
901OA Language
Compiler

P/N 861504
December 1983
elg83

Litho

NOTICE
This manual describes unpublished Software which contains the tradesecrets
and confidential proprietary information of John Fluke Mfg. Co., Inc. and
which embodies substantial creative effort, ideas, and expressions. THE
SOFTWARE IS PROVIDED UNDER LICENSE FROM FLUKE. Fluke grants
Licensee a perpetual non-exclusive license to use this material and make up to
three copies for backup purposes without written permission from Fluke.

THIS SOFTWARE IS LICENSED FOR USE ON A SINGLE COMPUTER
SYSTEM.

LIMITED WARRANTY
Fluke warrants that the Software has been properly recorded on non-defective
diskettes. Fluke does not warrant the Software to be error free. Fluke will
replace such diskettes without charge if Fluke in good faith determines that
such diskettes were not subject to misuse and if returned to a Fluke Technical
Service Center, within ninety (99) days of shipment. Refer to your 9OlOA
Operator Manual for a listing of locations. Fluke reserves the right to change
the specifications and operating characteristics of the Software it produces,
over a period of time, without notice.

-\

FLUKE GRANTS NO OTHER WARRANTIES, EITHER EXPRESSED OR
IMPLIED, INCLUDING ANY IMPLIED WARRANTIES OF MERCHANTABIL-
ITY OR FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO EVENT
SHALL FLUKE BE LIABLE FOR ANY LOSS OF DATA, USE, PROFITS OR
GOODWILL, OR FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL,
CONSEQUENTIAL OR OTHER SIMILAR DAMAGES AS A RESULT OF ANY
MATTER RELATED TO THIS AGREEMENT, REGARDLESS OF THE FORM
OF THE ACTION.

Copyright (a)1983 John Fluke Mfg. Co., Inc.,
P.O. Box C9090, Everett, Washington 98208

Contents

1 INTRODUCTION 1-l
Introduction to the 9010A Language Compiler l-3
The Host Computer System . 1-4
How the Compiler Works . l-5
Language Extensions . l-6

r The 9010A Language Compiler Package l-7
Disk Verification Program . l-7
Compiler . l-7
File Transfer Program . 1-7
Pod Data Files .

Use With the 9005A . t:

2 HOW TO USE THIS MANUAL 2-1
Introduction . 2 - 3
Organization . 24
Suggested Use . 2 - 5

3 GETTING STARTED 3-1
Introduction . 3 - 3
Fluke 1720A Instrument Controller . 34

Introduction . 34
What You Need . 3 - 4
Backing Up the Program Diskette . 34
Verifying the Working Diskette . 3 - 5
Hooking Up the System . 3 - 6
System Dependencies . 3 - 8

Test Editor . 3 - 8
Disk Space . 3 - 8
Compiler Organization . 3 - 8

i (continued on page ii)

CONTENTS, continued

-,

Fluke 1722A Instrument Controller . 3 - 9
Introduction ..*..*.............. 3 - 9
What You Need ...*.
Backing Up the Program Diskette *.*... E
Verifying the Working Diskette*.....*.......... 3-10
Hooking Up the System*...................... 3 - 1 0
System Dependencies . 3-12

Text Editor . 3-12
Disk Space ...**...........*.. 3-12

IBM Personal Computer*..................... 3 - 1 3
Introduction . 3-13
What You Need . 3 - 1 3
Backing Up the Program Diskette . . . ** . . * 3-14
Verifying the Working Diskette . 3-14
Hooking Up the System . 3 - 1 5
System Editor * . 3-16
RETURN Key*..*.....................*.* 3 - 1 6

CP/ M Operating Systems .*..........*................ 3 - 1 7
Introduction*.................... 3 - 1 7
What You Need .*................,................. 3 - 1 7
Backing Up the Program Diskette

-. 3 - 1 8
Verifying the Working Diskette*..... 3 - 1 8
Hooking UP the System . 3 - 1 9
Installing Software . 3-20
Editor * . 3 - 2 0

4 WRITING PROGRAMS . :-;
Introduction ..*............... -
Part 1: General Program Format . 44

Introduction ,...................................... 4-4
Important Details . 4 - 5
Program Comments . 4 - 7
90 10A Programs . 4 - 8
Address Space Information . 4 - 8
Setup Information . 4-9
Pod Data Files . 4-l 1
9010A/Pad Interaction ,........,.........,.......... 4-12
Sample Program . 4-13

Part 2: Coding Shortcuts . 4-16
Introduction . 4-16
Optional Keywords and Keyword Abbreviations 4-17
Unary Operator Shorthand ,..........,.............. 4-18 -
Default Entries . 4-18
File Inclusion . 4-19

(continued on page iii) ii

CONTENTS, continued

Sample Program . 4-20
Part 3: Symbolic Names . 4-22

Introduction . 4-22
Symbolic Program Names . 4-24
Symbolic Labels . 4-26
Symbolic Register Names . 4-28
Predefined Register Names . 4-29
Sample Program . 4-30

5 USING THE COMPILER . 5-l
Introduction . 5-3
Preparing the Source File . 5 - 4
Compiling . 5-5

Interactive Mode . 5 - 6
Command Line Mode . 5-8
Listing File Options . 5-10
Syntax Errors . 5 - l 1

Transferring Programs . 5 - 1 2
Transferring Programs to the 9010A 5 - 1 2
Transferring Programs from the 9010A 5-14
Source Format . 5-14
Hex Format . 5 - 1 6

6 LANGUAGE REFERENCE . 6-I
Introduction . 6-3
Syntax Diagram Notation . 6 4
Special Symbols . 6-5
Symbolic Names . 6-6
Expressions . 6-8
Addresses . 6-10
General Information . 6 - 1 1
Statement Format . 6 - l 1
Program Comments . 6 - l 1
File Inclusion . 6-12

SOURCE FILE SYNTAX . 6-13
Source File . 6 - 1 5
Setup . 6-17
Address Space . 6-19
Address Descriptor . 6-2 1
Global Declaration . 6-23
Symbolic Register Name Declaration . 6-25
9OlOA Program . 6-27
Program Body . 6-29

. . .
1 1 1 (continued on page iv)

CONTENTS, continued

Local Declaration . 6-3 1
Binary Program . 6 - 3 3
Include Directive . 6 - 3 5

SETUP PARAMETERS . 6-37
Beep . 6 - 3 9
Bus Test . 641
Enable . 643
Exercise Errors . 645
Linesize . 647
Newline . 6 - 4 9
P o d . 6-5 1
Run UUT . 6 - 5 3
Stall/Unstall . 6 - 5 5
Timeout . 6-57
Trap . 6-59

SOlOA PROGRAM STATEMENTS 6-61
Atog . 6 - 6 3
Auto Test . 6-65 -
Aux . 667
Bus Test . 6 - 7 1
DPY . 6 - 7 3
Dtog . 6 - 7 7
Execute . 6-79
Goto . 6-8 1
I f . 6 - 8 3
IO Test . 6 - 8 5
Label . 6-87
Learn . 6-89
Probe . 6-9 1
RAM Test . 6 - 9 3
RAMP . 6 - 9 5
Read . 6 - 9 7
Reg . 6-99
Rept/ Loop . 6-101
ROM Test . 6-103
Run UUT . 6-105
stop . 6-107
Sync . 6-109
Unary . 6-111
Walk . 6-113 ‘-
Write . 6-115

(continued on page v) i v

CONTENTS, continued

APPENDICES

A Keywords . A-l
B Predehed Register Names . B-l
C Optional Keywords and Keyword Abbreviations C - l
D Default Setup Parameters . D-l
E Parameter Limits . E-l
F Error Messages . F-l

INDEX

vlvi

Section 1
Introduction

CONTENTS

Introduction to the 9010A Language Compiler
The Host Computer System . k-i
How the Compiler Works . l-5
Language Extensions . l-6
The 9010A Language Compiler Package 1 - 7

Disk Verification Program . l-7
Compiler . 1-7
File Transfer Program . l-7
Pod Data Files . l-8

Use With the 9005A . l-8

l-1/1-2

INTRODUCTION TO THE 9010A LANGUAGE COMPILER
The 9010A Language Compiler package is used to create test and
troubleshooting programs for the Fluke 9010A Micro-System
Troubleshooter.

The 9010A is an excellent tool for interactive troubleshooting, and
many users may want to take advantage of its power by writing
extensive test programs. While the 9010A itself is very convenient for
entering relatively short programs, it may be advantageous to create
and maintain large, elaborate, or complex programs using a host
computer’s editing and file management facilities. The 9010A
Language Compiler allows 9010A programs to be developed
conveniently on a host computer system and then transferred to the
9010A for execution.

l-3

Introduction

_-

THE HOST COMPUTER SYSTEM
The illustration shows the 9010A connected by an RS-232-C serial
interface to a host computer system. Fluke currently supports the
9OlOA Language Compiler on the following computer systems:

l Fluke 1720A and 1722A Instrument Controllers

0 Most 280 CP/M systems with 8-inch disk drives

l Kaypro II

l IBM Personal Computers (PC and XT)

-

Registered Trademarks:

z-80: zilog

CP/ M: Digital Research Inc.

Kaypro: Kaypro Corp.

IBM: International Business Machines

1-4

Introduction

HOW THE COMPILER WORKS
The 9010A is able to read and write test programs via its auxiliary RS-
232-C interface. The entire contents of the 9010A program memory,
including setup parameters and address space descriptors, are
transferred through the serial interface in a special hex data format.
The 9010A Language Compiler takes advantage of this ability of the
9010A to read programs in hex format.

The test programmer develops the test programs on the host computer
system in an ASCII source program form using the full power of the
editing and file storage capabilities of the host system. In this sense, a
9010A program on the host system is much like a program written in
any other programming language, such as BASIC, FORTRAN, or
Pascal.

Once the program has been written in source form, the 9010A
Language Compiler program converts the source program into the hex
format required for transfer to the 9010A.

The program is then transferred to the 9010A using a transfer program
that is supplied with the compiler package, and the hex format
program is read into Troubleshooter memory by pressing the AUX
I/F and READ keys on the 9010A.

1-5

Introduction

LANGUAGE EXTENSIONS
The 9010A Language Compiler accepts any program that can be
entered through the 9010A keyboard. In fact, the syntax of the 9010A
Language is compatible with program listings obtained from the
9010A using the AUX I/ F SETUP, AUX I/F LEARN, and AUX I/ F
PROGM commands described in the 9010A Operator Manual.

In addition to the standard 9010A commands, however, the 9010A
Language Compiler provides some powerful extensions. These
additional features are designed to make it much easier to develop and
maintain large 9010A programs. Some of the key features are:

0 Program Comments

l Keyword Abbreviations, Op-
tional Command Keywords,
and Shorthand Notation for
Unary Operators

l File Inclusion

0 Symbolic Names for Programs,
Labels, and Registers

Allows the test programmer to
incorporate documentation into
the program itself

Minimizes the typing required to
enter a test program on the host
system

Permits common programs to
be conveniently shared by many
source files, reducing the time
required to develop tes t
programs for new applications

Allow programs to be written
more clearly, making them
easier to understand and
maintain

l-6

introduction

i /?.

THE QOIOA LANGUAGE COMPILER PACKAGE
The 90 1 OA Language Compiler package consists of this manual and a
diskette that contains several programs and data files. The key
software elements of the package are as follows:

Disk Verification Program
The Disk Verification Program is a utility program that verifies the
integrity of compiler package files. This program is used to assure that
there are no files missing, that the files are not corrupted, and that they
are compatible versions.

Compiler
The compiler is a program that accepts the source file representation of
9010A programs, including setup parameters and address descriptors,
and produces a corresponding hex format file that can be read into the
9010A.

The compiler che;ks for coding errors in the source file and displays an
error message whenever an error is detected. If the source file contains
errors, then a hex file is not created.

In addition to the hex format output file, the compiler can produce a
listing file containing a modified copy of the source file. The listing file
can be requested in several optional formats that make the processing
performed by the compiler more visible to the test programmer.

File Transfer Program
The compiler package contains a utility program that is used to
transfer 9010A programs between the host system and the 9010A. The
primary purpose of the file transfer program is to transfer hex files
produced by the compiler to the 90 IOA for execution, but it can also be
used to transfer programs from the 9010A to the host system.

l-7

Introduction
9010A Language Compiler Package

Pod Data Files
Some of the Setup commands of the 9OlOA Language refer to
information that is specific to particular 9010A interface pods. Pod-
specific information includes the enableable forcing lines, bus test
address, and RUN UUT address.

The 9010A Language Compiler package contains a pod data file for
each interface pod currently available from Fluke. The pod data files
provide the information required by the compiler to process the pod-
specific Setup commands.

By simply creating new pod data files, the compiler can be updated to
accommodate new pods which are developed in the future.

USE WITH THE 9005A
Hex files that are produced by the 9010A Language Compiler are
compatible with the 9005A as well as the 9010A. However, programs
that are transferred from the host system to a 9005A cannot be edited
on the 9005A, nor can they be written to a cassette tape as they can with
a 9010A.

1 - 8

Section 2
How to Use This Manual

CONTENTS

Introduction . 2 - 3
Organization . 24
Suggested Use . 2-5

2-l/2-2

How to Use This Manual

INTRODUCTION
This manual is the reference source for the 9010A Language Compiler
and the 9010A Language. It is written with the assumption that the
reader is already familiar with the operation of both the 9010A Micro-
System Troubleshooter and the host computer system.

If you are not familiar with the 9010A, you should refer to the 9010A
Operator Manual and the 9010A Programming Manual and learn how
to use the 9010A before proceeding in this manual. Of course, if you are
not familiar with the host computer system, you should read the
instruction manuals provided with your system.

2-3

How to Use This Manual

ORGANIZATION
The 9OlOA Language Compiler User Manual is divided into the
following sections:

1. INTRODUCTION Introduces the 9OlOA Language
Compiler and the 9010A
Language and describes basic
features.

2. HOW TO USE THIS MANUAL Describes the sections of the
manual and recommends how
each section should be used.

3. GETTING STARTED Describes what you need to get
started using the 9010A
Language Compiler with your
particular computer.

4. WRITING PROGRAMS Gives an overview of the 9OlOA
Language and describes how to
create 9010A source files.

5. USING THE COMPILER Describes how to use the
compiler and the file transfer
program.

6. LANGUAGE REFERENCE Provides detailed information
on the 9010A Language syntax
in a quick-reference format.

APPENDICES A-F Provides other information
about the 9010A Language.

2-4

Section 5, Using the Compiler, provides information on how to use the
compiler and. the file transfer program. This will enable you to create
hex files and transfer them to the 9010A for execution.

Section 6, Language Reference, contains much of the same
information as Section 4, but the information is more detailed, and it is
organized to enable quick reference. This section is designed for use
when you are in the middle of a program and need specific syntax
information in a hurry.

How to Use This Manual

SUGGESTED USE
The sections in this manual appear in the order in which they are
intended to be read by a first-time user of the 9010A Language
Compiler. Section 1, Introduction, provides an overview of the
features of the 9010A Language Compiler. If you are a first-time user
of the compiler, the introduction gives you an idea of what to expect.

This section, How to Use this Manual, provides guidance in using the
manual so that you can quickly and correctly begin to use the 9010A
Language Compiler.

Section 3, Getting Started, provides you with the information you need
to get your new compiler running. Before attempting to use the
compiler, it is essential that you read this section thoroughly so that
you can avoid problems. Getting Started shows you how to set up your
host computer system and how to connect it to the 9010A.

Section 4, Writing Programs, uses explanations and examples to
introduce you to the 9010A Language and demonstrates how to create
9010A program source files. Everyone should read this section at least
once. When you become more familiar with the 9010A Language, you
will rely less on Section 4 and more on Section 6.

Appendices A through F provide detailed information about the
9010A Language. You will probably use the appendices for quick
reference after you have learned how to use the language.

2-5/2-6

901OA Language
Compiler

,/--

P

Section 3
Getting Started

CONTENTS

Introduction . 3 - 3
Fluke 1720A Instrument Controller . 34

Introduction . 3 - 4
What You Need . 34
Backing Up the Program Diskette . 3 - 4
Verifying the Working Diskette . 3 - 5
Hooking Up the System . 3 - 6
System Dependencies . 3 - 8

Test Editor .
Disk Space

i-i
-. .

