 with delay count
0: LABEL O

DEC REG1 ! Count down to zero

IF REG1> 0 GOTO 0O

4-7

Writing Programs
General Program Format

901 OA Programs

The 9010A Language allows programs to be specified in the same form
that would be produced by the 9010A AUX I/F PROGM keys. By
connecting a printer to the auxiliary interface of the 9010A, you can
obtain formatted listings of your 9010A programs. These listings can
serve as examples of acceptable syntax.

Address Space Information

The 9010A Language alows address space information to be specified

in the same form that would be produced by the 9010A AUX I/F
LEARN keys.

The following rules apply to address space information:

e The address space information must appear at the beginning of the
source file, preceding al 9010A programs (i.e., before the first
PROGRAM statement).

Up to 100 address descriptors may be specified.

EXAMPLE:

! This is an example of a source file containing
I UUT memory map information

ADDRESS SPACE INFORMATION
RAM @ COOO-FFFF

ROM @ 0000-1FFF SIG 0295
ROM @ 2000-3FFF SIG C262

PROGRAM 0

RAM SHORT
ROM TEST

4-8

Writing Programs
General Program Format

Setup Information

The 9010A Language dlows any or al of the setup parameters to be
ﬁpecified in the same form produced by the 9010A AUX I/F SETUP
eys.

The 9010A setup functions dlow the operator to control the reporting
of UUT errors, enable microprocessor lines, and specify operating
parameters. The 9010A Operator Manual contains complete
information on the various setup parameters that can be specified.

The following rules goply to sgtup information:

Setup information must appear a the beginning of the source file,
preceding al 9010A programs (i.e., before the firs PROGRAM
datement). The setup information may appear either before or
after any address space information.

Y ou can specify al of the setup parameters, some of them, or none
of them. Setup parameters that are not explicitly set assume default
values contained in the pod data file (if a pod data file is specified),
or to the power-up vaues supplied by the 9010A.

Some sgtup information is -dependent. The -unique
information ICi)nd udes enablegble Ii‘)grdci n?g‘o(?ln nes, the de‘ajpl?dbus Ct‘&st
address, and the RUN UUT address. If any of your 9010A

rograms depend upon the pod-unique features (i.e., a forcing line
ﬁ&s to bee%(igble%o ora FgadN U?JT must be(performed a% the
pod's default address, then the appropriate Pod Data file needs to
be included in the source file. To do this, an INCLUDE statement
is used to specify the correct Pod Data file:

INCLUDE “podname.POD”

This satement must appear before the setup information in the
source file,

EXAMPLE:

INCLUDE “8086.POD”

4-9

Writing Programs
General Program Format

4-10

The INCLUDE satement is described in Part 2 of this section. Pod
data files are described baow.

A POD statement should be placed in the setup section if any of the
programs depend upon pod-unique fegatures.

EXAMPLE:
INCLUDE “8086.POD"
SETUP INFORMATION
POD - 8086

TRAP ACTIVE FORCE LINE/NO
TRAP ACTIVE INTERRUPT-YES

Writing Programs
General Program Format

Pod Data Files

The 9010A Language Compiler program diskette contains a collection
of files with names like 8086.POD, 68000.POD, etc. These files contain
pod-specific definitions for enablegble forcing lines, bus test address
(BUSADR), and RUN UUT address (UUTADR). If you want to
specify any of the pod-specific setup parameters, you should merge the
gppropriate pod data file into your source file by usng an INCLUDE
gatement. The INCLUDE statement must appear before the SETUP
INFORMATION section.

Pod-specific forcing lines are defined in the pod data file. The pods
equate each of the forcing lines to a hit in an enable mask.

For example, the definitions for an 8086 pod are shown below:

I Each of the enableable forcing lines must be defined as the
| appropriate bit in the enable mask.

FORCELN READY = 0 | READY is bit 0 in the enable mask

FORCELN HOLD = 1 I HOLD is bit 1 in the enable mask

FORCELN INTR = 3 I INTR is bit 3 in the enable mask

BUSADR = 0000 ! BUSADR is the pod’s default BUS TEST
! address

UUTADR = FFFFO I UUTADR is the pod's default RUN UUT
! address

I Other definitions can follow

4-11

Writing Programs
General Program Format

9010A/Pod Interaction

4-12

Setup information takes effect immediately upon loading a new hex
file into the 9010A (whether through READ TAPE or AUX I/F
READ). An interaction takes place between the 9010A and the
interface pod when the hex file is loaded and setup information may be
changed to the default setting of the pod if:

1. The pod name was not specified with a POD statement in the
setup section, or

2. A different pod is connected to the 9010A while the hex file is
being loaded into the 9010A.

To avoid changing the parameters in pod-dependent programs:

1. An INCLUDE gaement must be used in the setup section of
the source program to include information from the
appropriate Pod Data file.

2. A POD datement must be used in the setup section of the
source program to identify which pod is being used.

3. The correct pod (or no pod) must be connected to the 9010A
when downloading a compiled hex file.

Writing Programs
General Program Format

Sample Program

The faollowing sample source file illugrates the concepts introduced in
Part 1. Thisexample can be used as a basis for writing your own 9010A
programs. Before continuing to Part 2, you may wish to copy this
program using your host computer and transfer it to your 9010A as an
exercise.

Section 5, Using the Compiler, shows how to run the compiler and
transfer the generated hex files to the 9010A.

Once you fed comfortable using the compiler a this leve, you should
proceed with Part 2, which introduces some extended festures that
amplify the task of writing larger test programs.

I This program tests the U&2 flip-flop on the output side
| of the 8255 PIA on the NEC TK-BOA single-board computer.

INCLUDE “8080.POD"

SETUP INFORMATION
POD -~ 8080
TRAP ACTIVE FORCE LINE-NO
TRAP ACTIVE INTERRUPT-YES

ADDRESS SPACE INFORMATION
RAM @ 8CO00-8FFF
ROM @ 0000-07FF SIG F77C
//O @ 100F8-100FA BITS FF

Note: this address space information
is not actually used by the

program, but the descriptors

will be loaded into the 9010A

PROGRAM 0

Main program

WRITE @ 100FB = 80 Configure PIA for output

!
0: LABEL O I Set up entry
REG2 = A ! Set up 10 stimulus loops
REG8 = 1A09 | Store U52 « pin9 for prompt

EXECUTE PROGRAM 3
EXECUTE PROGRAM 1
IF REG8 = 1 GOTO0 1
DPY-TESTING U52#
READ PROBE

Prompt for probe placement
Detect probe placement
Branch on open node
Display s Testing U52

Clear probe data register

4-13

Writing Programs
Program Format

General

4-14

2: LABEL 2

WRITE @ 100FA = 1

DTOG @ 100F9 = 80 BIT 7

WRITE @ 100FA = 0

DTOG @ 100F9 = 80 BIT 7

DEC REG2

IF REG2 > 0 GOTO 2

EXECUTE PROGRAM 2

IF REG8 = A GOTO 3

DPY-U52 TOGGLING IMPROPERLY#H
GOTO 4

1: LABEL1

DPY-WAS PROBE IN PLACE# ?1
IF REGT = 0 GOTO 0

DPY-U52 OPEN#

GOTO 4

3: LABEL 3

DPY-U52 TEST PASSED#

4: LABEL 4

PROGRAM 1

SYNC FREE-RUN

0: LABEL O

REG1 =50
REG2 = 20

1: LABEL 1

2:

READ PROBE
IF REGO AND 5000000 > 0 GOTO 2
DEC REG1

IF REG1 > 0 GOTO 1

REG8=1

GOTO 3

LABEL 2

DEC REG2

READ PROBE

IF REGO AND 5000000 = 0 GOTO 0
IF REG2 > 0 GOTO 2

REG8 =0

3: LABEL 3

Stimulus loop

Set flip flop D input high
Toggle Nip flop

Set flip flop D input low
Toggle again

Loop for 10 tries

Extract probe data

Branch on probe count = 10
Display bad toggle

Exit

Open node loop

Query

Branch if probe not ready
Display = U52 bad

Exit

Device passed

End

Program to detect probe placement

Set counts
Open count = 50
Debounce count =20

Open loop

Gather level information
Branch on bounce /eve/
Decrement open count
Loop if count >0

Set Open Node flag
Exit

Debounce loop

Decrement debounce count
Gather level information again
Branch on open level

Loop if count > 0

Set Begin Test flag

End

Writing Programs
General Program Format

PROGRAM 2 ! Program to extract the probe data
READ PROBE I Gather probe information
REG8 = REGO AND 7F I Extract count

REGY9 = REGO SHR SHR SHR SHR SHR SHR SHR SHR AND FFFF! Extract Sig.
REGA = REGO SHR SHR SHR SHR SHR SHR SHR SHR
REGA = REGA SHR SHR SHR SHR SHR SHR SHR SHR
REGA = REGA SHR SHR SHR SHR SHR SHR SHR SHR AND 7 ! Extract level

PROGRAM 3 ! Program to prompt the operator
REG2 = REG8 AND 7F ! Register 2 = pin number
REG1 = REG8 SHR SHR SHR SHR SHR SHR SHR AND 7F! R1 = Device num.
DPY-PROBE U®@171 PIN @2# ! Prompt for probe placement

Writing Programs

PART 2: CODING SHORTCUTS
Introduction

4-1 6

The 9010A Language is designed to be compatible with the formatted
listings produced by the AUX I/F keys on the 9010A. In this format,
you may find tha some dtatements require much more typing then
would be required to enter the same statement through the 9010A
keyboard.

To make it easier to enter large programs on the host system, the 9010A
Language Compiler provides severad festures which reduce the
amount of typing required. These features are:

e Optiond Keywords and Keyword Abbreviations

e Unary Operator Shorthand

e Default Entries

e Fle Induson

Writing Programs
Coding Shortcuts

Optional Keywords and Keyword Abbreviations

The 9010A Language provides the option of abbreviaing certan
keywords or leaving them out entirdy. Appendix C, Optiond
Keywords and Keyword Abbreviations, contains a complete list of the
optiona keywords and valid abbreviaions. Furthermore, the syntax
diagrams in Section 6, Language Reference, indicate the abbreviated
form of each statement in the language.

EXAMPLES:
STATEMENT ABBREVIATED FORM

EXECUTE PROGRAM 5 EXECUTE 5
or
EX 5
WRITE @ 100FF = 25 WRITE 100FF = 25

or

WR 100FF = 25
3: LABEL 3 3
SYNC ADDRESS SYNC A
or
3: SYNCA

Writing Programs

Coding

Shortcuts

Unary Operator Shorthand

For multiple applications of a unary operator(INC, DEC, CPL, SHL,
or SHR), you may specify the unary operator followed by a decimal
number indicating how many times it is to be goplied.
EXAMPLE:
satement
REG1 = REGO SHR SHR SHR SHR SHR SHR SHR AND 7F

be abbreviated to

REG1 = REGO SHR 7 AND 7F

Default Entries

4-1 8

When programs are created through the 9010A keyboard, many of the
entries in a program step can be defaulted to the appropriate dedicated
register by pressng the ENTER Kkey.

For example, to create the statement READ @ REGF, you need only
press the READ and ENTER keys on the 9010A. The read address
automdicdly defaults to REGF.

Smilarly, if the WRITE and ENTER keys are pressed on the 9010A,
the write address automatically defaults to REGF, and the data to be
written defaults to REGE.

The 9010A Language provides a smilar default capability. You can
use an adeisk (*) to indicate that an entry should default to a
dedicated register. The syntax diagrams in Section 6, Language
Reference, indicate which entries can be defaulted in this way.

EXAMPLES:
STATEMENT DEFAULT FORM
READ REGF READ *

WRITE REGF = REGE WRITE * = *

Writing Programs
Coding Shortcuts

File Inclusion

To facilitate handling large collections of source code which can be
shaed by severd programs, the 9010A compiler provides a fiie
incluson feature. This feature dlows you to cregte a library of ussful

9010A programs and use the file incluson facility to merge them into a
particular source file.

A line of the form
INCLUDE “filename’

in the source file will be replaced by the contents of the file “filename”’
when the program is compiled. The effect is equivdent to manualy
entering the contents of the included file at that point in the source file.

EXAMPLE:
Asuming that the file PROMPT.S contains

PROGRAM 3

REG2 = REG8 AND 7F
REG1= REG8 SHR 7 AND 7F
DPY-PROBE U@71 PIN @2#

then the source file
PROGRAM 0

REG8 = 1A09
EXECUTE PROGRAM 3

INCLUDE “PROMPTS”
have exactly the same effect as the source file
PROGRAM 0

REG8 = 1A09
EXECUTE PROGRAM 3

PROGRAM 3
REG2 = REG8 AND 7F

REG1= REG8 SHR 7 AND 7F
DPY-PROBE U@1 PIN @2#

Writing Programs
Coding Shortcuts

Sample Program

4-20

The following example is Smilar to the one given a the end of Part 1,
but it takes full advantage of the abbreviation features. The example
assumes that the file PROBEL.S contains the code for PROGRAM 1,
PROBE2.S contains PROGRAM 2, and PROMPT.S contans
PROGRAM 3.

| This program tests the U52 flip-flop on the output side
| of the 8255 PIA on the NEC TK-BOA single-board computer.

INCLUDE “8080.POD”

SETUP
POD - 8080
TRAP ACTIVE FORCE LINE NO
TRAP ACTIVE INTERRUPT YES

ADDRESS SPACE
RAM BCO00-8FFF
ROM 0000-07FF SIG F77C
1/O 100F8-100FA BITS FF

PROGRAM 0
WR 100FB = 80
0: REG2 = A
REG8 = 1A09
0EX 3
EX 1

IF REG8 = 1 GOTO 1
DPY TESTING U52#
PROBE

2: WR 100FA =1
DTOG 700F9 = 80 BIT 7
WR 100FA =0
DTOG 100F9 = 80 BIT 7
DEC REG2
IF REG2 > 0 GOTO 2
EX 2
IF REGS = A GOTO 3

DPY (52 TOGGLING IMPROPERLY#
GOTO 4

! Equivalent to SETUP INFORMATION

! = in SETUP statements is optional

| @ omitted

! WRITE abbreviated to WR

| Same as EXECUTE PROGRAM 3

! Short form of LABEL statement

! - is optional in DPY statement

Writing Programs
Coding Shortcuts

1: DPY WAS PROBE IN PLACE# ?1
IF REG1= 0 GOTO 0
DPY (J52 OPEN#
GOTO 4

3: DPY (J52 TEST PASSED#

INCLUDE “PROBEL1.S” | Code for PROGRAM 1 isinsertedhere
INCLUDE *“PROBE2.S” ! PROGRAM 2
INCLUDE “PROMPTS” ! PROGRAM 3

4-21

Writing Programs

PART 3: SYMBOLIC NAMES
introduction

The 9010A Language dlows programs, labds, and registers to be
referred to by symbolic names. For example, the statement

4-22

EXECUTE PROGRAM 5

could be replaced by something more meaningful, such as

EXECUTE PROGRAM DELAY

Symbolic names can contribute greetly to the readability of programs,
dlowing the programs to be sdf-documenting to a large degree.