Compiler Organization . 3 - 8
Fluke 1722A Instrument Controller . 3 - 9

Introduction . 3 - 9
What You Need .
Backing Up the Program Diskette -.

i-z

Verifying the Working Diskette . 3-10
Hooking Up the System . 3 - 1 0
System Dependencies . 3-12

Text Editor . 3-12
Disk Space . 3 - 1 2

IBM Personal Computer . 3 - 1 3
Introduction .
What You Need .

i-f:
-

Backing Up the Program Diskette . 3 - 1 4
Verifying the Working Diskette . 3 - 1 4
Hooking Up the System . 3 - 1 5
System Editor .
RETURN Key .

z-f:

3-l

CONTENTS, continued

CP/ M Operating Systems . 3 - 1 7
Introduction . 3 - 1 7
What You Need . 3 - 1 7
Backing Up the Program Diskette . 3 - 1 8
Verifying the Working Diskette . 3 - 1 8
Hooking Up the System . 3 - 1 9
Installing Software . 3-20
Editor . 3-20

-

3-2

Getting Started

INTRODUCTION
This section provides the information needed to set up your host
computer system to work with the 9010A Language Compiler. For
each version of the compiler, the following information is presented:

l What You Need Describes the hardware configuration
required to use the compiler package

l Backing Up the Provides the information needed to create
Program Diskette a working copy of the program diskette

l Hooking Up the
System

Describes how to connect the 9010A to the
host system and how to set the RS-232-C
serial interface parameters

l System Dependencies Presents other information that is unique
to a particular host system

You should carefully read the instructions that apply to your host
system. It is not necessary for you to read the material that relates to
other host systems.

3-3

Getting Started

FLUKE 1720A INSTRUMENT CONTROLLER
Introduction

The following information applies to the 1720A version of the 9010A
Language Compiler.

What You Need
The following equipment is needed in order to use the compiler
package:

1. Fluke 9005A or 9010A Micro-System Troubleshooter with
Option 9010A-001, RS-232-C Interface

2. Fluke 1720A Instrument Controller (Option 1720A-001,
128K-Byte E-Disk is recommended.)

3. Fluke Y1705 RS-232-C Null Modem Cable and Y1707 RS-
232-C Interface Cable

4 . 9010A-9209010A Language Compiler, 1720A/ 1722A Version

Backing Up the Program Diskette
The 9010A Language Compiler package consists of this manual and a
write-protected program diskette containing the compiler itself and
various other programs and data files.

Before using the compiler, you should make a copy of the program
diskette. This copy should be used for normal day-to-day operations,
while the original program diskette should be kept in a safe place as a
backup so that the working copy can be restored if it is ever damaged.

Complete instructions on how to copy diskettes can be found in the
1720A File Utility User Manual.

3-4

Getting Started
1720A Instrument Controller

Verifying the Working Diskette
Once you have created a working copy of the program diskette, you
should verify the integrity of its files by running VERIFY, one of the
programs included in the compiler package. To run the VERIFY
program, type

VERIFY (RETURN)

in response to the 1720A Console Monitor program prompt.

The VERIFY program checks the contents of the 1720A System
Device (SYO:) to verify the integrity of the Compiler package files. It
calculates a checksum for each of the files and compares it to the
checksum contained in the VERIFY.DAT file. VERIFY.DAT is an
ASCII file that contains a list of filenames and checksums for each of
the files in the compiler package.

Results from the VERIFY program are printed in tabular form as each
file is checked. Missing files or checksum errors (that could indicate
either corrupted files or incorrect version numbers) are reported. If
such problems occur, recopy the diskette and run the VERIFY
program again. If problems persist and you are unable to run any of the
programs, contact a Fluke Technical Service Center.

3-5

Gett ing Started
1720A Instrument Controller

Hooking Up the System
The 1720A must be connected to the 9010A whenever you want to
transfer the hex files produced by the compiler to the 9010A for
execution.

1 . Use an RS-232-C interface cable and an RS-232-C null modem
cable to connect the auxiliary interface of the 9010A to one of
the serial ports on the 1720A.

KBI: or KB2: can be chosen as the serial port on the 1720A.
XFER, the file transfer program described in Section 5,
Compiler Usage, allows you to specify the port name to be used
when transferring files to the 9010A.

Since XFER defaults to KBl:, it is more convenient to connect
the 9010A to KBl: if KBl: is not already being used for some
other purpose.

2. Set the RS-232-C auxiliary interface parameters on the rear
panel of the 9010A. Suggested settings are:

9600 baud (switch setting 7)
Parity: even
Data bits: 8
Stop bits: 1
Parity: on

9010A Setup parameter NEWLINE must be set to OOOOODOA
(the 9010A default value) for transferring files.

3. Set the parameters of the serial port on the 1720A to
correspond to those of the 9010A. SET, a 1720A system
program, is included on the program diskette for this purpose.
Refer to the 1720A Set RS-232-C Utility User Manual for a
complete description of how to use the SET utility.

3-6

Getting Started
1720A Instrument Controller

NOTE
The STALL option must be enabled on the 172OA tfanyfires
are to be transferredfrom the 901OA to the 1720A. This option
is not required tffiles are only transferred from the 1720A to
the 9010A.

Some early versions of the 1720A Set RS-232-C Utility
program do not implement the STALL option. Be sure to use
the Set RS-232-C Utility program that is contained in the
9010A Language Compiler package.

The End of Line character should be set to 10 and the End of
File character should be set to 26 (the 1720A default values).

The following example demonstrates how the SET utility can
be used to select the parameters that correspond to the above
9010A settings.

#SET
*KBl: BR 9600 DB 8 PB E SB 1 SI E SO E
* E X

Since the 1720A serial port parameters must be reestablished
every time the 1720A is turned on, you will probably want to
incorporate the necessary commands into a system command
file. The 1720A Floppy Disk Operating System User Manual
contains information on how this is done.

3 - 7

Getting Started
1720A Instrument Controller

System Dependencies
Text Editor

In order to create and maintain source files on the host system, a
general-purpose text editor is required. The Editor Accessory program
(filename ESX) is the recommended editor for use with the 1720A.

A copy of the Editor Accessory program is included on the program
diskette, and a copy of the Editor User Manual is included with the
compiler package.

Disk Space
After using the Editor or Compiler programs, it may be advantageous
to pack the disk contents, using the /P option in the 1720A File Utility
program, to provide as much free disk space as possible. Refer to the
1720A File Utility User Manual if you need help with packing the disk.

The message

?Read/ write past physical end of file

means that there was not enough contiguous disk space to create the
output files. Delete any unnecessary files, pack the disk, and try again.

Compiler Organization
The Compiler program is constructed of overlayed program segments,
some of which must be loaded during program execution. Therefore, if
the Compiler program is being used from a floppy disk, the disk must
remain in the disk drive while the program is running. Do not remove
the disk until the program is finished.

If the overlays are not available when needed, the fatal error message

!Unable to load overlay

will be displayed.

3 - 8

Getting Started

.-

FLUKE 1722A INSTRUMENT CONTROLLER

Introduction
The following information applies to the 1722A version of the 9010A
Language Compiler.

What You Need
The following equipment is needed in order to use the compiler
package:

1. Fluke 9005A or 9010A Micro-System Troubleshooter with
Option 9010A-001, RS-232-C Interface.

2. Fluke 1722A Instrument Controller.

3 . Fluke Y1705 RS-232-C Null Modem Cable and Y1707 RS-
232-C Interface Cable.

4. Fluke 9010A-920 9010A Language Compiler, 1720A/1722A
Version.

Backing Up the Program Diskette
The 9010A Language Compiler package consists of this manual and a
write-protected program diskette containing the compiler itself and
various other programs and data files.

Before using the compiler, you should make a copy of the program
diskette. This copy should be used for normal day-to-day operations,
while the original program diskette should be kept in a safe place as a
backup so that the working copy can be restored if it is ever damaged.

Complete instructions on how to copy diskettes can be found in the
1722A System Manual.

3-9

Getting Started
1722A Instrument Controller

Verlfying the Working Diskette
Once you have created a working copy of the program diskette, you
should verify the integrity of its files by running VERIFY, one of the
programs included in the compiler package. To run the VERIFY
program, type

VERIFY (RETURN)

in response to the 1722A FDOS prompt.

The VERIFY program checks the contents of the 1722A System
Device (SYO:) to verify the integrity of the compiler package files. It
calculates a checksum for each of the files and compares it to the
checksum contained in the VERIFY.DAT file. VERIFY.DAT is an
ASCII file that contains a list of filenames and checksums for each of
the files in .the compiler package.

Results from the VERIFY program are printed in tabular form as each
file is checked. Missing files or checksum errors (that could indicate
either corrupted files or incorrect version numbers) are reported. If
such problems occur, recopy the diskette and run the VERIFY
program again. If problems persist and you are unable to run any of the
programs, contact a Fluke Technical Service Center.

Hooking Up the System
The 1722A must be connected to the 9010A whenever you want to
transfer the hex files produced by the compiler to the 9010A for
execution.

1 . Use an RS-232-C interface cable and an RS-232-C null modem
cable to connect the auxiliary interface of the 9010A to the
serial port on the 1722A.

2 . Set the RS-232-C auxiliary interface parameters on the rear
panel of the 9010A. Suggested settings are:

9600 baud (switch setting 7)
Parity: even
Data bits: 8
Stop bits: 1
Parity: on

3-l 0

Getting Started
1722A Instrument Controller

The 9010A Setup parameter NEWLINE must be set to
OOOOODOA (the 9010A default value) for transferring files.

3. Set the parameters of the serial port on the 1722A to
correspond to those of the 9010A. The Set Utility program
(SET), a 1722A system program, is included on the program
diskette for this purpose. Refer to the 1722A System Manual
for a complete description of how to use the SET utility.

NOTE
The STALL option must be enabled on the 1722A ifany files
are to be transferredfrom the 9010A to the 1722A. This option
is not required iffiles are only transferred from the 1722A to
the 9010A.

The End of Line character should be set to IO and the End of
File character should be set to 26 (the 1722A default values).

The following example demonstrates how the SET utility can
be used to select the parameters that correspond to the above
9010A settings.

#SET
*KBl: BR 9600 DB 8 PB E SB 1 SI E SO E
* E X

Since the 1722A serial port parameters must be reestablished
every time the 1722A is turned on, you will probably want to
incorporate the necessary commands into a system command
file. The 1722A System Manual contains information on how
this is done.

3-11

Gett ing Started
1722A Instrument Controller

System Dependencies
Text Editor

In order to create and maintain source files on the host system, a
general-purpose text editor is required. The Editor Accessory program
(filename EDIT) is the recommended editor for use with the 1722A.

A copy of the Editor Accessory program is included on the program
diskette, and instructions for using the editor are included as an
Addendum to this manual.

Disk Space
After using the Editor or Compiler programs, it may be advantageous
to pack the disk contents, using the /P option in the 1722A File Utility
program, to provide as much free disk space as possible. Refer to the
1722A System Manual if you need help with packing the disk.

The message

?Read/ write past physical end of file

means that there was not enough contiguous disk space to create the
output files. Delete any unnecessary files, pack the disk, and try again.

3-l 2

Getting Started

IBM PERSONAL COMPUTER
Introduction

The following information applies to the IBM Personal Computer
(PC) version of the 9010A Language Compiler.

What You Need
The following equipment is needed in order to use the compiler
package:

1. 9005A or 9010A Micro-System Troubleshooter with Option
9010A-001 RS-232 Interface.

2 . IBM Personal Computer (model PC or XT) with:

a. A monochrome or color display.

b . Version 1.1 or 2.0 of the IBM DOS Operating System.

c . At least 128 K bytes of RAM.

d . A disk drive. We recommend using two disk drives or a
fixed Winchester technology disk drive.

e. An RS-232-C interface.

3 . Fluke Y 1705 RS-232-C Null Modem Cable and Fluke Y 1707
RS-232-C Interface Cable.

4. Fluke 9010A-923 9010A Language Compiler (IBM PC
version).

3-13

Getting Started
IBM Personal Computer

Backing Up the Program Diskette
The 9010A Language Compiler package consists of this manual and a
write-protected program diskette containing the compiler itself and
various other programs and data files.

Before using the compiler, you should make a copy of the write-
protected program diskette. This copy is used for normal day-to-day
operations, while the original program diskette should be kept in a safe
place as a backup so that the working copy can be restored if it is ever
damaged.

Complete instructions on how to copy diskettes can be found in the
IBM Disk Operating System (DOS) User Manual.

Verifying the Working Diskette
Once you have created a working copy of the program diskette, you
should verify the integrity of its files by running VERIFY, one of the
programs included in the compiler package. To run the VERIFY
program, put the working diskette in drive a: and then type

a:VERIFY (RETURN)

in response to the IBM system prompt.

The VERIFY program checks the contents of the copy to verify the
integrity of the compiler package files. It calculates a checksum for
each of the files and compares it to the checksum contained in the
VERIFY.DAT file. VERIFY.DAT is an ASCII file that contains a list
of filenames and checksums for each of the files in the compiler
package.

Results from the VERIFY program are printed in tabular form as each
file is checked. Missing files or checksum errors (that could indicate
either corrupted files or incorrect version numbers) are reported. If
such problems occur, recopy the diskette and run the VERIFY
program again. If problems persist and you are unable to run any of the
programs, contact a Fluke Technical Service Center.

3-14

Getting Started
IBM Personal Computer

Hooking Up the System
The IBM PC must be connected to the 9010A whenever you want to
transfer the hex files produced by the compiler to the 9010A for
execution.

1. Use an RS-232 interface cable and an RS-232 null modem
cable to connect the auxiliary interface of the 9010A to a serial
port on the IBM PC.

2 . Set the RS-232 auxiliary interface parameters on the rear panel
of the 9010A. Suggested settings are:

2400 baud (switch setting 5)
Parity: On
Data bits: 8
Stop bits: 1
Parity: Even

3. Set the parameters of the serial port on the IBM PC to
correspond to those of the 9010A.

You may use the IBM MODE command to configure the serial
port.

Refer to the IBM instruction manuals for help.

4 . The NEWLINE setup parameter should be set to 1OOOODOA
for transferring files. If transmission errors occur, it may be
necessary to change the timing delay to a larger value. See the
9010A Operator Manual for more information.

5 . The 9010A setup parameters STALL and UNSTALL should
be set to 13 and 11 respectively(the9010A default values) when
transferring files.

3-l 5

Getting Started
IBM Personal Computer

System Editor
In order to create and maintain source files on the host system, a
general-purpose text editor is required. Any general-purpose editor
may be used with 9010A language source files.

RETURN Key
References to the RETURN key in this manual refers to the

key on the IBM Personal Computers.

3-l 6

Getting Started

CPM OPERATING SYSTEMS
Introduction

The following information applies to the version of the 9010A
Language Compiler for CP/ M systems.

CP/ M (Control Program for Microcomputers) is a product of Digital
Research, Inc. It is a general-purpose operating system that runs on a
wide variety of host computers.

What You Need
The following equipment is needed in order to use the compiler
package with a host computer running the CP/ M operating system:

1 . 9005A or 9010A Micro-System Troubleshooter with Option
90 lOA- 1 RS-232 Interface

2 . CP/M compatible 280 based host computer system with:

a . At least one eight-inch IBM 3740 format disk drive. We
recommend using two disk drives.

b . Standard CP/ M Operating System software (version 2.2).

c. An RS-232-C interface.

3. An RS-232-C Interface Cable suitable for connecting your
host computer system to the 9010A. For example, use a Fluke
Y 1709 RS-232-C Interface Cable to connect a Kaypro II
Personal Computer to a 9010A.

4. Fluke 9010A-921, the version of the 9010A Language
Compiler package for CP/M on eight inch disks, or 9010A-
922, the version for the Kaypro II Personal Computer with
CP/M on a 5-l/4 inch disk.

3-17

Getting Started
CP/M Operating Systems

Backing Up the Program Diskette
The 9010A Language Compiler package consists of this manual and a
write-protected program diskette containing the compiler itself and
various other programs and data files.

Before using the compiler, you should make a copy of the write-
protected program diskette. This copy is used for normal day-to-day
operations, while the original program diskette should be kept in a safe
place as a backup so that the working copy can be restored if it is ever
damaged.

Verifying the Working Diskette
Once you have created a working copy of the program diskette, you
should verify the integrity of its files by running VERIFY, one of the
programs included in the compiler package. To run the VERIFY
program, type

(VERIFY RETURN>

in response to the CP/M system prompt.

The VERIFY program checks the contents of the copy to verify the
integrity of the compiler package files. It calculates a checksum for
each of the files and compares it to the checksum contained in the
VERIFY.DAT file. VERIFY.DAT is an ASCII file that contains a list
of filenames and checksums for each of the files in the compiler
package.

Results from the VERIFY program are printed in tabular form as each
file is checked. Missing files or checksum errors (that could indicate
either corrupted files or incorrect version numbers) are reported. If
such problems occur, recopy the diskette and run the VERIFY
program again. If problems persist and you are unable to run any of the
programs, contact a Fluke Technical Service Center.

3-l 8

Getting Started
CP/M Operating Systems

Hooking Up the System
The host computer must be connected to the 9010A whenever you
want to transfer the hex files produced by the compiler to the9010A for
execution.

1. Use an RS-232 interface cable to connect the auxiliary
interface of the 9010A to a serial port on the host computer.

2 . Set the RS-232 auxiliary interface parameters on the rear panel
of the 9010A. Suggested settings are:

9600 baud (switch setting 7)
Parity: Even
Data bits: 8
Stop bits: 1
Parity: on

3 . The NEWLINE setup parameter should be set to 1OOOODOA
for transferring files. If transmission errors occur, it may be
necessary to change the timing delay to a larger value. See the
9010A Operator Manual for more information.

4 . The 9010A setup parameters STALL and UNSTALL should
be set to 13 and 11 respectively (the 9010A default values) when
transferring files.

5 . Set the parameters of the serial port on the host computer to
correspond to those of the 9010A.

Refer to Installing Software in this section for further
information on setting the RS-232 parameters.

3-19

Getting Started
CP/M Operating Systems

Installing Software
On CP/M systems, the File Transfer utility program (XFER) uses
information from a data file for configuring RS-232-C transfers. This
file, CONFIG.PRT, is automatically created for each system the first
time that the File Transfer program is used.

The program will prompt for information about RS-232-C port
parameters, and use the information that you enter to create the data
file on the system default disk.

Refer to the host computer‘s instruction manuals if you need further
information to answer the prompts.

Once the CONFIG.PRT data file is available on the disk, it will
automatically be used for subsequent file transfers with the XFER
program. This file contains port status and data addresses, an optional
baud rate address, and SIO initialization bytes.

To change the RS-232-C configuration in the CONFIG.PRT file, use
the Configure option (C) in the File Transfer program. The prompts
will be repeated to allow you to redefine the configuration.

Note that the CONFIG.PRT file will be created on the system default
device. The system disk must not be write-protected at this time.

Editor
In order to create and maintain source files on the host system, a
general-purpose text editor is required. Any general-purpose editor
may be used with 9010A Language source files.

3-20

Section 4
Writing Programs

CONTENTS

Introduction . 4 - 3
Part 1: General Program Format . 4 4

Introduction . 4-4
Important Details . 4 - 5
Program Comments . 4 - 7
90 1 OA Programs . 4 - 8
Address Space Information . 4 - 8
Setup Information . 4-9
Pod Data Files . 4-l 1
9010A/Pad Interaction . 4-12
Sample Program . 4-13

Part 2: Coding Shortcuts . 4-16
Introduction . 4-16
Optional Keywords and Keyword Abbreviations 4-17
Unary Operator Shorthand . 4-18
Default Entries . 4-l 8
File Inclusion . 4-19
Sample Program . 4-20

Part 3: Symbolic Names . 4-22
Introduction . 4-22
Symbolic Program Names . 4-24
Symbolic Labels . 4-26
Symbolic Register Names . 4-28
Predefined Register Names . 4-29
Sample Program . 4-30

4-l/4-2

Writing Programs

INTRODUCTION
This section provides the information you need to write programs for
the 9010A Language Compiler. The section is divided into three parts.
Each part is self-contained and describes increasingly more advanced
features of the 9010A Language.

The three parts cover the following topics:

PART 1: GENERAL PROGRAM Describes how to write simple
FORMAT programs using the standard

features of the 9010A
Language

PART 2: CODING SHORTCUTS Introduces some extended
features of the 9010A
Language which reduce the
amount of typing required to
enter programs

PART 3: SYMBOLIC NAME Allows programs to be made
more readable and easier to
maintain by using mnemonic
names for programs, labels,
and registers

The best way to learn the 9010A Language is to start by reading
through Part 1 of this section, and then skip directly to Section 5, Using
the Compiler. You should use the compiler to compile the example
programs provided in Part 1, and then try writing some simple
programs of your own.

Once you feel comfortable with the concepts covered in Part 1, you can
return at any time to this section and proceed with the more advanced
concepts covered in the remaining parts. The compiler can be used
productively at any of the three levels.

4-3

Writing Programs

PART 1: GENERAL PROGRAM FORMAT
Introduction

The 9010A Language Compiler allows you to create source files
identical to those that the 9010A AUX I/F functions send via the RS-
232-C auxiliary interface. These files can contain the entire contents of
the 9010A memory - not only 9010A programs but also any available
address space and setup information.

In source files for the 9010A Language Compiler, address space
information, setup information, and programs are described in
separate blocks. These blocks are identified with compiler keywords,
such as SETUP INFORMATION. This section provides information
about using the various blocks and shows some sample source files.

In the 9010A language, program statements use an expanded syntax to
take advantage of the flexibility of the host system text editor and to
provide enhanced readability. Program lines may contain comments
and symbolic names. More information about source files and
program lines is found throughout this section. Section 6, Language
Reference, contains detailed information on the syntax and usage of
each 9010A program statement.

The following is an example of a short source file containing two valid
9010A programs and no address space or setup information:

PROGRAM 0

DPY-THIS IS AN EXAMPLE

EXECUTE PROGRAM 10

DPY-OF A VALID 9010A PROGRAM

PROGRAM 70

REGl = 40

0: LABEL 0

DEC REGl

IF REGl > 0 GOT0 0

4-4

Writing Programs
General Program Format

Important Details
When writing programs for the 9010A Language Compiler on your
computer, you will find that it is necessary to pay attention to some
details that you could ignore when entering programs using the9010A
keyboard. These important rules are:

Each 9010A statement must be on a separate line. Continuation
lines are not allowed.

A statement may begin in any column.

Spaces and tabs are ignored, except when they occur in DPY or
AUX statements.

Blank lines are ignored.

Adjacent keywords, symbolic names (described in Part 3 of this
section), and numbers must be separated by at least one space.

EXAMPLES:

VALID INVALID

READ PROBE READPROBE

DTOG @ lOOF = 80 BIT 7 DTOG @ lOOF = 80 BIT7

Uppercase and lowercase characters can be used interchangeably.

EXAMPLE:

The following program statements are all equivalent:

WRITE @ 1OOFA = 1

write @ 1OOfa = 1

Write @ 1OOFA = 1

4-5

Writing Programs
General Program Format

l In a few cases, the 9010A Language does not correspond exactly to
the keys that would be pressed if the program were being entered
on the 9010A keyboard.

For example, INC REGS is a legal statement accepted by the
compiler. However, the keystrokes used to create this statement on
the 9010A are INC 5, which would not be accepted by the compiler.

As another example, REGA = REGA INC is a legal statement
accepted by the compiler, but the keystrokes used to create this
statement on the 9010A are REG A INC, which would not be
accepted.

l In general, the keywords of the 9010A Language are not identical
to the wording that appears on the 9010A keyboard.

For example:

KEYBOARD 9010A LANGUAGE

DISPL DPY

COMPL CPL

RPEAT REPT

TOGGL DATA DTOG

In all cases, however, the keywords accepted by the compiler are
compatible with listings produced by the 9010A through the RS-
232-C auxiliary interface.

4-6

Writing Programs
General Program Format

Program Comments
The 9010A Language Compiler allows you to add comments to your
programs, making the programs more readable and easier to maintain.

The rules for using comments are:

l Comments start with an exclamation point (!), and they extend to
the end of the line.

l A comment can be on the same line as a 9010A statement, or it can
be on a separate line.

l If a comment extends over several lines, each line must begin with
an exclamation point.

l A comment cannot be placed in the middle of a 9010A statement.

EXAMPLE:

! This example demonstrates the use of comments.

PROGRAM 0 ! Main program

DPY-THIS IS AN EXAMPLE ! DPY statements can have comments

EXECUTE PROGRAM 10 ! Execute the delay routine

DPY-OF A VALID 901OA PROGRAM

PROGRAM 10 ! Delay routine

REGl = 40

0: LABEL 0
DEC REGl

IF REGl > 0 GOT0 0

! Initialize REGl with delay count

! Count down to zero

4 - 7

Writing Programs
General Program Format

901 OA Programs
The 9010A Language allows programs to be specified in the same form
that would be produced by the 9010A AUX I/F PROGM keys. By
connecting a printer to the auxiliary interface of the 9010A, you can
obtain formatted listings of your 9010A programs. These listings can
serve as examples of acceptable syntax.

Address Space Information
The 9010A Language allows address space information to be specified
in the same form that would be produced by the 9010A AUX I/F
LEARN keys.

The following rules apply to address space information:

l The address space information must appear at the beginning of the
source file, preceding all 9010A programs (i.e., before the first
PROGRAM statement).

Up to 100 address descriptors may be specified. -

EXAMPLE:

! This is an example of a source file containing

! UUT memory map information

ADDRESS SPACE lNFORMAT/ON

RAM @ COOO-FFFF

ROM @ 0000-IFFF S/G 0295

ROM @ 2000-3FFF SIG C262

PROGRAM 0

RAM SHORT

ROM TEST

4-8

Writing Programs
General Program Format

Setup Information
The 9010A Language allows any or all of the setup parameters to be
specified in the same form produced by the 9010A AUX I/F SETUP
keys.

The 9010A setup functions allow the operator to control the reporting
of UUT errors, enable microprocessor lines, and specify operating
parameters. The 9010A Operator Manual contains complete
information on the various setup parameters that can be specified.

The following rules apply to setup information:

l Setup information must appear at the beginning of the source file,
preceding all 9010A programs (i.e., before the first PROGRAM
statement). The setup information may appear either before or
after any address space information.

l You can specify all of the setup parameters, some of them, or none
of them. Setup parameters that are not explicitly set assume default
values contained in the pod data file (if a pod data file is specified),
or to the power-up values supplied by the 9010A.

l Some setup information is pod-dependent. The pod-unique
information includes enableable forcing lines, the default bus test
address, and the RUN UUT address. If any of your 9010A
programs depend upon the pod-unique features (i.e., a forcing line
needs to be disabled or a RUN UUT must be performed at the
pod‘s default address, then the appropriate Pod Data file needs to
be included in the source file. To do this, an INCLUDE statement
is used to specify the correct Pod Data file:

INCLUDE “podname.POD”

This statement must appear before the setup information in the
source file.

EXAMPLE:

INCLUDE “8086.POD”

4-9

Writing Programs
General Program Format

The INCLUDE statement is described in Part 2 of this section. Pod
data files are described below.

l A POD statement should be placed in the setup section if any of the
programs depend upon pod-unique features.

EXAMPLE:

INCLUDE “8086.POD”

SETUP INFORMATION

POD - 8086
TRAP ACTIVE FORCE LINE/NO

TRAP ACTIVE INTERRUPT-YES

-

4-10

Writing Programs
General Program Format

Pod Data Files
The 9010A Language Compiler program diskette contains a collection
of files with names like 8086.POD, 68000.POD, etc. These files contain
pod-specific definitions for enableable forcing lines, bus test address 1
(BUSADR), and RUN UUT address (UUTADR). If you want to
specify any of the pod-specific setup parameters, you should merge the
appropriate pod data file into your source file by using an INCLUDE
statement. The INCLUDE statement must appear before the SETUP
INFORMATION section.

Pod-specific forcing lines are defined in the pod data file. The pods
equate each of the forcing lines to a bit in an enable mask.

For example, the definitions for an 8086 pod are shown below:

! Each of the enableable forcing lines must be defined as the

! appropriate bit in the enable mask.

FORCELN READY = 0

FORCELN HOLD = 1
FORCELN INTR = 3

BUSADR = 0000

UUTADR = FFFFO

! READY is bit 0 in the enable mask

! HOLD is bit 7 in the enable mask

! INTR is bit 3 in the enable mask

! BUSADR is the pod’s default BUS TEST
! address
! UUTADR is the pod’s default RUN UUT

! address

! Other definitions can follow

4-11

Writing Programs
General Program Format

9010A/Pad Interaction
Setup information takes effect immediately upon loading a new hex
file into the 9010A (whether through READ TAPE or AUX I/F
READ). An interaction takes place between the 9010A and the
interface pod when the hex file is loaded and setup information may be
changed to the default setting of the pod if:

1 . The pod name was not specified with a POD statement in the
setup section, or

2 . A different pod is connected to the 9010A while the hex file is
being loaded into the 9010A.

To avoid changing the parameters in pod-dependent programs:

1 . An INCLUDE statement must be used in the setup section of
the source program to include information from the
appropriate Pod Data file.

2. A POD statement must be used in the setup section of the
source program to identify which pod is being used.

3 . The correct pod (or no pod) must be connected to the 9010A
when downloading a compiled hex file.

4-12

Writing Programs
General Program Format

/--

Sample Program
The following sample source file illustrates the concepts introduced in
Part 1. This example can be used as a basis for writing your own 9010A
programs. Before continuing to Part 2, you may wish to copy this
program using your host computer and transfer it to your 9010A as an
exercise.

Section 5, Using the Compiler, shows how to run the compiler and
transfer the generated hex files to the 9010A.

Once you feel comfortable using the compiler at this level, you should
proceed with Part 2, which introduces some extended features that
simplify the task of writing larger test programs.

! This program tests the tJ52 flip-flop on the output side

! of the 8255 P/A on the NEC TK-BOA single-board computer.

INCLUDE “808O.POD”

SETUP INFORMATION

POD - 8080
TRAP ACTIVE FORCE LINE-NO

TRAP ACTIVE INTERRUPT-YES

ADDRESS SPACE INFORMATION ! Note: this address space information

RAM @ 8COO-8FFF ! is not actually used by the

ROM @ 0000-07FF SIG F77C ! program, but the descriptors

II0 @ lOOF8-1OOFA BITS FF ! will be loaded into the 901OA

PROGRAM 0 ! Main program

WRITE @ 1OOFB = 80
0: LABEL 0

REGP = A

REG8 = lAO9

! Configure PIA for output
! Set up entry

! Set up 10 stimulus loops

! Store U52 - pin9 for prompt

EXECUTE PROGRAM 3

EXECUTE PROGRAM 1

IF REG8 = 1 GOT0 1

DPY-TESTING U52#
READ PROBE

! Prompt for probe placement
! Detect probe placement

! Branch on open node

! Display - Testing tJ52
! Clear probe data register

4-13

Writing Programs
General Program Format

2: LABEL 2 ! Stimulus loop

WRITE @ 1OOFA = 1 ! Set flip flop D input high

DTOG @ lOOF = 80 BIT 7 ! Toggle Nip flop

WRITE @ 7OOFA = 0 ! Set flip flop D input low
DTOG @ lOOF = 80 BIT 7 ! Toggle again

DEC REGP !

IF REGP > 0 GOT0 2 ! Loop for 70 tries

EXECUTE PROGRAM 2 ! Extract probe data
IF REG8 = A GOT0 3 ! Branch on probe count = 10

DPY-U52 TOGGLING IMPROPERLY# ! Display bad toggle

GOT0 4 ! Exit

1: LABEL 1 ! Open node loop

DPY-WAS PROBE IN PLACE++ ?1 ! Query

IF REGl = 0 GOT0 0 ! Branch if probe not ready

DPY-U52 OPEN# ! Display - U52 bad
GOT0 4 ! Exit

3: LABEL 3

DPY-U52 TEST PASSED#
4: LABEL 4

! Device passed

! End

PROGRAM 1 ! Program to detect probe placement

SYNC FREE-RUN

0: LABEL 0
REGl = 50

REGP = 20

! Set counts

! Open count = 50

! Debounce count =20

7: LABEL 1 ! Open loop
READ PROBE ! Gather level information

IF REGO AND 5000000 z=- 0 GOT0 2 ! Branch on bounce /eve/

DEC REGl ! Decrement open count

IF REGl > 0 GOT0 1 ! Loop if count > 0

REG8 = 1 ! Set Open Node flag

GOT0 3 ! Exit

2: LABEL 2 ! Debounce loop

DEC REGP ! Decrement debounce count

READ PROBE ! Gather level information again

IF REGO AND 5000000 = 0 GOT0 0 ! Branch on open level

IF REGP > 0 GOT0 2 ! Loop if count > 0

REG8 = 0 ! Set Begin Test flag

3: LABEL 3 ! End

4-14

-

Writing Programs
General Program Format

PROGRAM 2 ! Program to extract the probe data

READ PROBE ! Gather probe information

REG8 = REGO AND 7F ! Extract count

REG9 = REGO SHR SHR SHR SHR SHR SHR SHR SHR AND FFFF! Extract Sig.