The following rules goply to symbolic names

Symbolic names must begin with a letter, and they can contain any
number of letters, digits, and underscore characters ().

Only the firg eight characters of a name are dgnificant. For
example, TESTMENUI AND TESTMENU2 are trested as
identical names.

9010A Language keywords, such as LOOP, READ and
PROGRAM, cannot be used as symbolic names. For example,
athough LOOP cannot be used as a symbalic label name, LOOP1

is acceptable.

Appendix A contains a complete lig of the 9010A Language
keywords. Usng a keyword as a symbolic name causes the
compiler to issue a SYNTAX ERROR message.

Symbolic names must contain at least one letter other than A, B, C,
D, E, or F s0 that they can be diginguished from hexadecima
congdants. This means that words like BAD, ACE, or FADE
canot be used as symbolic names because the compiler will
interpret them as hex congtants. Using a hex congtant as a symbolic
name causes the compiler to issue a SYNTAX ERROR message.

Writing Programs
Symbolic Names

Symbolic names can be used anywhere that the corresponding
actua program number, regiser number, or labe number can

occur in a 9010A program.

Forward references are permissable for program names and |abel
names. In other words, an EXECUTE or GOTO statement using a
symbolic name is dlowed to gppear ether before or after
corresponding PROGRAM or LABEL datements.

Register names may agppear in DPY and AUX datements.
Symbolic names are case-insengtive. For example, a name can be

declared in uppercase and referenced in lowercase, and names can
be a mixture of uppercase and lowercase letters.

4-23

Writing Programs
Symbolic Names

Symbolic Program Names

4-24

9010A Language dlows programs to be referred to by name as well as
by number. By choosing descriptive program names, you can make
your programs much more readable and maintainable.

Symbolic program names do not need to be declared explicitly. Smply
usng a name in a PROGRAM daement or in an EXECUTE
Satement is sufficient to define that symbolic program name.

The compiler assigns sequentid program numbers to symbolically-
named programs, sarting with PROGRAM 0 for the fird program in
the source filee Each time a symbolic PROGRAM datement is
encountered, the next sequentia program number is assigned to it. A
source file can contain any combinaion of programs with actud
program numbers and programs with symbolic names.

NOTE
EXECUTE statements can appear either before or after the
PROGRAM statement. They do not have any effect on the
sequence of program numbers assigned to symbolic program
names.

Whenever the compiler encounters a program in the source file with an
actua program number rether than a symbolic name, then subsequent
symbalic program names are assgned program numbers that follow
sequentidly from the given program number.

EXAMPLE:
PROGRAM 5 I Compiled as PROGRAM 5

PROGRAM PA ! Compiled as PROGRAM 6
PROGRAM PB ! Compiled as PROGRAM 7
PROGRAM 20 I Compiled as PROGRAM 20

PROGRAM PC ! Compiled as PROGRAM 21

Writing Programs
Symbolic Names

The following rules gpply whenever a source file contains programs
with actua program numbers.

e Programs with actua program numbers must be in numeric order
in the source file. For example, PROGRAM 5 must precede
PROGRAM 20.

e There must be a large enough gap between two programs with
actud progran numbers for any intervening programs with
symbolic names. For example, if the source file contans a
PROGRAM 8 and a PROGRAM 11, PROGRAM 8 must precede
PROGRAM 11 and there can be a most two symbolicaly-named
programs between them.

EXAMPLE:
I This example demonstrates the use of symbolic program names

! The compiler will assign PROGRAM 0 to MAIN and
! PROGRAM 1 to DELAY

PROGRAM MAIN
DPY-THIS IS AN EXAMPLE
EXECUTE DELAY
DPY-OF A VALID 9010A PROGRAM
PROGRAM DELAY
REG1= 40

0: DEC REG1
IF REG1> 0 GOTO 0

4-25

Writing Programs
Symbolic Names

Symbolic Labels

The symbalic labd feature alows you to refer to a branching location
with a mnemonic name, providing the same advantages as symbolic
program names.

4-26

The following rules goply to symboalic labds

Symboalic label names are not declared explicitly. Smply usng a
name as the target of a GOTO or in a LABEL datement is
aufficient to define a symbolic labe name.

Within a single program, symbolic label names cannot be mixed
with hexadecima labd numbers. A source file may contain a
mixture of hexadecimd and symbolic labels, but within a given
program dl labels must be ather hexadecima or symbalic.

Symboalic labels are locd to the program in which they appear. This
means that it is possble to have duplicate label names in different
programs without conflict.

Each program is limited to 16 labd definitions, even if the labels are
referred to symbolically.

Within a given program, the compiler assgns hexadecimd labels
to symboalic labe names sequentidly, starting a 0. The assgnment
is made upon the first gppearance of the labe, whether it is a
LABEL datement or the target of a GOTO Statement.

Writing Programs
Symbolic Names

EXAMPLE:

PROGRA M FIND

SEARCH: ! Label 0 will be assigned to SEARCH
READ @ REGT
INC REG1
IF REGE = REG3 GOTO FOUND ! Label 1 will be assigned to FOUND
IF REG1 > REG2 GOTO NOTFOUND ! Label 2 will be assigned to
NOTFOUND
GOTO SEARCH
NOTFOUND:
FOUND:

4-27

Writing Programs
Symbolic Names

Symbolic Register Names

4-28

Another way to enhance program readability is to use symbolic names
for registers. The usage of the various 9010A registers can be made
Clear choosing appropriate symbolic names.

Symbalic register names are a bit more complex than program or label
names. For example, register names must be explicitly declared in a
DECLARATIONS section. Another difference is that register names
can be either local to asingle prgram or globa to the entire sourcefile,
depending on how they are declared.

Symbolic register names must be declared in an ASSIGN statement of
the form

ASSIGN REGn TO name

ASSIGN datements are collected together into a DECLARATIONS
section.

EXAMPLE:

DECLARATIONS
ASSIGN REG1 TO ERRCNT
ASSIGN REG2 TO FREC?

If the register names are to be used only within a particular program,
then the DECLARATIONS section should appear between the
PROGRAM datement and the body of the program itsdf. If the
declarations are for globa registers that are shared among severd
rograms, then the DECLARATIONS section must appear at the
Begmning of the source file before the firda PROGRAM datement.

It is possible to assign severa symbolic names to the same register

within a program. This can be done by specifying a ligt of names in a
sngle ASSIGN gatement or by usng multiple ASSIGN statements. It
should be noted, however, that usng multiple names for the same

regigter (implying multiple uses for a register) can lead to programming

erors. It is the programmer’s respongbility to ensure the integrity of
the register contents.

EXAMPLE:
PROGRAM UUTTEST

DECLARATIONS

ASSIGN REG1 TO ERRCNT

ASSIGN REG2 TO PINCNT,SETBIT

ASSIGN REG6 TO MASK

ERRCNT = 0
SETBIT = 4

MASK = SETBIT CPL AND FF
WRITE @ REG3 = MASK

Predeflned Register Names

Writing Programs
Symbolic Names

I REG1 will be used when ERRCNT is

! referred to

! Both PINCNT and SETBIT will be

! allocated to REG2

! TEMP will also be allocated to REG2
I MASK will be allocated to REG6

I Actually sets REGT = 0

! Since PINCNT, TEMP, and SETBIT all
| share the same register, this

| statement has the effect of also
| setting PINCNT and TEMP

Symbolic names have been predefined for each of the dedicated
regigers. These names can be used anywhere in a program that a
register reference can be made. It is not necessary to declare these

symbolic register names.

The predefined register names and their functions are as follows:

DEDICATED SYMBOLIC

REGISTER NAME FUNCTION
A BITMASK Bit Mask
B ROMSIG ROM Signature
C STSCTL STS/ CTL Information
D BITNUM Bit Number
E DAT Data
F ADR Address
0 PBDAT Read Probe Data

4-29

Writing Programs
Symbolic Names

Sample Program

The following example is Smilar to the one given at the end of Part 2.
The example assumes thaa PROGRAM 1 contaned in the file
PROBEIL.S has been renamed to PRBPLACE, PROGRAM 2 (in
PROBE2.S) has been renamed to PROGRAM UNPACK, and
PROGRAM 3 (in PROMPT.S) has been renamed to PROGRAM
PROMPT.

I This program tests the U52 flip-flop on the output side
! of the 8255 PIA on the NEC TK-BOA single-board computer.

! This version of the program demonstrates
! the use of symbolic names.

INCLUDE “8080.POD”

SETUP
POD =~ 8080
TRAP ACTIVE FORCE LINE NO
TRAP ACTIVE INTERRUPT YES

ADDRESS SPACE
RAM B8CQ0-8FFF
ROM 0000-07FF SIG FT7C
1/0 100F8-100FA BITS FF

DECLARATIONS
ASSIGN REG8 TO LOAD
ASSIGN REG8 TO FLAG Flag an output from probe placement
ASSIGN REG8 TO COUNT I Count an output from unpacker

Global register declarations

Used in display message

PROGRAM U52TEST

DECLARATIONS ! Local declarations
ASSIGN REG2 TO CNT

WR @ 100FB = 80 | Beginning of program body

4-30

Writing Programs
Symbolic Names

START:
CNT=A
LOAD = 1A09
EX PROMPT ! Symbolic program reference
EX PRBPLACE
IF FLAG = 1 GOTO OPEN
DPY TESTING U52#
PROBE

STIMULUS: ! Symbolic label definition
WR @ 100FA=1

DTOG @ 700F9 = 80 BIT 7

WR @ 100FA=0

DTOG @ 100F9 = 80 BIT 7

DEC CNT

IF CNT >0 GOTO STIMULUS ! Symbolic label reference

EX UNPACK

IF COUNT = A GOTO DONE

DPY U52 TOGGLING IMPROPERLY#
GOTO EXIT

OPEN:
DPY WAS PROBE IN PLACE# ?1
IF REG1=0 GOTO START
DPY U52 QPEN#
GOTO EXIT

DONE:
DPY U52 TEST PASSED#

EXIT: ! End of main program

INCLUDE “PROBE1.8” ! PROGRAM 1 must be renamed to
PROGRAM
| PRBPLACE in file PROBE1.8

INCLUDE “PROBE2.S"” | PROGRAM 2 renamed to PROGRAM
UNPACK
I in file PROBE2.S

INCLUDE “PROMPT.S” | PROGRAM 3 renamed to PROGRAM
PROMPT

I'in file PROMPT.S

4-31/4-32

Section 5
Using the Compiler

CONTENTS
INtroductiono 5-3
Preparing the Source File ..., 54
Compiling ... 5-5
Interactive Modec i 5-6
Command Line Mode ..., 5-8
Liging Fle Optionsoviiiiiiii i 5-10
Syntax Errors ... 51
Tranderring Programs 5-12
Transferring Programs to the 9010A 5-12
Transferring Programs from the 9010A 5-14
Source Format ... 5-14
Hex Format 5-16

5-1/5-2

Using the Compiler

INTRODUCTION
This section provides the information needed to use the 9010A
Language Compiler (9LC) and the Fle Transfer Utility program
(XFER). The following topics are covered in this section:
e Preparing the Source File
e Compiling

e Trandering Programs

5-3

Using the Compiler

PREPARING THE SOURCE FILE

5-4

The firgt step in using the compiler is to create a source file containing
the desired 9010A programs. The source file may use dl the language
features introduced in Section 4, Writing Programs. For detailed
information on gspecific Satements, see Section 6, Language
Reference.

To edit and modify the source files, you should use the text editor that
you normaly use on your host computer system.

By convention, the names of source files are usudly given a filename
extenson of .S, but this is not required by the compiler. PIA.S is an
example of a typica source file name.

If the source file is not contained on a sysem default device the
filename may Ao require a device name. For example:

MF1:DEMO.S

might specify a source file named DEMO.S on an optiona floppy disk
(MF1). Consult your host computer user's manuds for information
about complete filename specifications.

The program diskette contains a sample source file named DEMO.S.
Thisfile is used as an example in the following procedures for using the
compiler.

If you aready have 9010A programs stored on 9010A cassette tapes, it
is possible to transfer them to your host system and use them with the
compiler. The procedure for doing this is described later in this section
under the heading Transferring Programs from the 9010A.

Using the Compiler

COMPILING

Once you have created a source file, you are ready to run the compiler.
The compiler reads the source file and crestes an equivalent hex file
which can then be transferred to the 9010A through the RS-232-C
serid interface.

You have the option of running the compiler in ether of two modes:
the interactive mode or the command line mode.

NOTE
The following examples require the file DEMO.S to be on a
non write-protected disk. If your working eJ)y of the system
disk (as described in Section 3) is write-protected, you — will need
to use two disk drives, Wlth a copy of the demo program
DEMO.S on a non write-protected disk in the second drive.

5-5

Using the Compiler
Compiling

Interactive Mode

5-6

If you run the compiler in the interactive mode, it prompts you for the
names of the source and hex files. The compiler asks you whether you
want alisting file produced. If you answer yes, the compiler asksfor the
name of the liging file and the specific liging file options desred.

To run the compiler in the interactive mode, smply enter the command

[device]P)LC (RETURN)

NOTE
The use of [device] in the examples in this section refersto an
optional device name specification that may be required for
files that are not on a system default device.

(RETURN) indicates the key that is pressed to terminate the
command line.