REGA = REGO SHR SHR SHR SHR SHR SHR SHR SHR
REGA=REGASHRSHRSHRSHRSHRSHRSHRSHR

REGA = REGA SHR SHR SHR SHR SHR SHR SHR SHR AND 7 ! Extract level

PROGRAM 3 ! Program to prompt the operator

REGP = REG8 AND 7F ! Register 2 = pin number

REGl = REG8 SHR SHR SHR SHR SHR SHR SHR AND 7F! Rl = Device num.

DPY-PROBE U@l PIN @2# ! Prompt for probe placement

4-l 5

Writing Programs

PART 2: CODING SHORTCUTS
Introduction

The 9010A Language is designed to be compatible with the formatted
listings produced by the AUX I/F keys on the 9010A. In this format,
you may find that some statements require much more typing than
would be required to enter the same statement through the 9010A
keyboard.

To make it easier to enter large programs on the host system, the 9010A
Language Compiler provides several features which reduce the
amount of typing required. These features are:

l Optional Keywords and Keyword Abbreviations

l Unary Operator Shorthand

l Default Entries

l File Inclusion

4-l 6

Writing Programs
Coding Shortcuts

Optional Keywords and Keyword Abbreviations
The 9010A Language provides the option of abbreviating certain
keywords or leaving them out entirely. Appendix C, Optional
Keywords and Keyword Abbreviations, contains a complete list of the
optional keywords and valid abbreviations. Furthermore, the syntax
diagrams in Section 6, Language Reference, indicate the abbreviated
form of each statement in the language.

EXAMPLES:

STATEMENT ABBREVIATED FORM

EXECUTE PROGRAM 5 EXECUTE 5

o r

E X 5

WRITE @ lOOFF = 25 WRITE IOOFF = 25

o r

WR lOOFF = 25

3: LABEL 3

SYNC ADDRESS

3:

S Y N C A

o r

3: SYNC A

4-l 7

Writing Programs
Coding Shortcuts

Unary Operator Shorthand
For multiple applications of a unary operator(INC, DEC, CPL, SHL,
or SHR), you may specify the unary operator followed by a decimal
number indicating how many times it is to be applied.

EXAMPLE:

statement

REGl = REGO SHR SHR SHR SHR SHR SHR SHR AND 7F

be abbreviated to

REG7 = REGO SHR 7 AND 7F

Default Entries
When programs are created through the 9010A keyboard, many of the
entries in a program step can be defaulted to the appropriate dedicated
register by pressing the ENTER key. -

For example, to create the statement READ @ REGF, you need only
press the READ and ENTER keys on the 9010A. The read address
automatically defaults to REGF.

Similarly, if the WRITE and ENTER keys are pressed on the 9010A,
the write address automatically defaults to REGF, and the data to be
written defaults to REGE.

The 9010A Language provides a similar default capability. You can
use an asterisk (*) to indicate that an entry should default to a
dedicated register. The syntax diagrams in Section 6, Language
Reference, indicate which entries can be defaulted in this way.

EXAMPLES:

STATEMENT DEFAULT FORM

READ REGF READ *

WRITE REGF = REGE WRITE * = *

4-l 8

Writing Programs
Coding Shortcuts

File Inclusion
To facilitate handling large collections of source code which can be
shared by several programs, the 9010A compiler provides a fiie
inclusion feature. This feature allows you to create a library of useful
9010A programs and use the file inclusion facility to merge them into a
particular source file.

A line of the form

INCLUDE “filename”

in the source file will be replaced by the contents of the file “filename”
when the program is compiled. The effect is equivalent to manually
entering the contents of the included file at that point in the source file.

EXAMPLE:

Assuming that the file PR0MPT.S contains

PROGRAM 3

REGP = REGt3 AND 7F

REG7 = REG8 SHR 7 AND 7F
DPY-PROBE U@l PIN @2#

then the source file

PROGRAM 0

REG8 = 1AO9

EXECUTE PROGRAM 3

INCLUDE “PROMPTS”

have exactly the same effect as the source file

PROGRAM 0

REG8 = lA09
EXECUTE PROGRAM 3

PROGRAM 3

REGP = REG8 AND 7F

REG7 = REG8 SHR 7 AND 7F
DPY-PROBE U@l PIN @2#

4-l 9

Writing Programs
Coding Shortcuts

Sample Program
The following example is similar to the one given at the end of Part 1,
but it takes full advantage of the abbreviation features. The example
assumes that the file PROBEIS contains the code for PROGRAM 1,
PROBE2.S contains PROGRAM 2, and PR0MPT.S contains
PROGRAM 3.

! This program tests the U52 flip-flop on the output side

! of the 8255 PIA on the NEC TK-BOA single-board computer.

INCLUDE “808O.POD”

SETUP

POD - 8080

! Equivalent to SETUP INFORMATION

TRAP ACTIVE FORCE LINE NO

TRAP ACTIVE INTERRUPT YES

! - in SETUP statements is optional

ADDRESS SPACE

RAM 80%8FFF

ROM 0000-07FF SIG F77C

II0 lOOF8-1OOFA BITS FF

! @ omitted

PROGRAM 0

! WRITE abbreviated to WR

! Same as EXECUTE PROGRAM 3

IF REG8 = 1 GOT0 7

DPY TESTING U52#

PROBE
2 : WR 7OOFA = 7 ! Short form of LABEL statement

DTOG 7OOF9 = 80 BIT 7

WR 1OOFA = 0

WR 1OOFB = 80

0: REGP = A

REG8 = 1A09
O E X 3

EX 7

DTOG lOOF = 80 BIT 7

DEC REGP

IF REGP > 0 GOT0 2
EX 2

IF REG8 = A GOT0 3

DPY U52 TOGGLING IMPROPERLY# ! - is optional in DPY statement -

GOT0 4

4-20

Writing Programs
Coding Shortcuts

1: DPY WAS PROBE IN PLACE# ?7

IF REGI = 0 GOT0 CJ

DPY lJ52 OPEN#

GOT0 4
3: DPY lJ52 TEST PASSED#

4 :

INCLUDE “PROBE1.S”

INCLUDE “‘PROBE2.S”

INCLUDE “PROMPTS”

! Code for PROGRAM 1 isinsertedhere

! PROGRAM 2

! PROGRAM 3

-

4-21

Writing Programs

PART 3: SYMBOLIC NAMES
lntroductlon

The 9010A Language allows programs, labels, and registers to be
referred to by symbolic names. For example, the statement

EXECUTE PROGRAM 5

could be replaced by something more meaningful, such as

EXECUTE PROGRAM DELAY

Symbolic names can contribute greatly to the readability of programs,
allowing the programs to be self-documenting to a large degree.

The following rules apply to symbolic names:

Symbolic names must begin with a letter, and they can contain any
number of letters, digits, and underscore characters (-).

Only the first eight characters of a name are significant. For
example, TESTMENUl AND TESTMENU are treated as
identical names.

9010A Language keywords, such as LOOP, READ and
PROGRAM, cannot be used as symbolic names. For example,
although LOOP cannot be used as a symbolic label name, LOOP1
is acceptable.

Appendix A contains a complete list of the 9010A Language
keywords. Using a keyword as a symbolic name causes the
compiler to issue a SYNTAX ERROR message.

Symbolic names must contain at least one letter other than A, B, C,
D, E, or F so that they can be distinguished from hexadecimal
constants. This means that words like BAD, ACE, or FADE
cannot be used as symbolic names because the compiler will
interpret them as hex constants. Using a hex constant as a symbolic
name causes the compiler to issue a SYNTAX ERROR message.

4-22

Writing Programs
Symbolic Names

l Symbolic names can be used anywhere that the corresponding
actual program number, register number, or label number can
occur in a 9010A program.

Forward references are permissable for program names and label
names. In other words, an EXECUTE or GOT0 statement using a
symbolic name is allowed to appear either before or after
corresponding PROGRAM or LABEL statements.

Register names may appear in DPY and AUX statements.

l Symbolic names are case-insensitive. For example, a name can be
declared in uppercase and referenced in lowercase, and names can
be a mixture of uppercase and lowercase letters.

4-23

Writing Programs
Symbolic Names

Symbolic Program Names
9010A Language allows programs to be referred to by name as well as
by number. By choosing descriptive program names, you can make
your programs much more readable and maintainable.

Symbolic program names do not need to be declared explicitly. Simply
using a name in a PROGRAM statement or in an EXECUTE
statement is sufficient to define that symbolic program name.

The compiler assigns sequential program numbers to symbolically-
named programs, starting with PROGRAM 0 for the first program in
the source file. Each time a symbolic PROGRAM statement is
encountered, the next sequential program number is assigned to it. A
source file can contain any combination of programs with actual
program numbers and programs with symbolic names.

NOTE
EXECUTE statements can appear either before or after the
PROGRAM statement. They do not have any effect on the
sequence of program numbers assigned to symbolic program
names.

Whenever the compiler encounters a program in the source file with an
actual program number rather than a symbolic name, then subsequent
symbolic program names are assigned program numbers that follow
sequentially from the given program number.

4-24

EXAMPLE:

PROGRAM 5

PROGRAM PA

PROGRAM PB

PROGRAM 20

PROGRAM PC

! Compiled as PROGRAM 5

! Compiled as PROGRAM 6

! Compiled as PROGRAM 7

! Compiled as PROGRAM 20

! Compiled as PROGRAM 21

Writing Programs
Symbolic Names

The following rules apply whenever a source file contains programs
with actual program numbers:

l Programs with actual program numbers must be in numeric order
in the source file. For example, PROGRAM 5 must precede
PROGRAM 20.

l There must be a large enough gap between two programs with
actual program numbers for any intervening programs with
symbolic names. For example, if the source file contains a
PROGRAM 8 and a PROGRAM 11, PROGRAM 8 must precede
PROGRAM 11 and there can be at most two symbolically-named
programs between them.

EXAMPLE:

! This example demonstrates the use of symbolic program names

! The compiler will assign PROGRAM 0 to MAIN and

! PROGRAM 7 to DELAY

PROGRAM MAIN

DPY-THIS IS AN EXAMPLE

EXECUTE DELAY

DPY-OF A VALID 901OA PROGRAM

PROGRAM DELAY

REGl = 40

0: DEC REG7
IF REGl > 0 GOT0 0

4-25

Writing Programs
Symbolic Names

Symbolic Labels
The symbolic label feature allows you to refer to a branching location
with a mnemonic name, providing the same advantages as symbolic
program names.

The following rules apply to symbolic labels:

Symbolic label names are not declared explicitly. Simply using a
name as the target of a GOT0 or in a LABEL statement is
sufficient to define a symbolic label name.

Within a single program, symbolic label names cannot be mixed
with hexadecimal label numbers. A source file may contain a
mixture of hexadecimal and symbolic labels, but within a given
program all labels must be either hexadecimal or symbolic.

Symbolic labels are local to the program in which they appear. This
means that it is possible to have duplicate label names in different
programs without conflict. -

Each program is limited to 16 label definitions, even if the labels are
referred to symbolically.

Within a given program, the compiler assigns hexadecimal labels
to symbolic label names sequentially, starting at 0. The assignment
is made upon the first appearance of the label, whether it is a
LABEL statement or the target of a GOT0 statement.

4-26

Writing Programs
Symbolic Names

EXAMPLE:

PROGRA h-4 FIND

SEARCH:

READ @ REGl
INC REGl

! Label 0 will be assigned to SEARCH

IF REGE = REG3 GOT0 FOUND ! Label 1 will be assigned to FOUND

IF REGl Z= REGP GOT0 NOTFOUND ! L a b e l 2 w i l l b e a s s i g n e d t o
NOTFOUND

GOT0 SEARCH

NOTFOUND:

.--

FOUND:

4-27

Writing Programs
Symbolic Names

Symbolic Register Names
Another way to enhance program readability is to use symbolic names
for registers. The usage of the various 9010A registers can be made
clear by choosing appropriate symbolic names.

Symbolic register names are a bit more complex than program or label
names. For example, register names must be explicitly declared in a
DECLARATIONS section. Another difference is that register names
can be either local to a single program or global to the entire source file,
depending on how they are declared.

Symbolic register names must be declared in an ASSIGN statement of
the form

ASSIGN REGn TO name

ASSIGN statements are collected together into a DECLARATIONS
section.

-
EXAMPLE:

DECLARATIONS
ASSIGN REGl TO ERRCNT

ASSIGN REGP TO FREC?

If the register names are to be used only within a particular program,
then the DECLARATIONS section should appear between the
PROGRAM statement and the body of the program itself. If the
declarations are for global registers that are shared among several
programs, then the DECLARATIONS section must appear at the
beginning of the source file before the first PROGRAM statement.

It is possible to assign several symbolic names to the same register
within a program. This can be done by specifying a list of names in a
single ASSIGN statement or by using multiple ASSIGN statements. It
should be noted, however, that using multiple names for the same
register (implying multiple uses for a register) can lead to programming
errors. It is the programmer’s responsibility to ensure the integrity of
the register contents.

4-28

Writing Programs
Symbolic Names

EXAMPLE:

PROGRAM UUTTEST

DECLARATIONS
ASSIGN REGl TO ERRCNT

ASSIGN REGP TO PINCNT,SETBIT

ASSIGN REGG TO MASK

ERRCNT = 0
SETBIT = 4

! REGl will be used when ERRCNT is

! referred to

! Both PINCNT and SETBIT will be

! allocated to REGP

! TEMP will also be allocated to REGP
! MASK will be allocated to REG6

! Actually sets REGl = 0

! Since PINCNT, TEMP, andSETBITall
! share the same register, this

! statement has the effect of also

! setting PINCNT and TEMP

MASK = SETBIT CPL AND FF
WRITE @ REG3 = MASK

Predeflned Register Names
Symbolic names have been predefined for each of the dedicated
registers. These names can be used anywhere in a program that a
register reference can be made. It is not necessary to declare these
symbolic register names.

The predefined register names and their functions are as follows:

DEDICATED S Y M B O L I C
REGISTER NAME

F U N C T I O N

A

:
D
E
F
0

BITMASK Bit Mask
ROMSIG ROM Signature
STSCTL STS/ CTL Information
BITNUM Bit Number
DAT Data
ADR Address
PBDAT Read Probe Data

4-29

Writing Programs
Symbolic Names

Sample Program
The following example is similar to the one given at the end of Part 2.
The example assumes that PROGRAM 1 contained in the file
PROBE1.S has been renamed to PRBPLACE, PROGRAM 2 (in
PROBE2.S) has been renamed to PROGRAM UNPACK, and
PROGRAM 3 (in PR0MPT.S) has been renamed to PROGRAM
PROMPT.

! This program tests the U52 flip-flop on the output side
! of the 8255 PIA on the NEC TK-BOA single-board computer.

! This version of the program demonstrates
! the use of symbolic names.

INCLUDE “808O.POD”

SETUP

POD - 8080
TRAP ACTIVE FORCE LINE NO

TRAP ACTIVE INTERRUPT YES

ADDRESS SPACE

RAM BCOO-8FFF
ROM 0808-07FF SIG F77C

II0 lOOF8-108FA BITS FF

DECLARATIONS

ASSIGN REG8 TO LOAD

ASSIGN REG8 TO FLAG
ASSIGN REG8 TO COUNT

PROGRAM U52TEST

DECLARATIONS

ASSIGN REGP TO CNT

WR @ loOF = 80

! Global register declarations

! Used in display message

! Flag an output from probe placement

! Count an output from unpacker

! Local declarations

! Beginning of program body

4-30

Writing Programs
Symbolic Names

START:

C N T = A

LOAD = lAO9
EX PROMPT

EX PRBPLACE

IF FLAG = 1 GOT0 OPEN

DPY TESTING U52#
PROBE

! Symbolic program reference

STIMULUS:
WR@lOOFA=l

! Symbolic label definition

DTOG @ lOOF = 80 BIT 7

WR@lOOFA=O

DTOG @ lOOF = 80 BIT 7

DEC CNT

IF CNT > 0 GOT0 STIMULUS ! Symbolic label reference

EX UNPACK

IF COUNT = A GOT0 DONE

DPY U52 TOGGLING lMPROPERLY#
GOT0 EXIT

OPEN:
DPY WAS PROBE IN PLACE# ?l

IF REGl = 0 GOT0 START
DPY U52 OPEN#

GOT0 EXIT

DONE:

DPY U52 TEST PASSED#

EXIT:

INCLUDE “PROBE1.S”

INCLUDE “‘PROBE2.S”

INCLUDE “PR0MPT.S”

! End of main program

! PROGRAM 1 must be renamed to

PROGRAM
! PRBPLACE in file PROBE1.S

! PROGRAM 2 renamed to PROGRAM

UNPACK

! in file PROBE2.S

! PROGRAM 3 renamed to PROGRAM
PROMPT

! in file PR0MPT.S

4-31/4-32

Section 5
Using the Compiler

CONTENTS

Introduction . 5 - 3
Preparing the Source File . 54
Compiling . 5-5

Interactive Mode . 5 - 6
Command Line Mode .
Listing File Options . zo
Syntax Errors . 5 - l 1

Transferring Programs . 5-12
Transferring Programs to the 9010A 5-12
Transferring Programs from the 9010A 5 - 1 4
Source Format . 5-14
Hex Format . 5 - 1 6

5-l/5-2

Using the Compiler

INTRODUCTION
This section provides the information needed to use the 9010A
Language Compiler (9LC) and the File Transfer Utility program
(XFER). The following topics are covered in this section:

l Preparing the Source File

0 Compiling

l Transferring Programs

5-3

Using the Compiler

--

PREPARING THE SOURCE FILE
The first step in using the compiler is to create a source file containing
the desired 9010A programs. The source file may use all the language
features introduced in Section 4, Writing Programs. For detailed
information on specific statements, see Section 6, Language
Reference.

To edit and modify the source files, you should use the text editor that
you normally use on your host computer system.

By convention, the names of source files are usually given a filename
extension of .S, but this is not required by the compiler. P1A.S is an
example of a typical source file name.

If the source file is not contained on a system default device the
filename may also require a device name. For example:

MF1:DEMO.S

might specify a source file named DEM0.S on an optional floppy disk
(MFl). Consult your host computer user‘s manuals for information
about complete filename specifications.

The program diskette contains a sample source file named DEM0.S.
This file is used as an example in the following procedures for using the
compiler.

If you already have 9010A programs stored on 9010A cassette tapes, it
is possible to transfer them to your host system and use them with the
compiler. The procedure for doing this is described later in this section
under the heading Transferring Programs from the 9010A.

5-4

Y--

Using the Compiler

COMPILING
Once you have created a source file, you are ready to run the compiler.
The compiler reads the source file and creates an equivalent hex file
which can then be transferred to the 9010A through the RS-232-C
serial interface.

You have the option of running the compiler in either of two modes:
the interactive mode or the command line mode.

NOTE
The following examples require the file DEM0.S to be on a
non write-protected disk. If your working copy of the system
disk (as described in Section 3) is write-protected, you will need
to use two disk drives, with a copy of the demo program
DEM0.S on a non write-protected disk in the second drive.

5-5

Using the Compiler
Compiling

Interactive Mode
If you run the compiler in the interactive mode, it prompts you for the
names of the source and hex files. The compiler asks you whether you
want a listing file produced. If you answer yes, the compiler asks for the
name of the listing file and the specific listing file options desired.

To run the compiler in the interactive mode, simply enter the command

[device]9LC (RETURN)

NOTE
The use of [deviceJ in the examples in this section refers to an
optional device name spec$ication that may be required for
files that are not on a system default device.

(RETURN) indicates the key that is pressed to terminate the
command line.

After you have entered the filename command 9LC, the compiler
responds by displaying its version number and copyright notice. The
compiler then asks for the name of the source file. You now enter the
name of the source file, for example:

- -

[device]DEMO.S (RETURN)

Next, you are prompted for the name of the hex file to be created by the
compiler. Enter the name of the hex file followed by RETURN. If you
simply press RETURN, the compiler generates a hex file with the same
name as the source file, but with a .H extension appended to the root of
the source file name. In this example, the hex file name becomes
DEM0.H on the same device as DEM0.S.

(RETURN)

The compiler then asks you whether you want a listing of the source
program. You should respond by entering Y (yes) or N (no). For this
example, enter

Y (RETURN)

5-6

Using the Compiler
Compiling

If you request a listing file, the compiler prompts you for the listing file
name. You should enter the required name, or simply press RETURN
to get the same name as the source file with a .L extension, in this case
DEM0.L (also on the same device as DEMOS).

(RETURN)

After you have specified the listing file name, the compiler displays the
listing file options. These options are described later in this section. If
you simply press RETURN, the compiler produces a copy of the
source file with line numbers added.

(RETURN)

At this point, you have specified the compiler options. The compiler
displays the equivalent command line (the significance of which is
explained below) and then proceeds to compile the source file.

While it is processing the source file, the compiler displays the name of
each program, its program number, and the number of bytes of9010A
program memory required. After the compiler has processed the
source files, it displays the total number of bytes required and then
returns to the host operating system.

If the compiler detects any errors in the source file, it displays an
appropriate error message along with the source line containing the
error. The error message also appears in the listing file if a listing file
has been requested. If the source file contains any errors, then a hex file
will not be created.

5-7

Using the Compiler
Compiling

Command Line Mode
An alternative way of running the compiler is to specify all the desired
options directly on the command line. If any options are specified on
the command line, then the prompting described above is completely
bypassed.

To run the compiler in the command line mode, you enter a command
in the following format:

[device] 9LC [-listoptions] [-H hexfile] [-L [listfile]] srcfile (RETURN)

In the above notation, items within brackets [] are optional.

Srcfile is the name of the source file to be processed by the compiler. It
may require an optional device name specification.

The -H option is used to override the default hex file name (.H
extension). Hexfile is the desired name of the hex file produced by the
compiler.

The -L option is used to override the default listing file name (.L
extension). Listfile is the desired name of the listing file produced by
the compiler.

The -L option without a listing file name can be used to produce a
listing file in the case where no listing options are specified. The listing
file is generated with the .L extension.

The -1istoptions allow you to specify the form of the listing file. The
listing file options and their functions are:

I Expand Include Files

S Replace Symbolic Names

D Replace Default Entries

A Expand Keyword Abbreviations

5-8

Using the Compiler
Compiling

Specifying any of the options I,S,D, or A causes a listing file to be
produced. The paragraphs following the next heading, Listing File
Options, contain more information regarding these options.

The following examples illustrate the use of the command line mode.

The command

9LC -L [device]DEMO.S (RETURN)

produces exactly the same results as the sequence of options described
above under the heading Interactive Mode.

To compile the source file DEMOS and produce a hex file named
DEM0.H but not produce a listing file, use the following command:

9LC [device]DEMO.S (RETURN)

To produce a listing file with include files expanded, use the following
command:

9LC -1 [device]DEMO.S (RETURN)

5-9

Using the Compiler
Compiling

Listing File Options
The compiler provides a number of different listing file options. These
options are described below.

l I Expand Include Files

If the source file contains an INCLUDE statement, such as

INCLUDE “6802.POD”

the listing file normally just copies this statement. However, if the
- I option is specified, then the listing file also shows the contents
of the file 6802.POD.

l S Replace Symbolic Names

If the source file contains symbolic names for registers, programs,
or labels, they are normally copied to the listing file as they appear
in the source file. However, if the -S option is specified, then the
symbolic names are replaced by the actual program number,
register number, or label number.

EXAMPLE:

lines from source file: EXECUTEDELAY

INC ERRCNT

normal listing file: EXECUTEDELAY

INC ERRCNT

listing file with -S option: EXECUTE 7

INC REG2

5-10

Using the Compiler
Compiling

l D Replace Default Entries

If the source file contains any default entries (indicated by *), the
listing file normally copies the statement as it appears in the source
file with the * in place. However, if the -D option is specified, then
the listing file substitutes the appropriate default register for the *.

EXAMPLE:

line from source file: WRITE @ * = *

normal listing file: WRITE @ * = *

listing file with -D option: WRITE @ REGF = REGE

l A Expand Keyword Abbreviations

If the source file contains the abbreviations RD, WR, or EX, they
are normally copied to the listing file in their abbreviated form, just
as they appear in the source file. However, if the -A option is
specified, then the listing file replaces all occurrences of these
abbreviated keywords with the full keyword.

EXAMPLE:

line from source file: EX PROGRAM 5

normal listing file: EX PROGRAM 5

listing file with -A option: EXECUTE PROGRAM 5

Syntax Errors
All programmers eventually have an elusive syntax error to track
down. The compiler provides some help by pinpointing the location of
the syntax error in the listing file, especially if the listing option has
been selected to expand any include files.

Even after you have found the location of the syntax error, the exact
cause of the problem may not be obvious. Appendix F, Error
Messages, contains a list of common syntax errors that can be used as a
time-saving checklist.

5-l 1

Using the Compiler

TRANSFERRING PROGRAMS
Once you have successfully compiled your programs, you are ready to
transfer the generated hex file to the 9010A through the RS-232-C
serial interface. XFER, the File Transfer Utility program, is provided
on the program diskette for this purpose.

Before running XFER, the 9010A must be connected to the serial port
of the host system as described in Section 3, Getting Started.

To run XFER, simply enter the command

[device]XFER (RETURN)

After you have entered the command XFER, the program responds by
displaying its version number and copyright notice, followed by a main
menu of file transfer options:

T Transfer hex file from host to 9010A
S Transfer source files from 9010A to host
H Transfer hex files from 9010A to host
C Configure host system
Q Quit

Whenever this menu is displayed, you can return to the host operating
system by entering

Q (RETURN)

You can also use the Q command to return to this main menu when
prompted for a filename in any of the other options in this menu.

You should select the C option if you want to change the default setting
for the RS-232-C serial port. Refer to Section 3, Getting Started, for
further information on configuring the serial port.

Transferring Programs to the 9010A
To transfer a file from the host system to the 9010A, you should select
the T option. Since this is the default option, you may simply press the
RETURN key.

(RETURN)

5-12

Using the Compiler
Transferring Programs

You are then asked to enter the name of the hex file to be transferred.
To transfer DEMO.H, the file produced by compiling DEM0.S in the
previous examples, enter

[device]DEMO.H (RETURN)

XFER then instructs you to prepare the 9010A for reading by pressing
the AUX I/F, READ, and YES keys on the 9010A. As soon as you
have pressed the YES key, the host system starts transferring the hex
file to the 9010A.

NOTE
Pressing the A UX I/F and READ keys causes the 9010A to
clear its program memory and reset all the setupparameters to
their default values. Any programs currently in the 9010A
memory are lost.

When the file transfer is complete, the 9010A displays the message
AUX-RECEIVING - COMPLETE, and the host system again
displays the file transfer options menu. To exit from XFER and return
to the host operating system, enter

Q (RETURN)

The test programs can now be executed on the 9010A just like any
other 9010A programs. Once the transfer is complete, the 9010A may
be disconnected from the host system.

If you have followed the example above to compile DEM0.S and
transfer DEM0.H to the 9010A, you can execute the program on the
9010A by pressing the following keys:

EXECUTE 0 ENTER

If your source file contains symbolic program names, you must
determine which actual program numbers were assigned by the
compiler to the symbolic program names. For this reason, the compiler
displays the program names and their corresponding program
numbers as it processes the source file.

5-l 3

Using the Compiler
Transferring Programs

Transferring Programs from the 9010A
Programs that are transferred from the 9010A to the host system can
be stored either in source format or in hex format. If you have
programs saved on 9010A cassettes and you want to modify them on
the host system and take advantage of the features of the 9010A
Language Compiler, then the programs must be stored in source
format.

Hex format is useful if you simply want to store the 9010A programs
on the host system and load them back into the 9010A at a later time
without any modifications.

Source Format
To save programs from the 9010A on the host system in source format,
select the S option from the file transfer options menu by entering

S (RETURN>

NOTE
The following examples assume that you have transferred the
programs in DEMO. Hfrom the host system to the 9010A, as
previously described under Transferring Programs to the
9010A.

XFER asks you for the name of the source file to be created on the host
system. Respond by entering the source file name, in this case,

[device]DEMO 1 .S (RETURN)

XFER then instructs you to prepare the 9010A for writing by pressing
the AUX I/F and WRITE keys on the 9010A. When the transfer is
complete, the 9010A displays the message

AUX-SENDING - COMPLETE

A menu of source options will now be displayed:

-.

E- Save the entire file
s- Save the setup information
A- Save the address descriptors
P- Save all programs
O-99 - Save the specified program
R- Return to the main menu

5-14

Using the Compiler
Transferring Programs

If you choose to save the entire file, then setup information, address
descriptors, and all programs will be saved.

If you choose to save the setup information or the entire file, XFER
then prompts for the name of a pod data file, since the 9010A Language
Compiler requires that a pod data file be included before any pod-
dependent setup information. For the present example, enter

[device]Z80.POD (RETURN)

In this case, XFER inserts a statement of the form INCLUDE
“ZSO.POD” immediately before the SETUP INFORMATION
statement in the source file on the host system.

If, for some reason, you do not want to specify a pod data file, simply
enter (RETURN) when prompted for the name of a pod data file. No
INCLUDE statement will be inserted into the source file.

If you choose to save the address descriptors and none exist, a warning
message will be displayed.

You have the option of saving individual programs or all of the9010A
programs in a single operation. If you attempt to save a program that
does not exist, a warning message will be issued.

NOTE
The compiler requires setup and address space information to
appear before any programs. Therefore, setup or address space
information should be saved before any programs. If you
attempt to save setup information or address descriptors after
programs, the XFER program will print an error message.

At the end of the entire file transfer process, the new source file (in this
case, DEMO1 .S) exists on the host system. You can use the R option to
return to the fiie transfer options menu.

The source file created by the file transfer utility can be modified using
a text editor on the host system. For example, you may want to add
comments or change the program numbers to symbolic names. The
modified source file can be compiled, and the resulting hex file can be
transferred back to the 9010A.

5-15

Using the Compiler
Transferring Programs

Hex Format
Hex format files are not generally modified on the host system, and
they cannot be processed by the 9010A Language Compiler. The only
reason for transferring files in hex format is to store the programs sd
that they can be loaded back into the 9010A at a later time.

To select the hex format, enter

H (RETURN)

in response to the file transfer option menu.

XFER prompts you for the name of the hex file to be created. For
example, you could enter

[device]DEMOI.H (RETURN)

You are then instructed to press the AUX I/ F and WRITE keys on the
9010A. When the transfer is complete, the 9010A displays the message
AUX-SENDING - COMPLETE, and the file transfer utility returns to
the file transfer option menu.

5-16

Section 6
Language Reference

CONTENTS

Introduction . 6 - 3
Syntax Diagram Notation . 64
Special Symbols . 6 - 5
Symbolic Names . 6 - 6
Expressions . 6 - 8
Addresses . 6-10
General Information . 6 - l 1
Statement Format . 6 - l 1
Program Comments . 6 - l 1
File Inclusion . 6-12

SOURCE FILE SYNTAX . 6-13
Source File . 6 - 1 5
Setup . 6 - 1 7
Address Space Declaration . 6-19
Address Descriptor . 6 - 2 1
Global Declaration . 6 - 2 3
Symbolic Register Name Declaration . 6 - 2 5
9010A Program . 6-27
Program Body . 6 - 2 9
Local Declaration . 6-3 1
Binary Program . 6 - 3 3
Include Directive . 6-35

SETUP PARAMETERS . 6-37

9010A PROGRAM STATEMENTS 6-61

6-l/6-2

Language Reference

INTRODUCTION
This section provides a quick reference for 9010A Language syntax. As
an aid to quick reference, the information contained here is concise.
For an introduction to the language as a whole, see Section 4, Writing
Programs.

This section is organized as follows:

l General Information
l Source File Syntax
0 Setup Parameters
l 9010A Program Statements

Program statements are introduced with a syntax diagram that
illustrates the legitimate construction. A complete definition of the
various forms of the statement follow the syntax diagram. The
statement definitions use the format shown in the following example
page.

STATEMENT NAME

Syntax

Function
A description of the function(s) performed by the statement appears
here.

. Characteristics, implications, and limitations of the statement are
defined here.

l

Example
A programming example is shown here.

See Also
Any related statements or information are listed here.

6-3

Language Reference

SYNTAX DIAGRAM NOTATION
Syntax diagrams define correct spelling, punctuation, sequences of
words, symbols, and expressions. The syntax diagrams used here
conform to the following guidelines:

l Any path through a diagram starting from the left that does not run
contrary to an arrowhead forms a legitimate statement.

l Words in a circular enclosure are to be entered as shown. Words
can be typed in lowercase, uppercase, or a combination of
lowercase and uppercase letters.

Example:

l Words in a rectangular enclosure represent other information that
is described either in the General Information section, in another
syntax diagram, as a note on the same page, or that is in general
use .

Example:

ad&

EOL

l An asterisk in a circular enclosure above bracketed words indicates
a default register entry. Only the asterisk should appear in the
source file; the compiler substitutes the information in the
brackets.

Example:

6-4

Language Reference

SPECIAL SYMBOLS
The following symbols are used in the syntax diagrams:

S Y M B O L

,

EOL

>

> =

=

@
..