After you have entered the filename command 9LC, the compiler
responds by displaying its verson number and copyright notice. The
compiler then asks for the name of the source file. You now enter the
name of the source file, for example:

[device DEMO.S (RETURN)

Next, you are prompted for the name of the hex file to be created by the
compiler. Enter the name of the hex file followed by RETURN. If you
samply press RETURN, the compiler generates a hex file with the same

name as the source file, but with a.H extension appended to the root of
the source file name. In this example, the hex file name becomes
DEMO.H on the same device as DEMO.S.

(RETURN)
The compiler then asks you whether you want a listing of the source
program. You should respond by entering Y (yes) or N (no). For this
example, enter

Y (RETURN)

Using the Compiler
Compiling

If you request a listing file, the compiler prompts you for the liging file
name. You should enter the required name, or smply press RETURN

to get the same name as the source file with a .L extengon, in this case
DEMO.L (aso on the same device as DEMOS).

(RETURN)

After you have specified the listing file name, the compiler displays the
listing file options. These options are described later in this section. If
you smply press RETURN, the compiler produces a copy of the
source file with line numbers added.

(RETURN)

At this point, you have specified the compiler options. The compiler
disolays the equivdent command line (the sgnificance of which is
explained below) and then proceeds to compile the source file.

While it is processng the source file, the compiler disolays the name of
each program, its program number, and the number of bytes of9010A
program memory required. After the compiler has processed the

source files, it digplays the tota number of bytes required and then
returns to the host operaing system.

If the compiler detects any errors in the source file, it digplays an
aopropriate error message dong with the source line containing the
error. The error m e ds0 gopears in the liding file if a liging file
has been requested. If t?1e source file contains any errors, then ahex file
will not be created.

5-7

Using the Compiler
Compiling

Command Line Mode

An dternaive way of running the compiler is to specify dl the desred
options directly on the command line. If any options are pecified on
the command line, then the prompting described above is completely
bypassed.

To run the compiler in the command line mode, you enter a command
in the following forma:

[device] OLC [-listoptiong [-H hexfile] [-L [ligtfild] scfile (RETURN)

5-8

In the above notation, items within brackets [] are optiond.

Srcfile is the name of the source file to be processed by the compiler. It
may require an optiona device name specification.

The -H option is used to overide the default hex file name %H
extension). Hexfile is the desired name of the hex file produced by the
compiler.

The -L option is used to overide the default listing file name (.L

extenson). Listfile is the desred name of the liging file produced by

the compiler.

The -L option without a ligting file name can be used to produce a
liging file in the case where no liding options are oecified. The liging
file is generated with the .L extenson.

The -listoptions dlow you to pecify the form of the liging file. The
liging file options and their functions are:

| Expand Include Files

S Replace Symbolic Names

D Replace Default Entries

A Expand Keyword Abbreviations

Using the Compiler
Compiling

Specifying any of the options I,.SD, or A causes a liging file to be
produced. The paragraphs following the next heading, Liging File
Options, contain more information regarding these options.
The following examples illugtrate the use of the command line mode.
The command

9LC -L [device] DEMO.S (RETURN)

produces exactly the same results as the sequence of options described
above under the heading Interactive Mode.

To compile the source file DEMOS and produce a hex file named
DEMO.H but not produce a liting file, use the following command:

9LC [device DEMO.S (RETURN)

To produce a liging file with include files expanded, use the following
command:

9LC -1 [devic] DEMO.S (RETURN)

5-9

Using the Compiler
Compiling

Listing File Options

The compiler provides a number of different listing file options. These
options are described below.

e | Expand Include Files

If the source file contains an INCLUDE gatement, such as
INCLUDE “6802.POD”

the liging file normally just copies this Satement. However, if the
- | option is specified, then the ligting file dso shows the contents
of the file 6802.POD.

e S Replace Symbolic Names

If the source file contains symbolic names for registers, programs,
or labels, they are normaly copied to the ligting file as they appear
in the source file. However, if the -S option is specified, then the
symbolic names are replaced by the actud program number,
regisger number, or labe number.

EXAMPLE:
lines from source file EXECUTEDELAY
INC ERRCNT
normd liding file EXECUTEDELAY
INC ERRCNT

liging file with -S optio: ~ EXECUTE 7
INC REG2

5-10

Using the Compiler
Compiling

e D Replace Default Entries

If the source file contains any default entries (indicated by *), the
liting file normélly copies the statement as it appears in the source
file with the * in place. However, if the -D option is specified, then
the liging file subgtitutes the gppropriate default register for the ¥,

EXAMPLE:
line from source file WRITE@ * = *
nomd liging file WRITE@ * = *

liing file with -D option: WRITE @ REGF = REGE
e A Expand Keyword Abbreviations

If the source file contains the abbreviations RD, WR, or EX, they
are normally copied to the listing file in their abbreviated form, just
as they appear in the source file. However, if the -A option is
specified, then the liging file replaces dl occurrences of these
abbreviated keywords with the full keyword.

EXAMPLE:
line from source file EX PROGRAM 5
normd liding file EX PROGRAM 5

liging file with -A option: EXECUTE PROGRAM 5

Syntax Errors

All programmers eventudly have an dusve syntax eror to track
down. The compiler provides some help by pinpointing the location of
the syntax error in the liding file, epecidly if the lising option has
been sdected to expand any include files.

Even after you have found the location of the syntax error, the exact
caue of the problem may not be obvious. Appendix F, Error
Messages, contains alist of common syntax errors that can be used asa
time-saving checkligt.

Using the Compiler

TRANSFERRING PROGRAMS

Once you have successfully compiled your programs, you are ready to
transfer the generated hex file to the 9010A through the RS-232-C
serid interface. XFER, the File Trandfer Utility program, is provided
on the program diskette for this purpose.

Before running XFER, the 9010A must be connected to the serid port
of the host system as described in Section 3, Getting Started.

To run XFER, amply enter the command
[device] XFER (RETURN)

After you have entered the command XFER, the program responds by
displaying its verson number and copyright notice, followed by a main
menu of file trandfer options:

T Trandfer hex file from host to 9010A

S Trander source files from 9010A to host
H Trandger hex files from 9010A to host
C Configure hogst system

Q Quit

Whenever this menu is displayed, you can return to the host operating
sysem by entering
Q (RETURN)

You can dso use the Q command to return to this main menu when
prompted for a filename in any of the other options in this menu.

Y ou should select the C option if you want to change the default setting
for the RS-232-C serid port. Refer to Section 3, Getting Started, for
further information on configuring the serid port.

Transferring Programs to the 9010A

To transfer afile from the host system to the 9010A, you should sdlect
the T option. Since this is the default option, you may Smply press the
RETURN key.

(RETURN)

5-12

Using the Compiler
Transferring Programs

You are then asked to enter the name of the hex file to be transferred.
To transfer DEMO.H, the file produced by compiling DEMO.S in the
previous examples, enter

[devic DEMO.H (RETURN)

XFER then ingtructs you to prepare the 9010A for reading by pressing
the AUX I/F, READ, and YES keys on the 9010A. As soon as Kou
have pressed the YES key, the host system darts transferring the hex
file to the 9010A.

NOTE
Pressing the A UX I/ F and READ keys causes the 9010A to
clear its program memory and reset all the setupparameters to
their default values. Any programs currently in the 9010A
memory are lost.

When the file trandfer is complete, the 9010A displays the message
AUX-RECEIVING - COMPLETE, and the host system agan
displays the file trandfer options menu. To exit from XFER and return
to the host operating system, enter

Q (RETURN)

The test programs can now be executed on the 9010A just like any
other 9010A pro%rams Once the transfer is complete, the 9010A may
be disconnected from the host system.

If you have followed the example above to compile DEMO.S and
transfer DEMO.H to the 9010A, you can execute the program on the
9010A by pressng the following keys.

EXECUTE 0 ENTER

If your source file contains symbolic program names, you must
determi ne which actua program numbers were assgned by the

Ipller to the symbolic program names. For this reason, the compiler
displays the progran names and their corr&spondlng program
numbers as it processes the source file.

Using the Compiler
Transferring Programs

Transferring Programs from the 9010A

Programs that are transferred from the 9010A to the host system can
be dored d@ther in source format or in hex format. If you have
programs saved on 9010A cassettes and you want to modify them on
the host system and take advantage of the features of the 9010A
Language Compiler, then the programs must be stored in source
format.

Hex format is useful if you smply want to store the 9010A programs
on the hogt system and load them back into the 9010A & a later time
without any modifications.

Source Format

5-14

To save programs from the 9010A on the host system in source format,
sect the S option from the file transfer options menu by entering

S (RETURN)

NOTE
The following examples assume that you have transferred the
programs in DEMO. Hfrom the host system to the 9010A, as
previoudy described under Transferring Programs to the
9010A.

XFER asks you for the name of the source file to be created on the host
sysem. Respond by entering the source file name, in this case,

[device] DEMO 1 .S (RETURN)

XFER then ingructs you to prepare the 9010A for writing by pressing
the AUX I/F and WRITE keys on the 9010A. When the trandfer is

complete, the 9010A displays the message
AUX-SENDING - COMPLETE
A menu of source options will now be displayed:

E- Save the entire file

S- Save the sgtup information
A - Save the address descriptors
P- Save dl programs

0-99 - Save the Sﬁgcifie_d program
R - Reurn to the man menu

—

Using the Compiler
Transferring Programs

If you choose to save the entire file, then setup information, address
descriptors, and dl programs will be saved.

If you choose to save the setup information or the entire file, XFER
then prompts for the name of a pod data file, snce the 9010A Language
Compiler requires that a pod deta file be included before any pod-
dependent setup information. For the present example, enter

[device]Z80.POD (RETURN)

In this case, XFER insarts a statement of the form INCLUDE
“7Z80.POD” immediately before the SETUP INFORMATION
gatement in the source file on the host system.

If, for some reason, you do not want to specify a pod data file, Smply
enter (RETURN) when prompted for the name of a pod data file. No
INCLUDE gatement will be inserted into the source file.

If you choose to save the address descriptors and none exist, awarning
message will be displayed.

You have the option of saving individua programs or dl of the9010A
programs in a single operation. If you attempt to save a program that
does not exist, a warning message will be issued.

NOTE
The compiler requires setup and address space information to
appear before any programs. Therefore, setup or address space
information should be saved before any programs. If you
attempt to save setup information or address descriptors after
programs, the XFER program will print an error message.

At the end of the entire file transfer process, the new source file (in this
case, DEMOL .S) exists on the host system. You can use the R option to
return to the fiie trandfer options menu.

The source file creeted by the file transfer utility can be modified using
a text editor on the host system. For example, you may want to add
comments or change the program numbers to symbolic names. The
modified source file can be compiled, and the resulting hex file can be
transferred back to the 9010A.

5-15

Using the Compiler
Transferring Programs

Hex Format

5-16

Hex format files are not generdly modified on the host sysem, and
they cannot be processed by the 9010A Language Compiler. The only
reason for trandferring files in hex format is to store the programs so
that they can be loaded back into the 9010A at a later time.

To sdect the hex format, enter
H (RETURN)
in response to the file trandfer option menu.

XFER prompts you for the name of the hex file to be crested. For
example, you could enter

[devic DEMOI.H (RETURN)

Y ou are then instructed to pressthe AUX I/ F and WRITE keys on the
9010A. When the transfer is complete, the 9010A displays the message
AUX-SENDING - COMPLETE, and the file transfer utility returns to
the file trandfer option menu.

Section 6
Language Reference

CONTENTS

Introduction e 6-3

Syntax Diagram Notation 64

Specid Symbols 6-5

Symbolic Names 6-6

EXPressions ... e 6-8

AdAresseS ..o e 6-10
Gengd Information 6-1 1
Staement Format ... 6-1 1
Program Commentsccccoiiiiiiinnn. 6-1 1
File Induson, 6-12
SOURCE FILE SYNTAX 6-13
Source Fle ... 6-15
SHUD o 6-17
Address Space Declaration 6-19
Address Descriptor o 6-21
Globa Declaration e e 6-23
Symbolic Register Name Declaration 6-25
9010A Programciiir i 6-27
Program Body oo 6-29
Loca Declarationccciiiiie i, 6-31
Binay Program 6-33
Indude Directive'rr o 6-35
SETUP PARAMETERS 6-37
9010A PROGRAM STATEMENTS 6-61

Language Reference

INTRODUCTION

This section provides a quick reference for 9010A Language syntax. As
an ad to quick reference, the information contained here is concise.
For an introduction to the language as a whole, see Section 4, Writing

Programs.

This section is organized as follows:

Generd Information
Source File Syntax

Setup Parameters

9010A Program Statements

Program datements are introduced with a syntax diagram that
illustrates the legitimate condruction. A complete definition of the
vaious forms of the datement follow the syntax diagram. The
datement definitions use the format shown in the following example

page.
Syntax
—~(O—{
Function
A description of the function(s) performed by the statement appears
here.
]
Characteristics, implications, and limitations of the statement are
defined here.
[
Example
A programming example is shown here.
See Also

Any related statements or information are listed here.

6-3

Language Reference

SYNTAX DIAGRAM NOTATION

Syntax diagrams define correct spdling, punctuation, sequences of
words, symbols, and expressons. The syntax diagrams used here
conform to the following guideines

6-4

Any path through a diagram starting from the Ieft that does not run
contrary to an arrowhead forms a legitimate Statement.

Words in a circular enclosure are to be entered as shown. Words
can be typed in lowercase, uppercase, or a combination of
lowercase and uppercase letters.

Example:

Words in a rectangular enclosure represent other information that
is described either in the General Information section, in another
gyntax diagram, as a note on the same page, or tha is in generd
use.

Example:

EOL

An asterisk in acircular enclosure above bracketed words indicates
a default regiger entry. Only the asterisk should appear in the
source file the compiler subditutes the informetion in the
brackets.

Example

{REG F)

Language Reference

SPECIAL SYMBOLS
The following symbols are used in the syntax diagrams

SYMBOL

EOL

FUNCTION

Separaes a ligt of symbolic names (i.e., regiser name
declarations)

Indicates end of line

Indicates range (i.e., addr to addr), used as a delimiter
in AUX and DPY commands

Relational operator
Relational operator
Relational operator
At

Separates the label name from the statement to be
executed

6-5

Language Reference

SYMBOLIC NAMES
Symbolic names appear in the syntax diagrams as

6-6

—>{_rame }—s

The fdllowing rules goply to symbolic names

Symbolic names must begin with a letter, and they can contain any
number of letters, digits, and underscore characters ().