F U N C T I O N

Separates a list of symbolic names (i.e., register name
declarations)

Indicates end of line

Indicates range (i.e., addr to addr), used as a delimiter
in AUX and DPY commands

Relational operator

Relational operator

Relational operator

At

Separates the label name from the statement to be
executed

6-5

Language Reference

SYMBOLIC NAMES
Symbolic names appear in the syntax diagrams as

The following rules apply to symbolic names:

Symbolic names must begin with a letter, and they can contain any
number of letters, digits, and underscore characters (-).

Only the first eight characters of a name are significant. For
example, TESTMENUl and TESTMENU are treated as
identical names.

9010A Language keywords, such as READ and PROGRAM,
cannot be used as symbolic names. For example, LOOP cannot be
used as a symbolic label name, although LOOP1 is acceptable.

Appendix A contains a complete list of the 9010A Language
keywords. Using a keyword as a symbolic name causes the
compiler to issue a SYNTAX ERROR message.

Symbolic names must contain at least one letter other than A, B, C,
D, E, or F so that they can be distinguished from hexadecimal
constants. This means that words like BAD, ACE, or FADE
cannot be used as symbolic names because the compiler will
interpret them as hex constants. Using a hex constant as a symbolic
name causes the compiler to issue a SYNTAX ERROR message.

6-6

Language Reference
Symbolic Names

0 Symbolic names can be used anywhere that the corresponding
actual program number, register number, or label number can
occur in a 9010A program.

l Forward references are permissable for program names and label
names. In other words, an EXECUTE or GOT0 statement using a
symbolic name is allowed to appear either before or after the
corresponding PROGRAM or LABEL statement.

l Symbolic names are case-insensitive. For example, a name can be
declared in uppercase and referenced in lowercase, and names can
be a mixture of uppercase and lowercase letters.

6 - 7

Language Reference

EXPRESSIONS
The syntax element

is used to designate a 9010A expression. Expressions consist of
combinations of the following:

a Hexadecimal Constants (e.g., IOFC)

a Register References (e.g., REG3)

l Unary Operators (CPL, DEC, INC, SHL, SHR)

l Binary Operators (AND, OR)

Unary operators specify operations that may be performed on only one
register at a time. The five unary operators function as follows:

a C P L Replaces the value stored in the register with its binary
ones complement.

a DEC Decrements the binary value of a register by 1.

l INC Increments the binary value of a register by 1.

l SHL Shifts the binary contents of the register one bit to the left.
The farthest left bit is discarded. The farthest right bit
becomes 0.

l SHR Shifts the binary contents of the register one bit to the
right. The farthest right bit is discarded. The farthest left
bit becomes 0.

Binary operators perform an operation with two registers or with a
register and a hexadecimal value, or two hexadecimal values. The two
binary operators function as follows:

l AND Performs the logical bit-wise AND operation between two
values.

l OR Performs the logical bit-wise OR operation between two
values.

6 - 6

Language Reference
Expressions

In certain contexts, expressions are interpreted as decimal, binary or
hexadecimal numbers. These cases are indicated in the syntax diagram
as follows:

WA [bin] [hex1
expr expr

Numeric constants in decimal expressions may contain only the digits
0 through 9. Similarly, numeric constants in binary expressions may
contain only the digits 0 and 1, and hexadecimal expressions may
contain only the digits O-9, A-F.

A unary operator followed by a decimal number is the unary operator
shorthand feature described in Section 4, Part 2.

expr+--a*
term

6-9

Language Reference

-

ADDRESSES
The following syntax diagrams apply to statements that require an
address or an address range to be specified.

address
block

addr

6-10

Language Reference

GENERAL INFORMATION
Statement Format

Follow these guidelines when constructing statements:

l Each 9010A statement must be on a separate line. Continuation
lines are not allowed.

l A statement may begin in any column.

l Blanks and tabs are ignored, except when they occur in DPY or
AUX statements.

l Blank lines are ignored.

a Adjacent keywords, symbolic names, and numbers must be
separated by at least one blank.

Program Comments
The rules for using comments are as follows:

l Comments start with an exclamation point (!), and they extend to
the end of the line.

a A comment can be on the same line as a 9010A statement, or it can
be on a separate line.

0 If a comment extends over several lines, each line must begin with
an exclamation point.

l A comment cannot be placed in the middle of a 9010A statement.

6-l 1

Language Reference
General information

File Inclusion
The form of the INCLUDE statement is

-

INCLUDE fllename

The compiler replaces the INCLUDE statement with the contents of
the specified file. The effect is equivalent to manually typing the
contents of the included file in the source file at that point.

The following rules apply:

The filename must be the name of an existing file.

If the host operating system is case-sensitive regarding filenames,
then the filename must be properly capitalized.

A source file may include a file which in turn includes another file.

INCLUDE statements must be on a line by themselves but can
occur anywhere in the source file. INCLUDE statements may even
appear as a statement in a 9010A program.

-

The programmer is responsible for ensuring that the contents of
the indicated file can legally be inserted at that point in the source
file.

A standard use of the INCLUDE statement is to include a pod data
file.

6-12

SOURCE FILE SYNTAX

-

The following pages contain reference information on source file
syntax. For more explanation about a specific topic, refer to Section 4,
Writing Programs.

Source File Syntax contains the following syntax diagrams:

SOURCE FILE
SETUP
ADDRESS SPACE
ADDRESS DESCRIPTOR
GLOBAL DECLARATION
SYMBOLIC REGISTER NAME DECLARATION
9010A PROGRAM
PROGRAM BODY
LOCAL DECLARATION
BINARY PROGRAM .
INCLUDE DIRECTIVE

6-13/6-14

SOURCE FILE

Syntax

Function
This syntax diagram defines the overall structure of the source file.

l The appropriate pod data file must be included if your programs
have any pod dependencies.

l At this time, the pod data file must be one of the following (more
files will be added as new interface pods are implemented):

1802.POD
6502.POD
6800.POD
68000.POD
6802.POD
6809.POD
6809E.POD
8041 .POD
8048.POD

8080.POD
8085.POD
8086.POD
8086MX.POD
8088.POD
8088MX.POD
9900.POD
Z80.POD

l The setup information, address space information, and global
declarations are all optional. They may appear more than once,
and they may appear in any order, providing that they appear
before the first 9010A program.

6-15/6-16

SETUP

Syntax

4 S!mP

Function
Allows the user to control the reporting of UUT errors, enable
microprocessor lines, and specify operating parameters.

l All setup parameters must be declared at the beginning of the
source file preceding all programs.

l Setup parameters establish initial setup conditions only.

l Setup parameters are divided into the following categories:
--

1 . Reporting UUT errors or enabling microprocessor lines:
POD
TRAP
ENABLE
EXERCISE ERRORS
BEEP ON ERR TRANSITION

2. Specifying operating parameters:
BUS TEST
RUN UUT
TIMEOUT

3 . Relating to operation of the AUX I/F:
STALL
UNSTALL
NEWLINE
LINESIZE

Detailed information about setup parameters is contained in the
next part of this section, Setup Parameters.

6-17

SETUP

l The compiler supplies default values (as listed in Appendix D) for
any setup parameters that do not explicitly appear in the source
file.

l The compiler default values for setup parameters can be
overridden by the pod-specific values by including the appropriate
pod data file.

See Also
Default Setup Parameters (Appendix D), Setup Parameter Limits
(Appendix E), Pod Data Files (Section 4, Part 1)

-.

6-16

ADDRESS SPACE

Syntax

address descriptor

Function
Forms the UUT memory map; identifies address blocks of RAM,
ROM, and I/O.

l All address descriptors must be declared at the beginning of the
source file, preceding all programs.

l Up to 100 address descriptors can be specified in the source file.

Example
A D D R E S S S P A C E I N F O R M A T I O N

R A M @ 5000-50FF

R O M @ 0 0 0 0 - O F F F S I G 0 0 4 7
R O M @ 3000-4FFF S I G 2 6 6 0
R O M @ 7000-70FF S I G 0 8 A A
ROM @ AOOO-AFFF SIG 44C9

II0 @I lAOO-lA01 B I T S 7 F

6-19/6-20

ADDRESS DESCRIPTOR

Syntax

Function
Forms the UUT memory map; identifies address block of RAM, ROM
and I/O.

T--

l In a 9010A program statement, if a RAM, ROM, or I/O test is
specified but the address range to be tested is not specified, the
9010A performs the specified test over all blocks of the appropriate
memory type described by the address descriptors.

a Parameters and limits are as follows:

PARAMETER LIMIT

signature (ROM) 0-FFFF
bit mask (I/O) I-FFFFFFFF

Example
R A M @ 5000-50FF

R O M @ 0 0 0 0 - O F F F S I G 0 0 4 7
R O M @ 3000-4FFF S I G 2 8 6 0
R O M @ 7000-70FF S I G 0 8 A A
ROM @ AOOO-AFFF SIG 44C9

II0 @ lAOO-1AOl B I T S 7 F

See Also
/- LEARN, RAM TEST, ROM TEST, IO TEST (in 9010A Program

Statements part of this section)

6-21/6-22

GLOBAL DECLARATION

Syntax

Function
Allows the programmer to define symbolic register names with global
scope.

l Names with global scope are known throughout the entire source
file and all files that are included after the global declarations.

l If a register name is redefined locally (inside a 9010A program), the
local definition overrides the global definition and the program has
no knowledge of the global declaration.

l Global declarations must appear at the beginning of the source file,
before the first 9010A program is encountered.

l Global symbolic register declarations are restricted to the global
registers (8-F).

Example
DECLARATIONS

ASSIGN REG8 TO LOAD
ASSIGN REG9 TO FLAG

PROGRAM UlO

See Also
SOURCE FILE, SYMBOLIC NAMES, SYMBOLIC REGISTER
NAME DECLARATION, LOCAL DECLARATION

6-23/6-24

SYMBOLIC REGISTER
NAME DECLARATION

Syntax

---+(ASSIGN hexdigit

Function
Declares a symbolic name that the programmer uses in programs to
refer to the indicated register.

l Symbolic register names must be declared in the global or local
declarations section of the source file prior to being used in a
program.

l Symbolic register names can be used wherever a register reference
can be made (including AUX and DPY statements).

l Several symbolic names can be assigned to the same register.

Example
DECLARATIONS

ASSIGN REGl TO TEMP, FLAG
ASSIGN REGA TO PINNO

See Also
G L O B A L D E C L A R A T I O N , L O C A L D E C L A R A T I O N ,
SYMBOLIC NAMES, Predefined Register Names (in Section 4,
Part 3)

6-25/6-26

901OA PROGRAM

Syntax

PROGRAM

Function
This syntax diagram defines the overall structure for a 9010A program.

Program numbers must be decimal numbers in the range O-99.

If a byte count appears in the program statement, the compiler
compares it to the actual byte count and issues a warning message if
the byte counts differ.

Symbolic program names can be used in this statement.

The source file can contain no more than one hundred 9010A
programs.

Numbered programs must appear in the correct order. If programs
with symbolic names are combined with numbered programs,
there must be a correct number of symbolically named programs
between numbered programs. For example, if there are two
numbered programs, program 4 and program 7, then there is room
for only two symbolically named programs between them.

Example
PROGRAM 35 728 BYTES
PROGRAM GETS/G
PROGRAM KEYBD TST

See Also
EXECUTE, Symbolic Program Names (Section 4, Part 3)

6-27/6-28

PROGRAM BODY

Syntax

Function
This syntax diagram defines the body of a 9010A program.

The details of the 9OlOA statements are provided in the 9010A
Program Statements portion of this section.

See Also
LOCAL DECLARATION, 9010A PROGRAM STATEMENTS,
BINARY PROGRAM

6-29/6-30

LOCAL DECLARATION
.,-

Function
Allows the programmer to define symbolic register names with local
scope.

l Names with local scope are known only within the program in
which they are declared.

l Duplicate local names in different programs are unrelated.

l Local declarations must appear between the program statement
and the first statement of the 9010A program body.

l No local declarations may appear inside a binary program.

l Symbolic names may be declared locally for all registers (O-F).

Example
PROGRAM UUTTEST

DECLARATIONS
ASSIGN REGl TO ERRCNT
ASSIGN REG2 TO PINCNT, SETBIT

ERRCNT = 0
SETBIT = 4

See Also

SOURCE FILE, SYMBOLIC REGISTER NAME DECLARA-
TION, GLOBAL DECLARATION

6-31/6-32

BINARY PROGRAM
,-

Syntax

Function
The 9000A Utility Program tape contains binary programs.

.,-----

Binary programs are introduced by the standard program
statement (PROGRAM xx), followed on a separate line by
(BINARY), followed by the binary program.

A binary program contains lines of hex code. Each line is
terminated by a one-byte checksum.

A “*” is used to delimit a line of code from the checksum, except for
the last line of the program where a ‘5” is used.

The file transfer program (XFER) automatically reformats binary
programs into the required format when they are transferred from
the 9010A to the host system in source form.

Example

See Also
9010A PROGRAM

-

6-33/6-34

INCLUDE DIRECTIVE

Syntax

INCLUDE

Function
Replaces the INCLUDE “filename” statement with the contents of the
indicated file. Equivalent to manually typing the contents of the
included file in the source file at that point.

The filename must be the name of an existing file.

If the host computer system is case-sensitive regarding filenames,
then the filename must be properly capitalized.

A source file may include a file which in turn includes another file.
Attempting to nest include files too deeply will result in a 9010A
error message.

Include directives must be on a line by themselves but can occur
anywhere in the source file. Include directives may even appear as a
statement in a 9010A program.

The programmer is responsible for ensuring that the contents of
the indicated file can legally be inserted at that point in the source
file.

A standard use of the INCLUDE statement is to include a pod data
file.

Example
include “1802. POD”

See Also
Pod Data Files (in Section 4, Part 1)

6-3W6-36

SETUP PARAMETERS

CONTENTS

Beep . 6-39
Bus Test . 641
Enable . 643
Exercise Errors . 645
Linesize . 6-47
Newline . 649
Pod . 6-5 1
Run UUT . 6 - 5 3
Stall/ Unstall . 6-55
Timeout . 6-57
Trap . 6-59

6-37/6-36

BEEP

Syntax

SEEP ON EM TRANSITION

Function
Allows the programmer to control whether or not the 9010A should
beep on ERR TRANSITIONS.

l YES enables the audible beep that sounds whenever an error is
detected and reported. The beep also sounds whenever the error is
removed.

l The 9010A’s default value is YES.

Example

f--- BEEP ON ERR TRANSITION - NO

See Also
EXERCISE ERRORS, TRAP

6-39/6-40

BUS TEST

Syntax

hex number

Function
When the Bus Test is performed in a 9010A program, testing of data
lines occurs at the address listed.

l Setup parameter limits for Bus Test are 0-FFFFFFFF. Refer to
the pod instruction manuals for legal addresses.

l If the Bus Test statement appears in the Setup Parameters section
of the source file, then the default Bus Test address is as indicated.

l If this statement was not present and a pod data file was included at
the beginning of the source file, the compiler supplies the definition
for BUSADR.

l If a pod data file was not included at the beginning of the source
file, the default Bus Test address is 0000.

E x a m p l e
BUS TEST @ lCO0

See Also
Pod Data Files (in Section 4, Part l), BUS TEST (in 9010A Program
Statements part of this section), and Appendix D (Pod-Specific Setup
Parameters)

6-41/6-42

ENABLE

Syntax

Function
Allows an operator to individually enable or disable pod forcing lines.

l If YES is selected, the forcing line is enabled.

l If NO is selected, the forcing line is disabled.

l Forcing lines are pod-specific and include lines such as the
following:

WAIT BR/ACK READY
RDY INTR BUSRQ
TSC MR HOLD
DBE DMA RQGTO
HALT UNUSED RQGTl

l There are a maximum of eight enableable forcing lines. Refer to the
pod instruction manuals for specific information.

l The appropriate pod data file must be included prior to the
appearance of any ENABLE statements. In addition, a POD
statement identifying the pod should appear in the Setup
Parameters section of the source file.

l If a pod data file was included at the beginning of the source file,
the forcing lines listed in the definition for FORCELNS will all
have default values of YES.

Example
ENABLE HALT - NO

See Also
Pod Data Files (in Section 4, Part 1) and Appendix D (Pod-Specific
Setup Parameters), POD

6-43/6-44

EXERCISE ERRORS

Syntax

Function
Allows the operator control over 9010A error reporting and interactive
handling of errors.

l If YES is selected, the 901 OA displays detected error messages and
prompts the operator to loop on the errors.

l If NO is selected, the errors are not reported to the operator, but
error messages are transmitted to the RS-232 if it is connected
(without the -LOOP? portion of the message).

l The 9010A’s default value is YES.