Only the firs eght characters of a name ae sgnificant. For
example, TESTMENU1 and TESTMENU2 are treated as
identicd names.

9010A Language keywords, such as READ and PROGRAM,
cannot be used as symbolic names. For example, LOOP cannot be
used as a symbolic labd name, dthough LOOPL is acceptable.

Appendix A contains a complete list of the 9010A Language
keywords. Usng a keyword as a symbolic name causes the
compiler to issue a SYNTAX ERROR message.

Symbolic names must contain at least one letter other than A, B, C,
D, E, or F s0 that they can be digtinguished from hexadecima
condants. This means that words like BAD, ACE, or FADE
canot be used as symbolic names because the compiler will
interpret them as hex congtants. Using a hex congtant as a symboalic
name causes the compiler to issue a SYNTAX ERROR message.

Language Reference
Symbolic Names

Symbolic names can be used anywhere that the corre%g]di ng
actud program number, register number, or labed number can
occur in a 9010A program.

Forward references are permissable for program names and labe
names. In other words, an EXECUTE or GOTO statement using a
symbolic name is dlowed to appear either before or after the
corresponding PROGRAM or LABEL dtatement.

Symbolic names are case-insengtive. For example, a name can be

declared in uppercase and referenced in lowercase, and names can
be a mixture of uppercase and lowercase letters.

6-7

Language Reference

EXPRESSIONS
The syntax dement

is used to designate a 9010A expresson. Expressons consst of
combinations of the following:

6-6

e Hexadecima Congants (e.g., 10FC)

o Regiser References (eg., REGJI)

Unary Operators (CPL, DEC, INC, SHL, SHR)

e Binary Operators (AND, OR)

Unary operators specify operations that may be performed on only one
regider a a time. The five unary operaors function as follows:

e CPL

e DEC
e INC

Replaces the vadue stored in the register with its binary
ones complement.

Decrements the binary vaue of a register by 1.
Increments the binary vaue of a regiger by 1.

Shifts the binary contents of the register one hit to the left.
The fathest left bit is discarded. The fathest right bit
becomes 0.

Shifts the binary contents of the register one bit to the
right. The fathest right bit is discarded. The farthest left
bit becomes 0.

Binary operators perform an operation with two registers or with a
register and a hexadecimad vaue, or two hexadecimd vaues. The two
binary operators function as follows:

e AND Peformsthe logicd bit-wise AND operation between two

e OR

vaues.

Performs the logicd bit-wise OR operation between two
values.

expr

term

Language Reference
Expressions

In certain contexts, expressons are interpreted as decima, binary or
hexadecima numbers. These cases are indicated in the syntax diagram

as follows:
[dec] [bin] [hex]

Numeric congtants in decima expressons may contain only the digits
0 through 9. Similarly, numeric condtants in binaQ/ expressons may
contain only the digits 0 and 1, and hexadecima expressons may

contain only the digits O-9, A-F.

A unary operator followed by a decima number is the unary operator
shorthand festure described in Section 4, Part 2.

term >

D)oo
=

v

4
N—J
TN

number

)
@ L decimal _r
(Une)
(SHR)

6-9

Language Reference

ADDRESSES

The following syntax diagrams gpply to datements tha require an
address or an address range to be specified.

address
block addr

v

O]

wh —ef oot}

6-10

Language Reference

GENERAL INFORMATION

Statement Format
Follow these guidelines when congructing Statements:

Each 9010A satement must be on a separate line. Continuation
lines are not dlowed.

A daement may begin in any column.

Blanks and tabs are ignored, except when they occur in DPY or
AUX datements.

Blank lines are ignored.

Adjacent keywords, symbolic names, and numbers must be
separated by at least one blank.

Program Comments
The rules for usng comments are as follows.

Comments gtart with an exclamation point (!), and they extend to
the end of the line.

A comment can be on the same line as a 9010A statement, or it can
be on a separate line.

If a comment extends over saverd lines, each line must begin with
an exclamation point.

A comment cannot be placed in the middle of a 9010A statement.

Language Reference
General information

File Inclusion
The form of the INCLUDE gatement is

6-12

D e €D o BN o €D

The compiler replaces the INCLUDE dtatement with the contents of
the specified file The effect is equivdent to maenudly typing the
contents of the included file in the source file a that point.

The fdllowing rules goply:

The filename musgt be the name of an exiding file

If the host operating system is case-sengtive regarding filenames,
then the filename must be properly capitaized.

A source file may indude a file which in turn includes ancther file

INCLUDE gatements must be on a line by themsealves but can
occur anywhere in the source file. INCLUDE statements may even
appear as a statement in a 9010A program.

The programmer is respongble for ensuring that the contents of
the indicated file can legdly be inserted a that point in the source
file

A standard use of the INCLUDE statement is to include a pod data
file

SOURCE FILE SYNTAX

The following pages contain reference information on source file
syntax. For more explanation about a specific topic, refer to Section 4,
Writing Programs.

Source File Syntax contains the following syntax diagrams:

SOURCE FILE

SETUP

ADDRESS SPACE
ADDRESS DESCRIPTOR
GLOBAL DECLARATION
SYMBOLIC REGISTER NAME DECLARATION
9010A PROGRAM
PROGRAM BODY
LOCAL DECLARATION
BINARY PROGRAM
INCLUDE DIRECTIVE

6-13/6-14

SOURCE FILE

Syntax
source L)
file N r 4 >
O D Epf;?:mj
N address
space
N global
declaration
Function

This syntax diagram defines the overdl gructure of the source file.

The appropriate pod data file must be included if your programs
have any pod dependencies.

At this time, the pod data file must be one of the following (more
files will be added as new interface pods are implemented):

1802.POD 8080.POD
6502.POD 8085.POD
6800.POD 8086.POD
68000.POD 8086MX.POD
6802.POD 8088.POD
6809.POD 8088MX.POD
6809E.POD 9900.POD
8041 .POD Z80.POD
8048.POD

The setup information, address space information, and globa
declarations are dl optiond. They may appear more than once,

and they may appear in any order, providing that they appear
before the firs 9010A program.

6-15/6-16

e

Syntax

\ » o L
SETUP > EOL |
INFORMATION

Function

SETUP

Allows the user to control the reporting of UUT errors, enable
microprocessor lines, and specify operating parameters.

All setup parameters must be declared a the beginning of the
source file preceding al programs.

Setup parameters establish initial setup conditions only.

Setup parameters are divided into the following categories:

1.

Reporting UUT errors or enabling microprocessor lines:
POD

TRAP

ENABLE

EXERCISE ERRORS

BEEP ON ERR TRANSITION

Specifying operating parameters:
BUS TEST
RUN UUT
TIMEOUT

Relating to operation of the AUX I/F:
STALL

UNSTALL

NEWLINE

LINESIZE

Detailed information about setup parameters is contained in the
next part of this section, Setup Parameters.

6-17

SETUP

e The compiler supplies default vaues (as listed in Appendix D) for

any setup parameters that do not explicitly gppear in the source
file

e The compiler default vaues for setup parameters can be
overridden by the pod-specific values by including the appropriate
pod data file.

See Also

Default Setup Parameters (Appendix D), Setup Parameter Limits
(Appendix E), Pod Data Files (Section 4, Part 1)

6-16

ADDRESS SPACE

Syntax

ADDRESS SPACE EOL >
INFORMATION }—oLaddress descriptor s EOL l—{

Function

Forms the UUT memory map; identifies address blocks of RAM,
ROM, and 1/0.

e All address descriptors must be declared at the beginning of the
source file, preceding al programs.

e Up to 100 address descriptors can be specified in the source file.

Example
ADDRESS SPACE INFORMATION
RAM @ 5000-50FF

ROM @ 0000-OFFF SIG 0047
ROM @ 3000-4FFF SIG 2660
ROM @ 7000-70FF SIG 08AA
ROM @ AOOO-AFFF SIG 44C9

/0 @ 1A00-1AQ01BITS 7F

6-19/6-20

ADDRESS DESCRIPTOR

Syntax
1—.@— :: hex number [l > >
S
@ " hex number »(Si6
® S
(1/0) " hex number >(BITS
@ >
Function
Forms the UUT memory map; identifies address block of RAM, ROM
and /0.

e In a 9010A program statement, if a RAM, ROM, or 1/O test is
specified but the address range to be tested is not specified, the
9010A performs the specified test over al blocks of the appropriate
memory type described by the address descriptors.

e Parameters and limits are as follows:

PARAMETER LIMIT
signature (ROM) 0-FFFF
bit mask (1/0) I-FFFFFFFF

Example
RAM @ 5000-50FF

ROM @ 0000-OFFF SIG 0047
ROM @ 3000-4FFF SIG 2860
ROM @ 7000-70FF SIG 08AA
ROM @ AOOO-AFFF SIG 44C9

/0 @ 1A00-1A01BITS 7F
See Also

LEARN, RAM TEST, ROM TEST, 10 TEST (in 9010A Program
Statements part of this section)

6-21/6-22

GLOBAL DECLARATION

Syntax

DECLARATIONS EQL ¢

v

symbolic
register name EOL
declaration

Function

Allows the programmer to define symbolic register names with globd
scope.

e Names with globa scope are known throughout the entire source
file and dl files that are included after the globd declarations.

o If aregister nameis redefined locally (insde a 9010A program), the
local definition overrides the globa definition and the program has
no knowledge of the globd declaration.

e Globa declarations must appear & the beginning of the source file,
before the first 9010A program is encountered.

e Globd symbalic register declarations are restricted to the global
registers (8-F).
Example

DECLARATIONS
ASSIGN REG8 TO LOAD
ASSIGN REG9 TO FLAG
PROGRAM U10

See Also

SOURCE FILE, SYMBOLIC NAMES, SYMBOLIC REGISTER
NAME DECLARATION, LOCAL DECLARATION

6-23/6-24

SYMBOLIC REGISTER
NAME DECLARATION

Syntax

S () e |

Function
Declares a symbolic name that the programmer uses in programs to
refer to the indicated register.

e Symbolic register names must be declared in the global or loca
declarations section of the source file prior to being used in a

program.

e Symbolic register names can be used wherever a register reference
can be made (including AUX and DPY statements).

e Severa symbolic names can be assigned to the same register.

Example
DECLARATIONS
ASSIGN REG1 TO TEMP, FLAG
ASSIGN REGA TO PINNO

See Also

GLOBAL DECLARATION, LOCAL DECLARATION,
SYMBOLIC NAMES, Predefined Register Names (in Section 4,

Part 3)

6-25/6-26

9010A PROGRAM

Syntax
decimal program
number EoL body >
decimal BYTES
[rame] number
Function

This syntax diagram defines the overdl Structure for a 9010A program.
e Program numbers must be decima numbers in the range O-99.

e If a byte count gppears in the program statement, the compiler
compares it to the actua byte count and issues a warning message if
the byte counts differ.

e Symboalic program names can be used in this statement.

e The source file can contain no more than one hundred 9010A
programs.

e Numbered programs must appear in the correct order. If programs
with symbolic names are combined with numbered programs,
there must be a correct number of symbolicaly named programs
between numbered programs. For example, if there are two
numbered programs, program 4 and program 7, then there is room
for only two symbolicdly named programs between them.

Example

PROGRAM 35 728 BYTES
PROGRAM GETSIG
PROGRAM KEYBD TST

See Also
EXECUTE, Symbolic Program Names (Section 4, Part 3)

6-27/6-28

PROGRAM BODY

Syntax
local _r l o 010A
declaration statement EoL
binary
(BINARY)) EOL == , 00ram
Function

This syntax diagram defines the body of a 9010A program.

The detals of the 9010A dtatements are provided in the 9010A
Program Statements portion of this section.

See Also

LOCAL DECLARATION, 9010A PROGRAM STATEMENTS,
BINARY PROGRAM

6-29/6-30

LOCAL DECLARATION

Syntax

—>(DECLARATIONS)] EOL }—

v

symbolic
register name EOL
declaration

Function
Allows the programmer to define symboalic register names with loca
scope.

e Names with locd scope are known only within the program in
which they are declared.

e Duplicate locd names in different programs are unrelaed.

e Loca declarations must appear between the program statement
and the firs statement of the 9010A program body.

e No locd declarations may appear indde a binary program.
e Symbolic names may be declared locdly for dl regigers (O-F).

Example
PROGRAM UUTTEST

DECLARATIONS
ASSIGN REG7 TO ERRCNT
ASSIGN REG2 TO PINCNT, SETBIT

ERRCNT = @
SETBIT = 4

SR Y=

SOURCE FILE, SYMBOLIC REGISTER NAME DECLARA-
TION, GLOBAL DECLARATION

6-31/6-32

Syntax

Function

BINARY PROGRAM

line |
T of code Whecksum 1 EOL'T‘

The 9000A Utility Program tape contains binary programs.

e Binay programs are introduced by the standard program
gatement (PROGRAM xx), followed on a separate line by
(BINARY), followed by the binary program.

e A binay progran contans lines of hex code Each line is
terminated by a one-byte checksum.

e A “* jsusad to ddimit aline of code from the checksum, except for
the lagt line of the program where a “$” is used.

e The file trandfer program (XFER) automaticaly reformats binary
programs into the required format when they are transferred from
the 9010A to the host system in source form.

Example

PROGRAM 10

{BINARY)

514F50DDESDD2 A2B00DD562FDDSE2E7 BE6GOF87874F0600FD2A2B00FD097BEGF0*28
CB3FCB3F4FDD097 AE60F87874F2A2B0009DD7 E02FD86025FDD7 EO3FDBEQ357DD"D4
7E00FDBE0077DD7EO01FDBE01237723732372DDE1010000C9284329464C554865*C0

205645522031SN$5E

See Also

9010A PROGRAM

6-33/6-34

ot

Syntax

Function

INCLUDE DIRECTIVE

(e e Tiemame_}—+CO—{0(]

Replaces the INCLUDE “filename’ statement with the contents of the
indicated file. Equivdent to manudly typing the contents of the
included file in the source file a that point.