Example
EXERCISE ERRORS - NO

See Also
BEEP, TRAP

6-45/6-46

LINESIZE
c

Syntax

4(LINESIZE decimal number

Function
Allows the programmer to specify the maximum number of characters
transmitted per line when the 9010A is sending data through the AUX
I/F.

l Setup parameter limits for LINESIZE are 10-255.

l The LINESIZE used is determined by the line size of your remote
device.

a The 9010A’s default value is 79.

Example

/--- LINESIZE 120

See Also
NEWLINE, STALL/ UNSTALL

6-47/6-46

NEWLINE

Syntax

NEWLINE

Function
When the 9010A is sending data through the AUX I/F, a terminator
sequence is sent at the end of each line. This statement allows the
programmer to specify both the ASCII terminator characters to be
sent and the delay between lines.

l Setup parameter limits for NEWLINE are eight hexadecimal
digits.

l The 9010A default value is OOOOODOA.

l The selection of the terminator sequence allows the operator to
meet the needs of a wide variety of remote devices. For example, if
the remote device provides its own Linefeed at the end of each line,
the terminator sequence would consist of only the Carriage Return
(OOOOOD). Or, if a double space is needed between lines, the
terminator sequence would be a Carriage Return and two
Linefeeds (ODOAOA).

l The eight hexadecimal digits have the following meaning:

First two digits: These may have any hexadecimal value between 0
and FF. They must be followed by six digits as described below.
The two digits represent a count that corresponds to a timing delay
between the transmission of lines. For 9010A versions prior to 2C,
the timing delay is approximately 2.4 ms/count, providing a total
timing delay range of 0 to .6 seconds. The delay is 6 ms/count, for
maximum delay of approximately 1.5 seconds with 9010A versions
2C and later.

Last six digits: These are the ASCII terminator characters which
are sent at the end of each line when the9010A is sending data. The
characters are also sent once as the initial trigger when the AUX
I/ F READ operation is selected. The characters, which have two
digits each, are sent left to right. Zeros are not sent.

649

NEWLINE

Example
NEWLINE O O O D O A O A ! t e r m i n a t o r s e q u e n c e o f a c a r r i a g e

return and 2 linefeeds

NEWLINE O O O O O D O A ! t e r m i n a t o r s e q u e n c e o f a c a r r i a g e
return and I /inef88d

NEWLINE 1 A O O O O O D ! terminator sequence of a time delay
and carriage return

See Also
LINESIZE, STALL/ UNSTALL

6-50

POD

Syntax

/---

Function
Identifies the pod to be used when executing the 9010A programs in the
source file. The POD statement allows the 9010A to use the data in the
pod data file to configure its setup parameters to match the specified
pod.

l At this time podname is one of the following (more files will be
added as new interface pods are implemented):

1802 6809 ‘40150 8088
6502 6809E 8080 8 0 8 8 M X
6800 8 0 4 1 8085 9900
68000 ‘35148 8086 280
6802 ‘39149 8 0 8 6 M X

l When using the 8048 pod, the podname must be listed in this
statement as ‘35/48, ‘39/49, or ‘40/50, as appropriate.

Example
POD - 8080

P O D ‘39/49

See Also

Pod Data Files and 9010A Pod Interaction (in Section 4, Part 1)

-

6-U/6-52

P

RUN UUT

Syntax

Function
Used when the address for a RUN UUT operation is allowed to default
in a 9010A program.

l Setup parameter limits for RUN UUT are 0-FFFFFFFF.

a If the RUN UUT statement appears in the setup parameters section
of the source file, then the RUN UUT address will be as indicated.

l If this statement was not present and a pod data file was included at
the beginning of the source file, the compiler supplies the definition
for UUTADR.

l If a pod data file was not included at the beginning of the source
file, the default RUN UUT address is 0000.

Example
R U N UlJT @ COO0

See Also
Pod Data Files (in Section 4, Part l), RUN UUT (in 9010A Program
Statements part of this section), and Appendix D (Pod-Specific Setup
Parameters)

6-53/6-54

STALL
UNSTALL

Syntax

UNSTML

Function
Allows the programmer to specify the Stall and Unstall characters (X-
ON and X-OFF) to which the 9010A responds when it is sending data
through the AUX I/F.

l Setup parameter limits for Stall and Unstall are 0-FF.

l Any ASCII character may be selected for the Stall and Unstall
characters. The characters are specified with their hexadecimal
ASCII values. The characters used are those that are required by
your remote device.

l The 9010A’s default values are as follows:

STALL 13 (CTRL S)
UNSTALL 11 (CT= Q)

Example
STALL 13

UNSTALL 11

See Also
LINESIZE, NEWLINE

6-55/6-56

TIMEOUT
.-

Syntax

TIMEOUT decimal number

Function
Represents a count of how long the 9010A waits before timing out on
an interface pod operation.

l Setup parameter limits for TIMEOUT are O-60000.

l The 9010A’s default value is 200.

Example
TIMEOUT - 200

6-57/6-56

TRAP

Syntax

ACTIVE INTERRUPT

Function
Allows the operator to individually enable or disable traps on UUT
system errors.

__--
l If YES is selected, the UUT system error is reported to the operator

as it occurs.

l IF NO is. selected, the UUT system error is not reported to the
operator as it occurs.

l Any error types not explicitly specified are set to the 9010A default
values.

0 The 9010A’s default values are as follows:

TRAP BAD POWER SUPPLY Y E S
TRAP ILLEGAL ADDRESS Y E S
TRAP ACTIVE INTERRUPT N O
TRAP ACTIVE FORCE LINE Y E S
TRAP CONTROL ERROR Y E S
TRAP ADDRESS ERROR Y E S
TRAP DATA ERROR Y E S

Example

_-,

TRAP BAD POWER SUPPLY - NO

TRAP ACTIVE INTERRUPT - NO

See Also
EXERCISE ERRORS, BEEP

6-59/6-60

901OA PROGRAM STATEMENTS

Atog . 6 - 6 3
Auto Test . 6-65
Aux . 6-67
Bus Test . 6-7 1
DPY . 6-73
Dtog . 6-77
Execute . 6-79
Goto . 6-8 1
I f . 6-83
IO Test . 6-85
Label . 6-87
Learn . 6-89
Probe . 6 - 9 1
RAM Test . 6-93
RAMP . 6-95
Read . 6-97
R f% . 6-99
Rept/ Loop . 6-101
ROM Test . 6-103
Run UUT . 6-105
stop . 6-107
Sync . 6-109
Unary . 6-111
Walk.. 6-l 13
Write . 6-115

6-61

.-

The syntax diagrams for the 9010A program statements are arranged
alphabetically on the following pages. The functional groupings of the
statements are as follows:

FUNCTION

TESTS

TROUBLESHOOTING

MODE

TEST SEQUENCING

UUT MEMORY MAPPING

PROBE

REGISTER OPERATION

STATEMENT

AUTO TEST
BUS TEST
IO TEST
RAM TEST
ROM TEST

ATOG
DTOG
RAMP
READ
WALK
WRITE

REPT/ LOOP
RUN UUT
STOP

AUX
DPY
EXECUTE
GOT0
IF
LABEL

LEARN

PROBE
SYNC

REG
UNARY (CPL, DEC, INC,
SHL, SHR)

682

ATOG

Syntax

Function
Toggles an operator-specified address bit from one logic state to
another. Two read operations are performed, one at the original
address and another after the bit is toggled.

l If the bit number is explicitly specified in the expression, it must
have a decimal value in the range 0 -(n-l) where n equals bits in the
address bus.

Example
ATOG @ 13FC BIT 7

See Also
DTOG, RAMP, READ, WALK, WRITE

6-6316-64

Syntax

Function
Performs in sequence Bus Test, ROM Test, RAM Short Test, and IO
Test for versions prior to 2C. For versions 2C and later, the sequence is
Bus Test, RAM Short Test, ROM Test, and IO Test.

l Errors are reported and locations are identified as described for the
individual tests.

Example
AUTO TEST

AUTO
r-- See Also

BUS TEST, IO TEST, RAM TEST, ROM TEST

6-6W6-66

AUX

Syntax

Function
Allows for sending and receiving data between the 9010A and other
devices using the RS-232 Interface Option.

The string parameter represents the text to be sent.

The text is separated from the AUX keyword by a single space,
hyphen, or tab.

Any spaces beyond the single separating character are treated as
part of the display message, resulting in leading blanks.

The AUX string can contain a maximum of 32 characters.

Spaces at the end of an AUX string are ignored. If trailing blanks
are desired, the appropriate number of underscores should be
appended to the AUX string.

Characters allowed in the AUX string are limited to those available
on the 9010A. The valid characters are:

A - Z +
o-9 -
. ,

b %

3
$
space

- (underscores will be converted to spaces)

The functions of the special AUX I/ F characters are shown on the
next two pages. Symbolic register names can be used with these
special AUX characters. Symbolic register names are counted as
one character in the AUX string.

667

AUX

l A symbolic register name cannot be immediately followed by a
hexadecimal character (O-9, A-F). A separating space is required.

Example

AlJX ROM SIGNATURE IS $ROMSIG7 ROMS/G is a symbolic
register name. The
string to be sent is
“ROM SIGNATURE
IS” followed by the
hexadecimal con tents
of ROMS/G.

AUX - tests complete

See Also
DPY

Functions of AUX I/F Characters
_-

CHARACTER ACTION CAUSED

Sends a control G (bell) to the RS-232 interface.

$ When followed by a hexadecimal digit or
symbolic register name, $ causes the contents of
the designated register to be transmitted in
hexadecimal to the RS-232 interface.

@ The same as for the $ symbol, except that the
contents are transmitted in decimal.

I When / is followed by a hexadecimal digit or
symbolic register name, it suspends program
execution, waits for the next byte of data from the
RS-232 interface, and places the value of the byte
in the designated register. (The upper three bytes
of the register equal zero.) If the RS-232 interface
is configured to transfer eight data bits, then eight
data bits appear. Otherwise, the eighth data bit
(bit 7) is zero.

666

BUS TEST

Syntax

Function
Tests for proper function of the UUT control lines, data lines, and
address lines.

l When Bus Test is performed, testing of data lines occurs at the
address specified in the Bus Test setup parameter.

Example
BUS TEST

BUS

T- See Also
AUTO TEST, IO TEST, RAM TEST, ROM TEST, and BUS TEST
(in Setup Parameters part of this section)

,-

6-71/6-72

DPY
P

Syntax

Function
Displays the string on the 9010A.

f-

Text to be displayed is separated from the DPY keyword by a
single space, hyphen, or tab.

Any spaces beyond the single separating character are treated as
part of the display message resulting in leading blanks.

The DPY string can contain a maximum of 32 characters.

Spaces at the end of a DPY string are ignored. If trailing blanks are
desired, the appropriate number of underscores should be
appended to the DPY string.

Characters allowed in the DPY string are limited to those available
on the 9010A. The valid characters are:

A-Z +
o-9 -

b 6%

I ;
> I
,

3
;
space

_ (underscores will be converted to spaces)

The functions of the special DPY characters are shown on the next
page. Symbolic register names can be used with these special DPY
symbols. The symbolic register names are counted as one character
in the DPY string.

A symbolic register name cannot be immediately followed by a
hexadecimal character (O-9, A-F). A separating space is required.

6-73

DPY

Example
DPY - test 3 complete - pass
DPY - trailing blank,

See Also
A U X

Functions of DPY Characters

CHARACTER ACTION CAUSED

Causes the 9010A to beep when DPY is executed.
This symbol does not appear on the display when
DPY is executed.

% When $ is followed by a hexadecimal or symbolic
register name, it causes the contents of the
designated register to be displayed in
hexadecimal on the display. -

@ The same as for the $ symbol except that the
contents are displayed in decimal.

I When / is followed by a hexadecimal digit or
symbolic register name, it suspends program
execution and waits for input. When the operator
enters a hexadecimal value terminated by
ENTER, the 9010A places the value in the
designated register and resumes program
execution. Pressing ENTER without specifying a
hexadecimal value causes the value to default to
the previous contents of the register.

\ The same as for the / symbol, except that the
9010A accepts only a decimal entry.

6-74

%

+

When ? is followed by a hexadecimal digit or
symbolic register name, it suspends program
execution and displays the question mark (?). If
the operator presses the CLEAR/NO key, the
9010A places a 0 in the designated register. If the
operator presses the ENTER/YES key, the
9010A places a 1 in the designated register. After
the 1 or 0 is placed in the register, the 9010A
removes the question mark and then resumes
program execution.

When TO is followed by a hexadecimal digit or
symbolic register name, it enables or disables
asynchronous input from the operator during
execution. Asynchronous input is stored in the
register designated by the hexadecimal digit or
symbolic register name

When + is the first character in the specification,
it causes following characters in the specification
to be appended to the text that is on the display at
the time DPY is executed.

NOTE: In order to cause one of the special symbols $, @, / , \ , ?, or % to
be displayed in the case where the symbol is followed by a hexadecimal
digit or symbolic register name, the symbol must appear twice in the
specification.

EXAMPLE:
STATEMENT TEXT DISPLAYED

DPY $1
DPY $$l
DPY $X

(contents of REGl)

6-75/6-76

DTOG
A

Syntax
[decl

[bin]

IRE6 C]

Function
Toggles a programmer-specified data bit from one binary logic state to
another by performing two write operations at a programmer-
specified address.

The DTOG @ CTL function toggles a programmer-specified control
line from one binary logic state to another.

If the DTOG @ CTL form is used and the expression immediately
following the equal sign (=) is specified explicitly, the expression
must be a binary value from 0 to 11111111.

If the address (not the DTOG @ CTL form) is specified, then the
following bit number expression (after BIT) must have a decimal
value in the range O-(n-1) where n equals the number of bits in the
microprocessor data bus.

In the DTOG @ CTL form, if an expression is used to specify the
bit number, it must have a decimal value in the range O-7.

Refer to the pod instruction manuals or the label on the interface
pod to identify which control lines are user-writable for a specific
p o d .

Example
DTOG @ REGF = FF BIT REG3

DTOG @ CTL = 01011111 BIT5

See Also
ATOG, RAMP, READ, WALK, WRITE

6-77/6-78

EXECUTE

Syntax

WI

Function
Executes one program from within another program in a subroutine-
like fashion.

l Program numbers are limited to the range O-99.

a A program may call a program which in turn calls another
program. Programs may be called up to ten levels of nesting.

l If multiple levels of programs are called, a program may not call
any program from a previous level.

l A program may not call itself.

a Symbolic program names can be used in this statement.

l The compiler issues a warning message if you attempt to execute a
program that is not contained in the files being compiled.

Example
EXECUTE PROGRAM 5

EX 5

EXECUTE DELAY

See Also

PROGRAM

6-79/6-60

GOT0

Syntax

Function
Allows the programmer to construct GOT0 (unconditional branch)
steps which redirect program execution to a label in the program.

Symbolic label names can be used in this statement.

Within a single program, symbolic names cannot be mixed with
hexadecimal label numbers (O-9, A-F).

More than one GOT0 step may redirect program execution to the
same label.

The label to which program execution is redirected may appear
anywhere in the program.

Example
GOT0 3

See Also
LABEL, IF

6-61/6-62

IF

-

Syntax

60T0

Function
Creates conditional branch steps.

Symbolic label names can be used in this statement.

Within a single program, symbolic labels cannot be mixed with
hexadecimal label numbers (O-9, A-F).

More than one IF step may redirect program execution to the same
label.

The label to which program execution is redirected may appear
anywhere in the program.

Example
IF REG3 AND 7F > REG4 GOT0 1

See Also
GOTO, LABEL

6-83/6-84

IO TEST
Syntax

Function
Tests the read-write capability of all bits in I/O registers described as
having read-write capability.

l If an expression is used to specify the bit mask (following BTS), it
must have a hexadecimal value in one of the following ranges:

l-FF 8-bit microprocessor
1 -FFFF 16-bit microprocessor
1 -FFFFFF 24-bit microprocessor
I-FFFFFFFF 32-bit mocroprocessor

l Bits that are equal to 1 in the bit mask correspond to data lines that
are to be tested for read-write capability. Bits that are equal to 0 in
the bit mask correspond to data lines that are not to be tested for
read-write capability.

l If no address block is specified, then the 9010A performs the
specified IO TEST over all blocks of memory described as I/O
under Address Space Information.

Example
IO TEST @ 4010 - 401F BTS 30

See Also
AUTO TEST, BUS TEST, RAM TEST, ROM TEST, LEARN,
ADDRESS DESCRIPTOR (in Source File Syntax part of this
section)

6-65/6-66

LABEL

Syntax

Function
Allows the programmer to create labels, i.e., program steps inserted
into programs to provide points of entry for branching steps. Identifies
a specific location in a program.