Example

The filename mus be the name of an exiding file

If the host computer system is case-sendtive regarding filenames,
then the filename must be properly capitdized.

A source file may indude a file which in turn includes another file.
Attempting to nest include files too deeply will result in a 9010A
error message.

Include directives must be on a line by themsdlves but can occur
anywhere in the source file. Include directives may even gppear asa
gatement in a 9010A program.

The programmer is respongble for ensuring that the contents of
the indicated file can legdly be inserted a that point in the source
file

A standard use of the INCLUDE statement is to include a pod data
file

include “1802. POD”

See Also

Pod Data Files (in Section 4, Part 1)

6-35/6-36

SETUP PARAMETERS

CONTENTS
B ottt 6-39
BUS T .ottt e 641
Endble ..o e 643
EXECISE BITOIS .ottt 645
LiNeSizeoone i 6-47
NEWHIE - o oottt et e e 649
POO oo e 6-51
RUN UUT o e et et 6-53
SaAll Ungdl ... 6-55
TIMEOUE .« oo et e e 6-57
L= o 6-59

6-37/6-38

BEEP

Syntax

SEEP QN ERR TRANSITION J\ \.:QE.}T-’
Lo Lo
Function

Allows the programmer to control whether or not the 9010A should
beep on ERR TRANSITIONS.

e YES enables the audible beep that sounds whenever an error is
detected and reported. The beep aso sounds whenever the error is
removed.

e The 9010A’s default vaue is YES.

Example
BEEP ON ERR TRANSITION = NO

See Also
EXERCISE ERRORS, TRAP

6-39/6-40

BUS TEST

Syntax

—@ :: hex number I-—D

Function

When the Bus Test is performed in a 9010A program, testing of data
lines occurs a the adadress listed.

e Setup parameter limits for Bus Test are O-FFFFFFFF. Refer to
the pod indruction manuds for lega addresses.

o If the Bus Test statement appears in the Setup Parameters section
of the source file, then the default Bus Test address is as indicated.

e If this statement was not present and a pod data file was included at

the beginning of the source file, the compiler supplies the definition
for BUSADR.

e If apod data file was not included at the beginning of the source
file, the default Bus Test address is 0000.
Example
BUS TEST @ 1C00
See Also

Pod Data Files (in Section 4, Part 1), BUS TEST (in 9010A Program
Statements part of this section), and Appendix D (Pod-Specific Setup
Parameters)

6-41/6-42

Syntax

ENABLE

—>(ENABLE_)—{_forcing line "
(=) ()

Function

Allows an operator to individudly engble or disable pod forcing lines.

Example

If YES is sdected, the forcing line is enabled.
If NO is sdlected, the forcing line is disabled.

Forcing lines are pod-specific and include lines such as the
following:

WAIT BR/ACK READY

RDY INTR BUSRQ
TSC MR HOLD
DBE DMA RQGTO

HALT UNUSED RQGTI

There are a maximum of eight enableable forcing lines. Refer to the
pod indruction manuds for specific information.

The agppropriate pod data file must be included prior to the
gppearance of any ENABLE datements. In addition, a POD
datement identifying the pod should gppear in the Setup
Parameters section of the source file.

If a pod data file was included a the beginning of the source file,
the forcing lines liged in the definition for FORCELNS will dl
have default vaues of YES.

ENABLE HALT - NO

See Also

Pod Data Files (in Section 4, Part 1) and Appendix D (Pod-Specific
Setup Parameters), POD

6-43/6-44

EXERCISE ERRORS

Syntax

—+(EXERCISE ERRORS)— e]_i%j—;

Function
Allows the operator control over 9010A error reporting and interactive
handling of erors.

e |If YES is sdlected, the 901 OA displa?;s detected error messages and
prompts the operator to loop on the errors.

e |If NO is selected, the errors are not reported to the operator, but
error messages are transmitted to the RS-232 if it is connected
(without the -LOOP? portion of the message).

e The 9010A’s default vaue is YES.

Example
EXERCISE ERRORS - NO

See Also
BEEP, TRAP

6-45/6-46

LINESIZE

Syntax

LINESIZE decimal * number

Function

Allows the programmer to specify the maximum number of characters
tr/msnitted per line when the 9010A is sending data through the AUX
I/F.

o Setup parameter limits for LINESIZE are 10-255.

e The LINESIZE usd is determined by the line Sze of your remote
device.

® The 9010A’s default vaue is 79.

Example

LINESIZE 120
See Also
NEWLINE, STALL/ UNSTALL

6-47/6-48

Syntax

NEWLINE

NEWLINE hex number

Function

When the 9010A is sending data through the AUX I/F, a terminator
sequence is sent a the end of each line. This statement alows the
programmer to specify both the ASCII terminator characters to be
sent and the delay between lines.

Setup parameter limits for NEWLINE ae eght hexadecima
digits.

The 9010A default vaue is 00000D0A.

The sdection of the terminator sequence dlows the operator to
mest the needs of awide variety of remote devices. For example, if
the remote device providesits own Linefeed at the end of each line,
the terminator sequence would consst of only the Carriage Return
(OOOO0OD). Or, if a double space is needed between lines, the
terminator sequence would be a Cariage Return and two
Linefeeds (ODOAOA).

The e@ght hexadecdmd digits have the following meaning:

Firg two digits These may have any hexadecima value between O
and FF. They must be followed by sx digits as described below.
The two digits represent a count that corresponds to a timing delay
between the transmission of lines. For 9010A versions prior to 2C,
the timing ddlay is gpproximately 2.4 ms/count, providing a totd
timing delay range of 0 to .6 seconds. The delay is 6 ms/count, for
maximum delay of gpproximately 1.5 seconds with 9010A versions
2C and later.

Last sx digits These are the ASCII terminator characters which
are sent a the end of each line when the 9010A is sending data. The
characters are dso sent once as the initid trigger when the AUX
I/ F READ operation is selected. The characters, which have two
digits each, are sent Ieft to right. Zeros are not sent.

649

NEWLINE

Example

NEWLINE 000D0A0A ! terminator sequence of a carriage
return and 2 linefeeds

NEWLINE 00000D0A ! terminator sequence of a carriage
return and [linefeed

NEWLINE | A00000D ! terminator sequence of a time delay
and carriage return

See Also
LINESIZE, STALL/ UNSTALL

6-50

POD

Syntax

Lot

Function

Identifies the pod to be used when executing the 9010A programsin the
source file. The POD statement alows the 9010A to use the datain the
pod data file to configure its setup parameters to match the specified
pod.

e At thistime podname is one of the following (more files will be
added as new interface pods are implemented):

1802 6809 40/ 50 8088
6502 6809E 8080 8088M X
6800 8041 8085 9900
68000 ’35/48 8086 Z80

6802 ’39/49 8086M X

e When using the 8048 pod, the podname must be liged in this
statement as °35/48, *39/49, or *40/50, as appropriate.

Example
POD - 8080
P OD '39/49
emm Yeed

Pod Data Files and 9010A Pod Interaction (in Section 4, Part 1)

6-51/6-52

RUN UUT

Syntax

RUN UUT ‘—{ hex number '—'

Function
Used when the address for a RUN UUT operation is alowed to default
in a 9010A program.
e Setup parameter limits for RUN UUT are O-FFFFFFFF.

e If the RUN UUT statement appears in the setup parameters section
of the source file, then the RUN UUT address will be as indicated.

o |If this statement was not present and a pod data file was included a
the beginning of the source file, the compiler supplies the definition
for UUTADR.

e If apod data file was not included at the beginning of the source
file, the default RUN UUT address is 0000.

Example
R U N UUT@C000

See Also

Pod Data Files (in Section 4, Part 1), RUN UUT (in 9010A Program
Statements part of this section), and Appendix D (Pod-Specific Setup
Parameters)

6-53/6-54

STALL
UNSTALL

Syntax

—(_ STl)—»{ hex number |-»

—»{_UNSTALL [hex number }—

Function

Allows the programmer to specify the Stall and Ungtal characters (X-
ON and X-OFF) to which the 9010A responds when it is sending data
through the AUX I/F.

e Satup parameter limits for Stdl and Ungtdl are O-FF.

e Any ASCII character may be sdected for the Stal and Ungtdl
characters. The characters are specified with their hexadecimal
ASCII vaues. The characters used are those that are required by
your remote device.

e The 9010A’ default vaues are as follows

STALL 13 (CTRL S)
UNSTALL 11 (CTRL Q)
Example
STALL 13
UNSTALL 11
See Also

LINESIZE, NEWLINE

6-55/6-56

TIMEOUT

Syntax

—»(__TIvEQUT Hdeoimal number }—»

Function

Represents a count of how long the 9010A waits before timing out on
an interface pod operation.

o Setup parameter limits for TIMEOUT are O-60000.
e The 9010A’s default vaue is 200.

Example
TIMEOUT - 200

6-57/6-58

TRAP

Syntax

BAD POWER SUPPLY)— —>{(YE8

N> ILLEGAL ADDRESS)— LG)J ()
N acTive inTerurT A
N> ACTIVE FORCE LINE)—]
N CONTROL ERROR)—]
N->(ADDRESS ERROR)—]
—»(_ OATAERROR)—

Function

Allows the operator to individudly enable or disable trgps on UUT
system errors.

e If YESissdected, the UUT system error is reported to the operator
as it occurs.

e |F NO is. sdected, the UUT system error is not reported to the
operator as it occurs.

e Any eror types not explicitly specified are set to the 9010A default
vaues

e The 9010A’s default vaues are as follows

TRAP BAD POWER SUPPLY YES
TRAP ILLEGAL ADDRESS YES
TRAP ACTIVE INTERRUPT N O
TRAP ACTIVE FORCE LINE YES
TRAP CONTROL ERROR YES
TRAP ADDRESS ERROR YES
TRAP DATA ERROR YES

Example
TRAP BAD POWER SUPPLY « NO
TRAP ACTIVE INTERRUPT - NO

See Also
EXERCISE ERRORS, BEEP

6-59/6-60

9010A PROGRAM STATEMENTS

CONTENTS

ALOE ottt 6-63
OfF it s o
AUID T . oo oo
BusTest o
BtPOYg 6_77
.. ;
BXOCULE . o gg?
GOLO - e e et e e e ...:: o
15 S o8
Labd R RIS oo
LOAM oo ool
Probe ... 3
RAM TS oot e e e
RAMP g
Read .. i e e ..: : o
REG. -ooooovresees e 210l
REPLILOOD - 2103
ROM TESL oo R
RUN UUT i e e e ettt e ettt anaanens 8107
stop 2106
YIC ooeeere ST
Un 201
Wal o

W o e e

6-61

682

The syntax diagrams for the 9010A program statements are arranged
alphabetically on the following pages. The functional groupings of the

statements are as follows:
FUNCTION

TESTS

TROUBLESHOOTING

MODE

TEST SEQUENCING

UUT MEMORY MAPPING

PROBE

REGISTER OPERATION

STATEMENT

AUTO TEST
BUS TEST
10 TEST
RAM TEST
ROM TEST

ATOG
DTOG
RAMP
READ
WALK
WRITE

REPT/ LOOP
RUN UUT
STOP

AUX

DPY
EXECUTE
GOTO

IF

LABEL

LEARN

PROBE
SYNC

REG
UNARY (CPL, DEC, INC,
SHL, SHR)

ATOG

Syntax

[dec}

@D N
Lot Lo Lol

[REGF} [REG D]

Function

Toggles an operator-specified address bit from one logic dtate to
another. Two read operations are performed, one a the origina
address and another after the hbit is toggled.

o If the bit number is explicitly specified in the expression, it must
have a decima vaue in the range 0 -(n-1) where n equds bitsin the
address bus.

Example
ATOG @ 13FC BIT 7
See Also
DTOG, RAMP, READ, WALK, WRITE

6-63/6-64

AUTO TEST
Syntax

—
(EsD)

Function

Performs in sequence Bus Test, ROM Test, RAM Short Test, and 10
Test for versons prior to 2C. For versons 2C and later, the sequenceis
Bus Test, RAM Short Test, ROM Test, and 10 Test.

e Errors are reported and locations are identified as described for the
individud tedts.

Example
AUTO TEST

AUTO

See Also
BUS TEST, 10 TEST, RAM TEST, ROM TEST

6-65/6-66

AUX

Syntax

AUX < > :! string l—»
Function

Allows for sending and receiving data between the 9010A and other
devices usng the RS-232 Interface Ogption.

o The dring parameter represents the text to be sent.

e The text is separated from the AUX keyword by a single space,
hyphen, or tab.

e Any spaces beyond the single separating character are treated as
pat of the digplay message, resulting in leading blanks.

e The AUX gring can contain a maximum of 32 characters.

® Spaces a the end of an AUX gring are ignored. If trailing blanks
are dedred, the appropriate number of underscores should be

appended to the AUX dtring.

e Chaacters dlowed in the AUX gring are limited to those avallable
on the 9010A. The valid characters are:

A-Z +

0-9 -

@ %

— *

< \

> /

; $

? space

- (underscores will be converted to spaces)

e Thefunctions of the specid AUX |/ F characters are shown on the
next two pages. Symbolic register names can be used with these
goecid AUX characters. Symbolic register names are counted as
one character in the AUX dring.

667

AUX

e A symbolic register name cannot be immediately followed by a
hexadecimal character (O-9, A-F). A separating space is required.

Example

AUX ROM SIGNATURE IS $ROMSIG1 ROMSIG is a symbolic
register name. The
string to be sent is
“ROM SIGNATURE
IS” followed by the
hexadecimal con tents
of ROMSIG.

AUX - tests complete

See Also
DPY

Functions of AUX I/F Characters
CHARACTER ACTION CAUSED
Sends a control G (bell) to the RS-232 interface.
$ When followed by a hexadecimal digit or
symbolic register name, $ causes the contents of

the desgnated regiter to be transmitted in
hexadecimd to the RS-232 interface.

@ The same as for the $ symbol, except that the
contents are transmitted in decimd.
/ When | is followed by a hexadecimd digit or

symbolic register name, it suspends program
execution, waits for the next byte of data from the
RS-232 interface, and places the value of the byte
in the designated register. (The upper three bytes
of the register equa zero.) If the RS-232 interface
is configured to trandfer eight data bits, then eight
data bits gppear. Otherwise, the eighth data bit
(bit 7) is zero.

666

BUS TEST

Syntax

BUS >

TEST

Function
Tests for proper function of the UUT control lines, data lines, and
address lines.

e When Bus Ted is performed, testing of data lines occurs a the
address specified in the Bus Test setup parameter.

Example
BUS TEST
BUS

See Also

AUTO TEST, IO TEST, RAM TEST, ROM TEST, and BUS TEST
(in Setup Parameters part of this section)

6-71/6-712

DPY

Syntax

oY o st }—s

Function
Displays the string on the 9010A.

o Text to be displayed is separated from the DPY keyword by a
single space, hyphen, or tab.

e Any spaces beyond the single separating character are treated as
pat of the display message resulting in leading blanks.

e The DPY dring can contain a maximum of 32 characters.
e Spaces at the end of aDPY gtring areignored. If trailing blanks are

desred, the appropriate num of underscores should be
gppended to the DPY gring.

e Characters dlowed in the DPY dring are limited to those available
on the 9010A. The valid characters are:

A-Z +

0-9 -

@ %

= *

< \

> /

| $

3 space

- (underscores will be converted to spaces)

e The functions of the specid DPY characters are shown on the next
page. Symbolic register names can be used with these specid DPY
symbols. The symbalic register names are counted as one character
in the DPY 4ring.

e A symbalic regiger name cannot be immediately followed by a
hexadecima character (O-9, A-F). A separating space is required.

6-73

DPY

Example

DPY - test 3 complete - pass
DPY - trailing blank,

See Also
AUX
CHARACTER
#
$
@
/
\

6-74

Functions of DPY Characters

ACTION CAUSED

Causes the 9010A to beep when DPY is executed.
This symbol does not appear on the display when
DPY is executed.

When $ is followed by a hexadecimd or symbolic
regiser name, it causes the contents of the
designated register to be displayed in
hexadecima on the digplay.

The same as for the $ symbol except that the
contents are displayed in decimd.

When | is followed by a hexadecimd digit or
symbolic regiter name, it suspends program
execution and waits for input. When the operator
enters a hexadecimal value terminated by
ENTER, the 9010A places the vaue in the
designated register and resumes program
execution. Pressng ENTER without specifying a
hexadecimd vaue causes the vaue to default to
the previous contents of the regiser.

The same as for the /| symbol, except that the
9010A accepts only a decimal entry.

%

DPY

When ? is followed by a hexadecimd digit or
symbolic regiger name, it suspends program
execution and displays the question mark (7). If
the operator presses the CLEAR/NO key, the
9010A places a0 in the dedgnated regidter. If the
operator presses the ENTER/YES key, the
9010A places a1 in the designated register. After
the 1 or O is placed in the regiger, the 9010A
removes the question mark and then resumes
program execution.

When 9, is followed by a hexadecimd digit or
symbolic regiser name, it endbles or disables
asynchronous input from the operator during
execution. Asynchronous inﬁg< is dored in the
regiger designated by the hexadecimd digit or
symbalic regiger name

When + is the first character in the specification,
it causes following characters in the specification
to be appended to the text that is on the display at
the time DPY is executed.

NOTE: In order to cause one of the special symbols §, @, /,\, 2 or g to
be displayed in the case where the symboal is followed by a hexadecimal
digit or symbolic register name, the symbol must appear twice in the

specification.
EXAMPLE:
STATEMENT

DPY $1
DPY $$1
DPY $X

TEXT DISPLAYED
(contents of REG1)

$1
$X

6-75/6-76

Function

[REGE)
[bin]

[REG C]

Toggles a programmer-specified data bit from one binary logic state to
another by peforming two write operations a a programmer-
specified address.

The DTOG @ CTL function toggles a programmer-specified control
line from one binary logic Sate to another.

Example

If the DTOG @ CTL form is used and the expression immediatdy
following the equa dgn (=) is secified explicitly, the expresson
must be a binary vaue from O to 11111111,

If the address (not the DTOG @ CTL form) is specified, then the
following bit number expression (after BIT) must have a decimd
vaue in the range 0{(n-1) where n equas the number of bits in the
microprocessor data bus.

Inthe DTOG @ CTL form, if an expression is used to specify the
bit number, it must have a decimd vaue in the range O-7.

Refer to the POd ingtruction manuds or the labd on the interface
pod to identify which control lines are user-writable for a specific
pod.

DTOG @ REGF = FF BIT REG3
DTOG @ CTL = 01011111 BIT5

See Also

ATOG, RAMP, READ, WALK, WRITE

6-77/6-78

EXECUTE

Syntax
[dec]
EXECUTE > r >
Function
Executes one program from within another program in a subroutine-
like fashion.

e Program numbers are limited to the range O-99.

e A progran may cdl a program which in turn cdls another
program. Programs may be caled up to ten levels of nesting.

o If multiple leves of programs are cdled, a program may not call
any program from a previous level.

e A progran may not cal itsdf.
e Symbolic program names can be used in this statement.

e The compiler issues a warning message if you attempt to execute a
program that is not contained in the files being compiled.
Example
EXECUTE PROGRAM 5
EX 5
EXECUTE DELAY

on M YeeO
PROGRAM

6-79/6-80

GOTO

Syntax

.“.I.

Function

Allows the programmer to construct GOTO (unconditional branch)
steps which redirect program execution to a labe in the program.

e Symbalic labd names can be used in this Statement.

e Within a sngle program, symbolic names cannot be mixed with
hexadecima label numbers (O-9, A-F).

e More than one GOTO step may redirect program execution to the
same labd.

e The labd to which program execution is redirected may appear
anywhere in the program.
Example
GOTO 3
See Also
LABEL, IF

6-81/6-82

|F

Function
Creates conditional branch steps.

e Symbolic labe names can be usad in this satement.

e Within a sngle program, symbolic labels cannot be mixed with
hexadecimal ?abe? numbers (O-9, A-F).

e More than one IF step may redirect program execution to the same
labd.

e The labe to which program execution is redirected may appear
anywhere in the program.

Example
IF REG3 AND 7F > REG4 GOTO 1

See Also
GOTO, LABEL

6-83/6-84

I0 TEST

Syntax

—(®
1!

[REG A}

Function
Tests the read-write capability of dl bits in 1/O registers described as
having read-write capability.

o If an expresson is used to pecify the bit mask (following BTS), it
must have a hexadecimd vdue in one of the following ranges

|-FF 8-bit microprocessor

1-FFFF 16-bit microprocessor
1 -FFFFFF 24-bit microprocessor
I-FFFFFFFF 32-bit mocroprocessor

¢ Bitsthat are equa to 1 in the bit mask correspond to data lines that

are to be tested for read-write capability. Bits that are equa to O in
the bit mask correspond to data lines that are not to be tested for

read-write capability.

o If no address block is specified, then the 9010A performs the
specified 1O TEST over dl blocks of memory described as 1/0
under Address Space Information.

Example
/O TEST @ 4010 - 401F BTS 3D
See Also

AUTO TEST, BUS TEST, RAM TEST, ROM TEST, LEARN,
ADDRESS DESCRIPTOR (in Source File Syntax part of this
section)

6-85/6-86

LABEL

Syntax

= >
E LABEL m
[_name]
Function

Allows the programmer to create labels, i.e, program steps inserted
into programs to provide points of entry for branching steps. Identifies
a specific location in a program.

e Eachlabd isidentified by asingle hexadecimd digit (O-9 and A-F)
or with a symbolic name.

e Within a angle program, symbolic labe names cannot be mixed
with hexadecimd label numbers (O-9, A-F).

e 9010A Language keywords must not be chosen as symbolic labdl
names (such as LOOP).

e There are 16 possible labds for each program.

e All labd names mug be distinct.

e Labds may gppear in any order.

e A labd may exig without a branch (GOTO) gep to the labd.

® A 9010 program dstatement can follow the colon.

Example
LI:

DONE: STOP

FOUND: LABEL FOUND
See Also

GOTO, IF

6-87/6-88

LEARN

Syntax

—’@}1 rt
${ addr block
Function

Tests each address location in sequence and identifies it as RAM,
ROM, 1/ O, or unassigned. Also creates an address descriptor for each
block of memory which was identified.

e If no addr block is specified, the Learn operation is performed on
the entire microprocessor address space. Refer to the pod
indruction manuas for specific address information.

Example
LEARN

LEARN @ 1000 - 4FFF
See Also

IO TEST, RAM TEST, ROM.TEST, ADDRESS DESCRIPTOR (in
Source File Syntax part of this section)

6-89/6-90

PROBE

Syntax

H
(CRo)
Function

The Read Probe function places accumulated probe data into Register
0. Probe data consists of the logic levels detected, the number of events
counted, and the signature computed at the probe tip.

In Register 0, event counts are assgned to bits O-6, signatures are
assigned to bits 8-23, and logic levels are assigned to bits 24-26.

Example
READ PROBE
RD PROBE
PROBE

See Also
SYNC

6-91/6-92

RAM TEST

Syntax
(RAM) SHORT] »>
] r " e —]
Function

RAM SHORT quickly identifies common RAM falures such as
address decoding errors or hits that are not read-writable. RAM
LONG peforms the same tests as RAM SHORT and in addition,
performs a pattern-sengtivity test for locating “soft” RAM errors.

e If no address block is specified, then the 9010A performs RAM test
over dl blocks of memory specified as RAM under the Address
Space Information.

Example
RAM SHORT @ 1000 - 3FFF
RAM LONG

See Also

AUTO TEST, BUS TEST, 10 TEST, ROM TEST, LEARN,
ADDRESS DESCRIPTOR (in Source File Syntax part of this
Section)

6-93/6-94

RAMP

Syntax

v

[REG F]

Function

Performs a series of write operations a a programmer-specified
location in the UUT microprocessor system, beginning with al data
bits equa to zero, and increasing by one until al data bits equa one.

Example
RAMP @34F0
See Also
ATOG, DTOG, READ, WALK, WRITE

6-95/6-96

READ

Syntax

Tt Lod

Function

Reads a programmer-specified location in the UUT microprocessor
system and places the data in register E.

READ STS reads the vaues of the UUT microprocessor satus lines
and places the corresponding vaue in register C.

Example
READ @ REGT1
RD STS

See Also
PROBE, READ, WRITE, ATOG, DTOG, RAMP, WALK

6-97/6-98

REG

Syntax

n (Do
ame >
(Reg) hexdigit

Function
Enters the specified data in the specified register.

e Symboalic regiger names can be usad in this statement.

o mbolic register names must be declared before use in the local or
globa declarations section.

Example

REG1 = 1FF

TMP = REGA SHR 4
omn. Yo

SYMBOLIC REGISTER NAME DECLARATION (in Generd
Information part of this section)

6- 99/6-100

REPT
LOOP

Syntax

test or

—| troubleshooting >
statement
REPT Loop

Function

REPT causes the action previoudy performed to be repeated once.
LOOP causss the action previoudy performed to be repeated
continuoudly.

e REPT and LOOP may not be specified as steps by themselves but
may be specified as modifiers after a troubleshooting test or

function has been specified.

e REPT andlor LOOP can follow these test or troubleshooting

Satements:
AUTO TEST READ
BUS TEST WRITE
RAM TEST RAMP
ROM TEST WALK
IO TEST ATOG

DTOG

Example
RAMP @ REGF REPT REPT

WALK @ 4071C = 1 LOOP

6-101/6-102

ROM TEST

Syntax

v

Function
Computes a ROM signature for each block of ROM and compares it
to the reference ROM dgnature.

e If no address block is specified, then the 9010A performs a ROM
Test over dl blocks of memory specified under Address Space
Description and compares the signatures to those specified in the
Address Space Information.

e The sSgnaure expresson mugt have a hexadecima vdue in the
range O-FFFF.
Example
ROM TEST
ROM TEST @ 8000 - 9FFF SIG AFC7
See Also
AUTO TEST, BUS TEST, IO TEST, RAM TEST

6-103/6-104

RUNUUT

Syntax

—D(AUN UUT)=
L‘ > V!* addr l——'
Function

Allows the interface pod microprocessor to execute the program code
sored in the UUT.

&
>

e If an addressis specified, the UUT begins executing the code at the
address indicated.

e If no address is specified but a RUN UUT sgtup parameter is
present, the address from the setup statement is supplied.

e If no RUN UUT statement appeared in the setup section, but a pod
data file was induded a the beginnier:;] of the source file, then the
vaue for UUTADR will be supplied.

e If apod daa file was not included a the beginning of the source
file, the default address is 0000.

Example

RUN UUT

RUN UUT@1000
See Also

Default Setup Parameters (Appendix D), RUN UUT (in Setup
Parameters part of this section)

6-105/6-106

STOP

Syntax

Function
Suspends program execution at desired points.

e To cause the 9010A to resume program execution, the operator
must press the CONT key.

Example
STOP

6-107/6-108

SYNC

Syntax

hexdigit

ADDRESS

Function
Enables the operator to synchronize the probe operation to events in
m(re])microprr bus or alow the probe to oscillate at 1 kHz (free
Example
SYNC A
SYNC FREE-RUN
See Also
PROBE

6-109/6-110

UNARY

Syntax

v

Function
Performs the specified unary operation on the contents of the indicated
register.
e Symbolic regiger names can be used in this statement.

o Regider identifiers must be previoudy declared in the locd or
globa declaration section.

e Unary operator shorthand may not be used in this satement (i.e.,
INC 3 REGS is a syntax error).

Example

INC REG7

INC ERRCNT IERRCNT is a symbolic register name
on M YeeOo

REG

6-111/6-112

WALK

Syntax

—(> s+ (O—~>
Lol Ll Ll

[REG F) [REG E)

Function

Rotates a programmer-specified bit pattern across data lines by
peforming a series of write operations a a programmer-specified
address. The process continues until the data bits are rotated through
every posshle postion

Example
WALK @ 3480 = 7F

See Also

ATOG, DTOG, RAMP, READ, WRITE

6-113/6-114

WRITE

(REE E]

Function

Writes programmer-specified data to a programmer-specified location
in the UUT microprocessor system.

WRITE @ CTL causes the 9010A to write control lines to the
programmer-specified logic levels.

e If an expresson is used with the CTL form, it must have a binary
vaue from O to 11111111. The binary string corresponds to the
eight possble UUT control lines. The 9010A forces control lines
represented by a 1 high, and forces control lines represented by a0
low.

e Refer to the pod indruction manuals or the label on the interface
pod itsdf to identify which control lines are user-writable for a

gpecific pod.
Example
WRITE @7136 = 2F
WR CTL = 11000100
See Also

ATOG, DTOG, RAMP, READ, WALK

6-115/6-116

APPENDICES

CONTENTS
A Keywords ... A-l
B Predefined Register Names B-I
C Optiond Keywords and Keyword Abbreviations C-l
D Default Setup Parameterscooviiiiinn... D-|
E Paameer Limitsccoiiiiiiiianaann.. E-l
F o OEMOr MESSAES «vvveveriiiiiiiieiiiieieieen F-I

Appendix A
Keywords

* |dentifies Setup Keywords

active *
address *
and
assgn
atog

auto

aux

bad *
beep *
bin.
bit i
bits *
bts *
bus *
bytes

control *
cpl
ctl

data *
dec
declarations
dpy

tog

enable *
er*
error *
errors*
ex
exercise *
execute

force *
free

gotO

if
illegdl *

inc
include

information *

interrupt *
10

label
learn
line *
linesize *
long
loop

newline *
no *

on *
or

pod *
power *
probe
program

ram *
ramp
rd
read
reg
rept
rom*
run *

Setup *

shl

short

g

sig *
ace *

gtpdl *

stop

s
supply *
Sync

test *
timeout *
to
trangtion *
trap *

ungdl *
uut *

wak
Wr
write

yes *

Al /A2

Appendix B
Predefined Register Names

SYMBOLIC

REGISTER NAME FUNCTION
A BITMASK Bit Mask
B ROMSIG ROM Signature
C STSCTL STS/CTL Information
D BITNUM Bit Number
E DAT Data
F ADR Address
0 PBDAT Read Probe Data

B-l /B-2

Appendix C
Optional Keywords and
Keyword Abbreviations

OPTIONAL KEYWORDS AND SYMBOLS

TWO EQUIVALENT AND
ELEMENT RESTRICTIONS ACCEPTED STATEMENT!
TEST None, always AUTO TEST
optional AUTO
@ None, always WRITE @ 100FF = 25
optional WRITE 100FF = 25
—_ Optional only DPY TEST MESSAGE
in DPY, AUX, and DPY-TEST MESSAGE
SETUP parameters POD - 8080
POD 8080
LABEL x None, always 3: LABEL 3
optional (used in 3
LABEL statements)
PROGRAM Optional only in EXECUTE PROGRAM 35
EXECUTE PROGRAM xx |EXECUTE 35
commands
INFORMATION None, always SETUP INFORMATION
optional (used SETUP

in Setup and Address
Descriptor sections)

READ Optional only in READ PROBE
READ PROBE command |PROBE

xx BYTES None, always optional PROGRAM 10 524 BYTES
(used in program PROGRAM 10
statements)

Keyword Abbreviations

KEYWORD ABBREVIATIONS
KEYWORD ABBREVIATION

SYNC ADDRESS SYNC A
SYNC DATA SYNC D
SYNC FREE-RUN SYNC F
READ RD
WRITE WR
EXECUTE EX

Appendix D
Default Setup Parameters

The information in the following table applies only to these pods.

1802, 6502, 6800, 68000, 6802, 6809/6809E, 8041 /8048, 8080, 8085,
8086/8086MX, 8088/ 8088M X, 9900, Z80

Setup Parameters Common to All Pods Listed Above

PARAMETER \ DEFAULT VALUE

TRAP BAD POWER SUPPLY YES

TRAP ILLEGAL ADDRESS YES

TRAP ACTIVE INTERRUPT NO

TRAP ACTIVE FORCE LINE YES

TRAP CONTROL ERROR YES

TRAP ADDRESS ERROR YES

TRAP DATA ERROR YES

EXERCISE ERRORS YES

BEEP ON ERR TRANSITION YES

TIMEOUT 200

STALL 13

UNSTALL 11

NEWLINE OOOOODOA

LINESIZE 79

‘BUS TEST @ 0000

‘RUN UUT @ \ 0000
‘If a pod name is not specified in the setup parameter section of the source file,
then the default address for BUS TEST and RUN UUT are as indicated. If a pod
data file is included and the pod name is specified or if a pod is connected to the
9010A when the hex file is downloaded, then the specified pod’'s default BUS
TEST and RUN UUT addresses will override these.

D-l

Default Setup Parameters

POD-SPECIFIC SETUP PARAMETERS

D-2

ENABLEABLE DEFAULT
POD BUS TEST@ | RUN UUT @ LINE VALUE
1802 FFFF 0000 WAIT YES
6502 0000 FFFFFFFC RDY YES
6800 0000 FFFFFFFE TSC YES
DBE YES
HALT YES
68000 1000FFE F6000000 HALT YES
BR/ACK YES
INTR YES
6802 0000 FFFFFFFE MR YES
HALT YES
6809 0000 FFFFFFFE HALT YES
DMA YES
MR YES
6809E 0000 FFFFFFFE TSC YES
HALT YES
8041 2000 3000 UNUSED YES
8048 1100 0000 UNUSED YES
8080 FFFF 0000 READY YES
HOLD YES
8085 FFFF 0000 READY YES
HOLD YES
8086 0000 FFFFO READY YES
HOLD YES
INTR YES
8086MX 0000 FFFFO READY YES
RQGTO YES
RQGT1 YES
INTR YES
8088 0000 FFFFO READY YES
HOLD YES
INTR YES

Default

Setup Parameters

8088MX 0000 FFFFO READY YES
INTR YES
RQGTO YES
RQGT1 YES
9900 FO00 0000 READY YES
HOLD YES
280 FFFF 0000 BUSRQ YES
WAIT YES

D-3/D-4

Appendix E
Parameter Limits

SETUP PARAMETER LIMITS

PARAMETER LIMIT
BUS TEST 0-FFFFFFFF
RUN UUT 0-FFFFFFFF
STALL O-FF
UNSTALL O-FF
LINESIZE 1 0-255
TIMEOUT 0-60000
NEWLINE 6 Hexadecimal Diaits

ADDRESS DESCRIPTOR PARAMETER LIMITS

PARAMETER LIMIT
signature (ROM) 0-FFFF
bit mask (10) I-FFFFFFFF

E-l /E-2

Appendix F
Error Messages

INTRODUCTION

This gppendix describes error messages that may be produced by the
9010A Language Compiler programs. The gppendix is divided into
three parts. Compiler Program Error Messages (9L.C), File Trandfer
Error Messsges (XFER), and Disk Veification Program Error
Messages (VERIFY). Along with each error message is a description of
possible causes for the error. The description is not meant to be a
comprehensive ligt; other causes may aso be possble.

Other messages may be produced by the host computer system. For
explanations of system-dependent errors, refer to System
Dependencies in Section 3 and to the user manud for the host system.

F-

Error Messages

COMPILER PROGRAM ERROR MESSAGES
Address range error

In an address range, the second address was incorrectly specified
smdler than the firg address.

EXAMPLE: RAM @ 10000 - 10FF

Attempt to redefine symbolic name

A symbolic name was used in the wrong context (i.e., the name was
dready used as a program name, but now you are attempting to use it
as a globa regiser name, you are usng a loca regiser name as the
target of aGOTO, or you are using alabel name as a program name in
an EXECUTE dgatement).

Binary number expected
Can occur if you try to write a non-binary value to CTL or try to
DTOG a non-binary vaue for DTOG @ CTL.

Cannot define REGO0-7 as global registers

You tried to assign a symbolic name to a locd register (REGO-7) in a
globdly declared ASSIGN datement. You can only assgn symbaolic
names to these registers locdly.

Cannot open file (filename)

An illegd file name was entered.
You atempted to open a file for writing on a write-protected disk.
You atempted to open a file that does not exis.
You atempted to create a file on a full disk.
An Include file cannot be opened because it would result in more files
being opened concurrently than your system dlows.

Checksum error, should be xx

A checksum error was encountered.

Duplicate label
A labe was used more than once.

F-2

Error Messages

Duplicate program
An attempt was made to compile a source file with two programs with
the same number or same name.

Error in hex line
There was a missng character in a binary program.

lllegal address

An address with more than eight hexadecimd digits (past the 32-bit
limit) was specified.

lllegal bitmask
A bitmask equd to O, or with more than eight hexadecimad digits was
specified.

lllegal bitnumber
A bitnumber was specified as hexadecimd rather than decimd, or the
bitnumber was out-of-range for the statement (i.e. in ATOG or DTOG
gatement, bithumber > 31 will cause this eror, in DTOG @ CTL,
bitnumber > 7 will cause this error). Consult the appropriate page in

Section 6, Language Reference, for the statement in error to determine
the bitnumber limits.

lllegal label number

A hexadecimd labd number (asingle digit) isout of therange O-9 or A-
F. (For example, FF was used as a | number, or GOTO AB was
attempted.)

lllegal option
You have entered an illegd listing option from the interactive mode, or
have an illegd liging option in the command line.

lllegal program name

A keyword was used as a program name, a program name of dl
hexadecima characters was used, or one of the predefined register
names was used as a program name.

EXAMPLES. Program test
Program abcd
Program bitmask

F-3

Error Messages

lllegal program number

A program number out of the range O-99, or a bad program number,
such as PROGRAM 44R, was used.

lllegal program order

Numbered programs are not in numerical order. Too many
symbolicdly named programs are between numbered programs.
Programs appear in the source file after program 99.

lllegal register number
A hexadecimd register number (a.gngle digit) is out of the range 0-9 or
A-F (i.e, REG FF z 100FF).

lllegal signature
More than four hexadecima digits were usad in a sgnature.

lllegal value
A vadue is out-of-limits.

EXAMPLES: LINESIZE 300
TIMEOUT 70000

You should check the gppropriate page in Section 6, Language
Reference, to determine the legd range of vaues.

INCLUDES nested too deeply

INCLUDE datements are nested past the maximum depth of five.
(Because this is a system dependency, your sysem may not alow
neging to five)

Input line too long
Lines longer than the maximum of 255 characters were used.

Invalid forcing line

You probably did not include the gppropriate pod data file in the
source file,

You may have misspdled the name of the forcing line in an ENABLE
statement.

The pod data file may have been modified to contain a FORCELN
name more than sx characters long.

F-4

Error Messages

Missing checksum, should be xxxx
There were no checksums in a binary program, or the checksums were
missing the ddimiter characters (* or $).
Missing label
A labd was used asthe target of aGOTO, but was not created (through
a LABEL dgatement). Also, check for misspelling of label names.
Mixed symbolic label names with hex label numbers

Within a sngle program, dl of the labes must be symbolicdly named
or dl of the labels must be hexadecima digits. The two cannot be
mixed.

Program not found

A literdly-numbered program used as the target of an execute
gatement (i.e, EXECUTE PROGRAM 96) was not present in the
source fileg(s) that was compiled.

Syntax error

The indicated line contains a Satement that is incorrectly formed. It
may have a misspdled word, it may be incomplete, it may be missing a
keyword, or a keyword or hexadecima constant may have been used
as a symbolic name.

Note that the spdling that the 9010A uses on its display is not drictly
compatible with the compiled language.

Example: 9010A Display: SET-TRAP BAD PWR SUPPLY? YES
9LC Syntax: TRAP BAD POWER SUPPLY - YES

Refer to the appropriate syntax diagram to verify correct spelling and
syntax.

Too many labels
More than 16 labds were used in one program.

Too many symbolic names

You used more than 100 loca symbolic names (register/label names)
or more than 200 globa symbolic names (program names and register
names).

F-5

Error Messages

Undefined symbolic name

A symbalic register name was used before that register was declared in
an ASSIGN daement or the regigter name was misspelled or a
symbolicaly-named program used as the target of an Execute
gatement (i.e, EXECUTE PROGRAM MISSING) was not present
in the source file(s) that was compiled.

USAGE: 9lc [-isda] [-h hexfile] [-I [lisfile]] srcfile

You have tried to use the compiler program incorrectly (i.e., an illega

oEltion was specified, you did not put a filename after the -h flag, etc.).

The usage line above shows the correct format for using the compiler.
Warning: illegal character

A character outside of the DPY | AUX character set has been used. For
example, you have attempted to use parenthesisO or brackets [] in a
DPY/ AUX diring. Valid characters are described on the AUX and
DPY pages in Section 6, Language Reference.

Warning: incorrect byte count
The byte count lised on the program Statement is incorrect. The
program has probably been edited.

Warning: invalid separator character
A character other than a tab, space, or dash was used to separate a
DPY/ AUX gring from the keyword.

Warning: string too long, discarding: xxxx
There are more than 32 characters in the AUX/DPY dring. The
compiler program will ignore al characters past the firgt 32.

“ expected in INCLUDE statement
Missing quote surrounding the filename to be included.

F-6

Error Messages

FILE TRANSFER ERROR MESSAGES

Address descriptors must precede program information
You attempted to save address descriptors after saving programs.

Address descriptors previously saved in this file
You attempted to save address descriptors more than once.

Cannot open (filename)

An illegd file name was entered.
You atempted to open a file for writing on a write-protected disk.
You atempted to open a file that does not exigt.
You atempted to create a file on a full disk.
Cannot open temporary file

There is not enough room to open a temporary file

Data transmission error detected

A checksum eror was detected, indicating that data transmisson
errors occurred. This is possibly due to a bad connection between the
9010A and hogt computer, or the time delay specified by the Setup
parameter NEWLINE is not a large enough vaue Check the
connections and try again, or try a larger time delay vaue.

lllegal option

An illegd option was used. Enter a valid option.

lllegal program ordering

You atempted to save a program with a number LOWER than a
program aready saved.

Incorrect data format for transfer

You pressed the wrong keys on the 9010A.
Port setup parameters were set incorrectly.
The 9010A darted from a sal.

Check the port parameters and try again.

F-7

Error Messages

No address descriptors to save
Y ou attempted to save address descriptors when none were transferred
from the 9010A.

No program information to save
You attempted to save programs when none were transferred from the
9010A.

Not a valid port
The port name entered is not valid for the host system. Use a valid port
name.

Other information already saved prevents entire file save
You atempted to save an entire file after dready saving other
informetion.

Program (program number) already saved
You attempted to save the same program more than once.

Program (program number) not found
You attempted to save a program that was not transferred from the
9010A.

Programs already saved will cause illegal ordering
You atempted to save dl programs after some have dready been
saved.

Setup information must precede program information
You atempted to save setup information after saving programs.

Setup information previously saved in this file
You atempted to save setup information more than once.

Error Messages

DISK VERIFICATION PROGRAM ERROR MESSAGES

The following messages are the result of file configuration errors. If the
erors persist after an attempt to recopy the indicated files, contact a
Fluke Technical Service Center for advice.

Data file VERIFY.DAT not found

The file VERIFY .DAT does not resde on the sysem default device.
Copy VERIFY.DAT from the origind diskette to the system default
device.

File (flename) not found

The file filename does not reside on the system default device. If the file
is needed, copy it from the origind diskette to the system default

device.
File (filename) error -- signature Is ¢sig}, should be (sig}

The indicated file has been corrupted or has been modified. Check that
the appropriate Copy command was used (in systems where different
commands are used for binary and ASCII data), check for bad blocks
on the disk, or verify that the verson number for the file is the same as
goecified in the VERIFY .DAT file.

lllegal or missing signature for file (filename)

The VERIFY .DAT file may have been dtered. Try using a new copy
from the origind diskette.

x) files tested -- (i) bad signatures, <> missing files

Provides a summary of the errors that occurred while running the
VERIFY program.

F-9/F-10

INDEX

Abbreviations, Keyword, 4-17
Address Space Information, 4-8

Coding Shortcuts, 4-16

Default Entries, 4-18

Unary Operator Shorthand, 4-18
Command Line Mode, 5-8
Comments, Program, 4-7
Compiler Program (9LC)

How it works, 1-5

Package, 1-7

Using, 5-6
Computer Systems, Host, 1-4
CP/M Operating Systems, 3-17

Data Files, Pod, 1-8, 4-11

Default Entries, 4-18

Default Setup Parameters, Appendix D
Disk Verification Program, 1-7

Errors, Syntax, 5-11
Extensons, Language, 1-6

File Transfer Program (XFER), 1-7
Files

Inclusion, 4-19
Pod Data, 1-8, 4-11

Source, 54, 514

Format

General Program, 4-4

Hex, 5-16

Source, 5-14
Fluke 1720A Instrument Controller, 3-4
Fluke 1722A Instrument Controller, 3-9

General Program Format, 4-4
Getting Started, 3-1

Hex Format, 5-6

Host Computer Systems
CP/M Operating Systems, 3-17
Fluke 1720A Instrument Controller, 3-4
Fluke 1722A Instrument Controller, 3-9
IBM Persona Computer, 3-13
Kaypro Il Personal Computer, 3-17

IBM Personal Computer, 3-13
Inclusion, File, 4-19
Information

Address Space, 4-8

Setup, 4-9
Interaction, Pod/9010A, 4-12
Interactive Mode, 5-6

Kaypro Il Personal Computer, 3-17
Keyword Abbreviations, 4-17, Appendix C

index

Keywords, Appendix A
Keywords, Optional, 4-17, Appendix C

Labels, Symbolic, 4-26
Language Extensons, 1-6
Listing File Options, 5-10

Modes
Command Line, 5-8
Interactive, 5-6

Names
Predefined Register, 4-29, Appendix B
Symbolic, 4-22
Symbolic Program, 4-24
Symbolic Register, 4-28

Operator Shorthand, Unary, 4-18
Optional Keywords, 4-17
Options, Listing File, 5-11

Parameter Limits, Appendix E
Pod Data Files, 1-8, 4-11

Predefined Register Names, 4-29, Appendix B

Preparing Source Files, 5-4
Program
Comments, 4-7
Genera Format, 4-4
Names, Symbolic, 4-24
Transferring, 5-12
Writing, Section 4
Programs
Compiler, 1-7
Disk Verification, 1-7
File Transfer, 1-7
9010A, 4-8

Reference, Language, Section 6

Register Names, Predefined, 4-29, Appendix B

Register Names, Symbolic, 4-28

Setup Information, 4-9
Setup Keywords, Appendix A
Setup Parameters, Default, Appendix D
Shortcuts, Coding, 4-16
Shorthand, Operator, Unary, 4-18
Source Files, Preparing, 5-4
Source Format, 5-14
Space Information, Address, 4-8
Statements, Section 6
Symbolic

Labels, 4-26

Names, 4-22

Program Names, 4-27

Register Names, 4-28
Syntax Diagrams

Notation, 6-4

Symbols, 6-5
Syntax Errors, 5-11, Appendix F

Transferring Programs, 5-12

Unary Operator Shorthand, 4-18
Use with the 9005A, 1-8
Using the Compiler, 5-6

Writing Programs, Section 4
XFER, File Transfer Program, 1-7
9LC, Compiler Program, 5-6
9005A, Using with the, 1-8

9010A/Pod Interaction, 4-12
9010A Programs, 4-8

9010A Language Compiler Software Error Report Form

We would like to know how the9010A Language Compiler meets your expectations, and whether you
encountered any shortcomings, including missing features you consider important, cases where the
program does something unexpected, and bugs of all kinds. This information will help us to improve
the product.

We suggest that you retain this sheet as an original and use a photocopy for each report.

Date: Name of User:
Co. Name: Dept:

Street: City:

Mail Stop: Phone No.

Model Number (i.e., 9010A-920, etc. from diskette label):

Software Version Number (from diskette label):

Program Name and Version Number (i.e.. XFER ver 1.0, 8080.POD ver. 1.2, etc):

Host Operating System (include Version Number):

Host Computer System (i.e., IBM PC):

Description of problem:

How can problem be reproduced? (Attach listing or separate sheet of paper, if appropriate)

Were you able to work around the problem? If so. how?

Return completed form to: John Fluke Mfg. Co., Inc.
Digital Service Products
M/S 267D
9LC Product Manager
P.O. Box C9090
Everett, WA 98206

CHANGE/ERRATA INFORMATION
ISSUE NO: 1 12/84

This change/errata contains information necessary to ensure the accuracy of
the following manual. Enter 'thié corrections in the manual if either one of
the following conditions exist:

1. The revision letter stamped on the indicated PCB is equal to or
highér than that given with each change.

2. No revision letter is indicated at the beginning of the change/errata.

- MANUAL
Title: 9010A Language Campiler
Print Date: December 1983
Rev.- Date: —

C/E PAGE EFFECTIVITY

Page No. Print Date

1 .12/84
2 12/84
3 12/84
4 12/84
5 12/84
6 12/84

9010A LC

ERRATA #1
- On page 3-1, under Fluke 1720A Instrument Controller, System Dependencies,
! CHANGE: Test Editor
! - T0: Text Editor
On page 3-6, change the second sentence in Step 3 to read:

SET, a 1720A system program, is included on the 1720A System Disk for
this purpose.

On page 3-11, change the second sentence in Step 3 to read:

The Set Utility program (SET), a 1722A system program, 1s included on
the 1722A System Disk for this purpose.

On page 3-12, delete the second paragraph under Text Editor.
On page 3-15, add the NOTE at the end of Step 2:
NOTE

2400 baud is the fastest data transfer rate allowable. If
transfer problems occur at 2400 baud, try again at 1200
baud (switch setting 4).

Following step 3, replace both paragraphs with:

You may use the IBM MODE command to configure the serial port. The
command line for the IBM PC that is used to implement the suggested
setting is:

MODE m: 24'8'811

for 2400 baud, and
MODE COoM1: 12,E,8,1

for 1200 baud.

On page 3-17, between the two paragraphs under Introduction, add the
» following NOTE:

NOTE

The 9LC program will look for a file on the first
operational disk drive that it encounters, and will "hang
up® if that disk drive is empty. If, for example, the 9LC
disk is in drive 1, and drive 0 is empty, the program
will hang up looking for the file on drive 0. The disk
activity indicator on drive 0 will be on, and the display
will show "9IC".

12/84 -1-

9010A IC

On page 3-20:
Add the following to the end of the second paragraph:

(The Kaypro version of the program will only prompt for the baud
o rate.)

Replace the last sentence of the fourth paragraph with:

This file contains the status and data addresses. The Kaypro version
also includes SIO initialization bytes.

On page 4-11, add the following to r}xe end of the first paragraph:

Data files may not be available for newer pods. If a data file is not
included for the pod you are using, consult the Pod Instruction Manual
for information about creating the proper data file. You may add this
new data file to the disk and INCLUDE it, or you may insert the
information directly into the beginning of the program.

On page 5-7, insert the following note between the last two paragraphs:
NOTE
The total number of bytes required must not be more than
the maximum memory size of the 9010A--10,192 bytes. If
the "TOTAL = xx bytes" message printed by the Compiler
. - program exceeds 10,192, then you must reduce the size of
the source program(s).
On page 5-8, replace the format line, with:
[devicel9IC [-listoptions] (-H hexfilel [-L [listfilell srcfile <RETURN>
On page 5-11, add the following paragraphs at the bottom of the page:

The CPM version of the software allows you to redirect the reporting
of syntax errors to a file, instead of to the display. The Command
Line for directing the syntax error report to a file is:

{devicel9IC [-listoptions] [-H hexfile] [-L [listfilel] srcfile >
msgfile <RETURN>

The "msgfile” specified in the command line will receive all reports
. of syntax errors that may occur during compiling, and also other
2 status messages that would normally be printed on the display.

On page 6-9, replace the syntax diagram at the bottom of the page, with:

12/84 -2-

— 9010A LC

=
B —s{] “@LMMJ

HECHONG

On page 6-69, place the \ character in the left column at the top of the
page.

On page D-1, add the following to the list of pods:
Z8000, 8051, 8051X, 8031, 80186, 80188
On page D-3, expand the table to include:

28000 0800FFFE 0000 BUSREQ YES

WAIT YES

. 8051 30000 0000 UNUSED YES
8051X 20000 0000 UNUSED YES

8031 10000 0000 UNUSED YES

80186 0000 FFFFO0 HOLD YES

EXTRDY YES

80188 0000 FFFFO HOLD YES

EXTRDY YES

12/84 -3~

9010A LC

Addendum

The following supplementary information is provided to clarify or expand
material in this manual.

COMMAND-LINE SPACING

Same host computers have specific requirements for mandatory spacing in
the command lines. You must pay particular attention to providing the
correct specifying syntax. For example, the SET RS-232 Utility for the
Fluke 1720A Instrument Controller requires that a space be inserted
after "KBl:" and between each parameter.

ASCII TEXT EDITORS

The Text Editor used on the host computer system must produce a source
file that contains only standard printable ASCII text characters and no
special control or formatting characters.

SET RS-232 UTILITY PROGRAM

Scme early versions of the 1720A Set RS-232-C Utility program do not
implement the STALL option (versions l.x). You may upgrade your software
by purchasing the 1720A-200U software upgrade package which contains,
among other things, the new version of the Set RS-232-C Utility program.
Contact a Fluke Technical Service Center for information.

REQUIRED SPACES

In the description of terms to be used in expressions (shown with a
syntax diagram on page 6~9), if more than one operator is specified,
each operator must be separated from the rest by a space. A space must
also be inserted between REG and the following hex register number.

POD DATA FILES

New interface pods are continually being developed by Fluke. If a data
file is not on the disk for your pod, you may use the simple procedure
shown below to create one (also, refer to the Instruction Manual for you

pod):

1. Using the editor, create a new file named <podname>.POD. <podname>
is the name of your new pod, such as 80186.

2. Copy the following lines into the file.

<podname> Pod data file

FORCELN <name> = <n>
busadr = <address>
uutadr = <address>

[}

<name> is the name of an enableable forcing line. <n> is the bit in
the enable mask that corresponds to that forcing line. Use a

12/84 -4-

RO

3.

9010A LC

separate line for each enableable forcing line. You must define all
of the pod's available forcing lines. The 80186 Pod, for example,
has two enableable forcing lines, EXTRDY and HOLD, so you would
insert

FORCELN extrdy = 0
FORCELN hold = 1

<address> is the hex address to be used for either BUS TEST
(busadr) or RUN UUT (uutadr). For example

busadr = 00000
uutadr = FFFFO

To specify the BUS TEST to begin at 00000 and the RUN UUT to begin
at FFFF0.

Save this new file as file <filename>.POD on the disk.

If you would like to add your new Pod data file to the list of files that
are checked by the VERIFY program, do the following steps:

1.

3.

12/84

Edit file VERIFY.DAT (supplied on the 9IC disk) and add the
following line to the end of the file:

<filename>.POD DDDD

<filename>.POD is the name of the new Pod data file and DDDD is a
dummy checksum for the file. (You'll replace the dummy checksum
with a real one later.)

Save the modified VERIFY.DAT file on the disk.

Run the VERIFY program. The last two messages that it reports
should be:

File <filename>.POD error - signature is CCCC, should be DDDD
zz files tested - 1 bad signatures, 0 missing files
<filename>.POD is the name of the new Pod data file, CCCC is the
correct checksum for the Pod data file, and zz is the number of
files tested.
Write down the correct checksum for the Pod data file (CCCC).

Re-edit the file VERIFY.DAT and replace the dummy checksum that
you entered before (DDDD) with the correct checksum (CCCC).

Run the VERIFY program again to confimm that all changes have been
made satisfactorily. The last two messages that it reports should
now be:

File <filename>.POD verified

9010A IC

2z files tested —— no errors

RS-232 INTERFACE CABLE

The cable used to connect the host computer to the Troubleshooter must
implement this wiring scheme:

(1) Optional. Use if your host computer requires RLSD (Received Line Signal
Detector) to be asserted high. .

(2) Optional. Use if your host computer requires DSR (Data Set Ready) to be
asserted high.

(3) Optional. Use if your host computer requires RI (Ring Indicator) to be
asserted high.

12/84 -6-

	Contents
	Introduction
	How To USe This Manual
	Getting Started
	Writing Programs
	Using the Compiler
	Language Reference
	Source File Syntax
	Setup Parameters
	9010A Program Statements
	Appendices
	Keywords
	Predifined Register Names
	Optional Keywords & Abbreviations
	Default Setup Parameters
	Parameter Limits
	Error Messages

	Index & Change/Errata