Each label is identified by a single hexadecimal digit (O-9 and A-F)
or with a symbolic name.

Within a single program, symbolic label names cannot be mixed
with hexadecimal label numbers (O-9, A-F).

9010A Language keywords must not be chosen as symbolic label
names (such as LOOP).

There are 16 possible labels for each program.

All label names must be distinct.

Labels may appear in any order.

A label may exist without a branch (GOTO) step to the label.

A 9010 program statement can follow the colon.

Example
L l :

DONE: STOP

FOUND: LABEL FOUND

See Also
GOTO, IF

6-67/6-66

LEARN

Syntax

Function
Tests each address location in sequence and identifies it as RAM,
ROM, I/ 0, or unassigned. Also creates an address descriptor for each
block of memory which was identified.

l If no addr block is specified, the Learn operation is performed on
the entire microprocessor address space. Refer to the pod
instruction manuals for specific address information.

Example
LEARN

LEARN @ 1000 - 4FFF

See Also
IO TEST, RAM TEST, ROM.TEST, ADDRESS DESCRIPTOR (in
Source File Syntax part of this section)

6-89/6-90

PROBE

Syntax

Function
The Read Probe function places accumulated probe data into Register
0. Probe data consists of the logic levels detected, the number of events
counted, and the signature computed at the probe tip.

In Register 0, event counts are assigned to bits O-6, signatures are
assigned to bits 8-23, and logic levels are assigned to bits 24-26.

Example
READ PROBE

RD PROBE

PROBE

See Also
S Y N C

6-91/6-92

RAM TEST

Syntax

Function
RAM SHORT quickly identifies common RAM failures such as
address decoding errors or bits that are not read-writable. RAM
LONG performs the same tests as RAM SHORT and in addition,
performs a pattern-sensitivity test for locating “soft” RAM errors.

l If no address block is specified, then the 9010A performs RAM test
over all blocks of memory specified as RAM under the Address
Space Information.

Example
RAM SHORT @ 1000 - 3FFF

RAM LONG

See Also
AUTO TEST, BUS TEST, IO TEST, ROM TEST, LEARN,
ADDRESS DESCRIPTOR (in Source File Syntax part of this
section)

-

6-93/6-94

RAMP

Syntax

Function
Performs a series of write operations at a programmer-specified
location in the UUT microprocessor system, beginning with all data
bits equal to zero, and increasing by one until all data bits equal one.

Example
R A M P @ 3 4 F 0

See Also
ATOG, DTOG, READ, WALK, WRITE

6-95/6-96

Syntax

Function
Reads a programmer-specified location in the UUT microprocessor
system and places the data in register E.

READ STS reads the values of the UUT microprocessor status lines
and places the corresponding value in register C.

Example
READ @ REGl

/-
RD STS

See Also
PROBE, READ, WRITE, ATOG, DTOG, RAMP, WALK

6-97/6-96

REG

Syntax

Function
Enters the specified data in the specified register.

a Symbolic register names can be used in this statement.

l Symbolic register names must be declared before use in the local or
global declarations section.

Example
REGl= 1FF

I‘ TMP = REGA SHR 4

See Also

SYMBOLIC REGISTER NAME DECLARATION (in General
Information part of this section)

6-99/6-100

REPT
LOOP

Syntax

test or
4 troubleshooting

statement

Function
REPT causes the action previously performed to be repeated once.
LOOP causes the action previously performed to be repeated
continuously.

l REPT and LOOP may not be specified as steps by themselves but
may be specified as modifiers after a troubleshooting test or
function has been specified.

l REPT and/or LOOP can follow these test or troubleshooting
statements:

-
AUTO TEST
BUS TEST
RAM TEST
ROM TEST
IO TEST

READ
WRITE
RAMP
W A L K
ATOG
DTOG

Example
RAMP @ REGF REPT REPT

WALK @ 401C = 1 LOOP

.-

6-101/6-102

Syntax

[GEG 01

Function
Computes a ROM signature for each block of ROM and compares it
to the reference ROM signature.

l If no address block is specified, then the 9010A performs a ROM
Test over all blocks of memory specified under Address Space
Description and compares the signatures to those specified in the
Address Space Information.

l The signature expression must have a hexadecimal value in the
range 0-FFFF.

Example
ROM TEST

ROM TEST @ 8000 - 9FFF SIG AFC7

See Also
AUTO TEST, BUS TEST, IO TEST, RAM TEST

6-103/6-104

RUN UUT

Syntax

Function
Allows the interface pod microprocessor to execute the program code
stored in the UUT.

l If an address is specified, the UUT begins executing the code at the
address indicated.

l If no address is specified but a RUN UUT setup parameter is
present, the address from the setup statement is supplied.

l If no RUN UUT statement appeared in the setup section, but a pod
data file was included at the beginning of the source file, then the
value for UUTADR will be supplied.

l If a pod data file was not included at the beginning of the source
file, the default address is 0000.

Example
R U N UlJT

R U N UUT @ 1 0 0 0

See Also
Default Setup Parameters (Appendix D), RUN UUT (in Setup
Parameters part of this section)

6-105/6-106

Syntax

S T O P

Function
Suspends program execution at desired points.

l To cause the 9010A to resume program execution, the operator
must press the CONT key.

Example
STOP

6-107/6-108

SYNC

Syntax

Function
Enables the operator to synchronize the probe operation to events in
the microprocessor bus or allow the probe to oscillate at 1 kHz (free
run).

Example
SYNC A

0 SYNC FREE-RUN

See Also
PROBE

6-109/6-110

UNARY

Syntax

Function
Performs the specified unary operation on the contents of the indicated
register.

l Symbolic register names can be used in this statement.

l Register identifiers must be previously declared in the local or
global declaration section.

l Unary operator shorthand may not be used in this statement (i.e.,
INC 3 REG5 is a syntax error).

Example
/NC REG7

/NC ERRCNT

See Also

REG

!ERRCNT is a symbolic register name

_-.

6-ll W-112

WALK

Syntax

Function
Rotates a programmer-specified bit pattern across data lines by
performing a series of write operations at a programmer-specified
address. The process continues until the data bits are rotated through
every possible position.

Example
W A L K @ 3 4 8 0 = 7 F

See Also
ATOG, DTOG, RAMP, READ, WRITE

-

6-113/6-114

WRITE

Syntax

Function
Writes programmer-specified data to a programmer-specified location
in the UIJT microprocessor system.

WRITE @ CTL causes the 9010A to write control lines to the
programmer-specified logic levels.

l If an expression is used with the CTL form, it must have a binary
value from 0 to 11111111. The binary string corresponds to the
eight possible UUT control lines. The 9010A forces control lines
represented by a 1 high, and forces control lines represented by a 0
low.

l Refer to the pod instruction manuals or the label on the interface
pod itself to identify which control lines are user-w&able for a
specific pod.

Example
W R I T E @ 7 1 3 6 = 2 F

W R C T L = 1 1 0 0 0 1 0 0

See Also
ATOG, DTOG, RAMP, READ, WALK

6-115/6-116

APPENDICES

CONTENTS

A Keywords . A-l
B Predefined Register Names . B-l
C Optional Keywords and Keyword Abbreviations C-l
D Default Setup Parameters . D-l
E Parameter Limits . E-l
F Error Messages . F-l

Appendix A
Keywords

* Identifies Setup Keywords

active * enable *
address * err *
and error *
assign errors *
atog ex
auto exercise *
aux execute

b a d *
beep *
binary
bit
bits *
bts *
bus *
bytes

control *
CPl
ctl

data *
dec
declarations
dw
dtog

force *
free

got0

if
illegal *
inc
include
information *
interrupt *
I O

label
learn
line *
linesize *
long
loop

newline *
no *

on *
or

pod *
power *
probe
program

ram *
ramp
rd
read
reg
rept
rom *
run *

setup *
shl
short
shr
sig *
space *
stall *

stop
sts
supply *
sync

test *
timeout *
to
transition *
trap *

unstall *
uut *

walk
wr
write

yes *

A-l /A-2

r

Appendix B
Predefined Register Names

REGISTER SYMBOLIC
NAME I FUNCTION

BITMASK
ROMSIG
STSCTL
BITNUM
DAT
ADR
PBDAT

Bit Mask
ROM Signature
STWCTL Information
Bit Number
Data
Address
Read Probe Data

/--

B-l /B-2

Appendix C
Optional Keywords and
Keyword Abbreviations

ELEMENT

OPTIONAL KEYWORDS AND SYMBOLS

TEST

@

-

LABEL x

PROGRAM

INFORMATION

READ

xx BYTES

RESTRICTIONS

None, always
optional

None, always
optional

Optional only
in DPY, AUX, and
SETUP parameters

None, always
optional (used in
LABEL statements)

Optional only in
EXECUTE PROGRAM xx
c o m m a n d s

None, always
optional (used
in Setup and Address
Descriptor sections)

Optional only in
READ PROBE command

None, always optional
(used in program
sta temen ts)

TWO EOUIVALENT AND
ACCEPTED STATEMENT!
AUTO TEST
AUTO

WRITE @ lOOFF = 25
WRITE lOOFF = 25

DPY TEST MESSAGE
DPY-TEST MESSAGE
POD - 8080
POD 8080

3: LABEL 3
3:

EXECUTE PROGRAM 35
EXECUTE 35

SETUP INFORMATION
SETUP

READ PROBE
PROBE

PROGRAM 10 524 BYTES
PROGRAM 10

C - l

Keyword Abbreviations

KEYWORD ABBREVIATIONS

KEYWORD ABBREVIATION

SYNC ADDRESS SYNC A
SYNC DATA SYNC D
SYNC FREE-RUN SYNC F
READ RD
WRITE WR
EXECUTE EX

c-2

.-

Appendix D
Default Setup Parameters

The information in the following table applies only to these pods:

1802, 6502, 6800, 68000, 6802, 6809/6809E, 8041/8048, 8080, 8085,
8086/8086MX, 8088/ 8088MX, 9900, Z80

Setup Parameters Common to All Pods Listed Above

I PARAMETER I DEFAULT VALUE I

TRAP BAD POWER SUPPLY
TRAP ILLEGAL ADDRESS
TRAP ACTIVE INTERRUPT
TRAP ACTIVE FORCE LINE
TRAP CONTROL ERROR
TRAP ADDRESS ERROR
TRAP DATA ERROR

YES
YES
N O
YES
YES
YES
YES

EXERCISE ERRORS
I

YES
BEEP ON ERR TRANSITION YES I

TIMEOUT 200
STALL 13
UNSTALL 1 1
NEWLINE OOOOODOA
LINESIZE 7 9

I ‘BUS TEST @
I

0 0 0 0
‘RUN UUT @ 0 0 0 0 I

‘If a pod name is not specified in the setup parameter section of the source file,
then the default address for BUS TEST and RUN UUT are as indicated. If a pod
data file is included and the pod name is specified or if a pod is connected to the
9OlOA when the hex file is downloaded, then the specified pod’s default BUS
TEST and RUN UUT addresses will override these.

D-l

Default Setup Parameters

POD-SPECIFIC SETUP PARAMETERS

POD BUS TEST @ RUN UUT @

1802 FFFF 0000

6 5 0 2 0 0 0 0 FFFFFFFC

6 8 0 0 0 0 0 0 FFFFFFFE

6 8 0 2 0 0 0 0 FFFFFFFE

6 8 0 9 0 0 0 0 FFFFFFFE

6809E 0 0 0 0 FFFFFFFE

8041 2 0 0 0 3 0 0 0

8 0 4 8 1100 0 0 0 0

8 0 8 0 FFFF 0 0 0 0

8 0 8 5 FFFF 0 0 0 0

8 0 8 6

8086MX

8 0 8 8

0 0 0 0

0 0 0 0

0 0 0 0

F F F F O

F F F F O

F F F F O

1OOOFFE F6000000

ENABLEABLE DEFAULT
LINE VALUE

WAIT

R D Y

TSC
D B E
HALT

HALT
BR/ACK
INTR

MR
HALT

YES

YES

YES
YES
YES

YES
YES
YES

YES
YES

HALT YES
DMA YES
M R YES

TSC
HALT

UNUSED

YES
YES

YES

UNUSED YES

READY YES
HOLD YES

READY YES
HOLD YES

READY YES
HOLD YES
INTR YES

READY YES
R Q G T O YES
RQGTl YES
INTR YES

READY YES
HOLD YES
INTR YES

-

D-2

/--

8088MX

9900

280

0000 FFFFO

FOOO

FFFF

0000

0000

Default Setup Parameters

READY
INTR
RQGTO
RQGTl

READY
HOLD

BUSRQ
WAIT

YES
YES
YES
YES

YES
YES

YES
YES

D-3/D-4

Appendix E
Parameter Limits

SETUP PARAMETER LIMITS

PARAMETER

BUS TEST
RUN UUT
STALL
UNSTALL
LINESIZE
TIMEOUT
NEWLINE

0-FFFFFFFF
0-FFFFFFFF
0-FF
0-FF
1 O-255
O-60000
6 Hexadecimal Diaits

ADDRESS DESCRIPTOR PARAMETER LIMITS

PARAMETER LIMIT

signature (ROM) 0-FFFF
bit mask (IO) l-FFFFFFFF

E-l /E-2

Appendix F
Error Messages

INTRODUCTION
This appendix describes error messages that may be produced by the
9010A Language Compiler programs. The appendix is divided into
three parts: Compiler Program Error Messages (9LC), File Transfer
Error Messages (XFER), and Disk Verification Program Error
Messages (VERIFY). Along with each error message is a description of
possible causes for the error. The description is not meant to be a
comprehensive list; other causes may also be possible.

Other messages may be produced by the host computer system. For
explanations of system-dependent errors, refer to System
Dependencies in Section 3 and to the user manual for the host system.

F-l

Error Messages

COMPILER PROGRAM ERROR MESSAGES
Address range error

In an address range, the second address was incorrectly specified
smaller than the first address.

EXAMPLE: RAM @ 10000 - 1OFF

Attempt to redefine symbolic name
A symbolic name was used in the wrong context (i.e., the name was
already used as a program name, but now you are attempting to use it
as a global register name, you are using a local register name as the
target of a GOTO, or you are using a label name as a program name in
an EXECUTE statement).

Binary number expected
Can occur if you try to write a non-binary value to CTL or try to
DTOG a non-binary value for DTOG @ CTL.

Cannot define REGO-7 as global registers
You tried to assign a symbolic name to a local register (REGO-7) in a
globally declared ASSIGN statement. You can only assign symbolic
names to these registers locally.

Cannot open file (filename)
An illegal file name was entered.
You attempted to open a file for writing on a write-protected disk.
You attempted to open a file that does not exist.
You attempted to create a file on a full disk.
An Include file cannot be opened because it would result in more files
being opened concurrently than your system allows.

Checksum error, should be xx
A checksum error was encountered.

Duplicate label
A label was used more than once.

F-2

Error Messages

Duplicate program
An attempt was made to compile a source file with two programs with
the same number or same name.

Error in hex line
There was a missing character in a binary program.

Illegal address
An address with more than eight hexadecimal digits (past the 32-bit
limit) was specified.

Illegal bitmask
A bitmask equal to 0, or with more than eight hexadecimal digits was
specified.

Illegal bitnumber
A bitnumber was specified as hexadecimal rather than decimal, or the
bitnumber was out-of-range for the statement (i.e. in ATOG or DTOG
statement, bitnumber > 31 will cause this error, in DTOG @ CTL,
bitnumber > 7 will cause this error). Consult the appropriate page in
Section 6, Language Reference, for the statement in error to determine
the bitnumber limits.

Illegal label number
A hexadecimal label number (a single digit) is out of the range O-9 or A-
F. (For example, FF was used as a label number, or GOT0 AB was
attempted.)

Illegal option
You have entered an illegal listing option from the interactive mode, or
have an illegal listing option in the command line.

Illegal program name
A keyword was used as a program name, a program name of all
hexadecimal characters was used, or one of the predefined register
names was used as a program name.

EXAMPLES: Program test
Program abed
Program bitmask

F-3

Error Messages

Illegal program number
A program number out of the range O-99, or a bad program number,
such as PROGRAM 44R, was used.

Illegal program order
Numbered programs are not in numerical order. Too many
symbolically named programs are between numbered programs.
Programs appear in the source file after program 99.

Illegal register number
A hexadecimal register number (a single digit) is out of the range O-9 or
A-F (i.e., REG FF z lOOFF).

Illegal signature
More than four hexadecimal digits were used in a signature.

Illegal value
A value is out-of-limits.

EXAMPLES: LINESIZE 300
TIMEOUT 70000

You should check the appropriate page in Section 6, Language
Reference, to determine the legal range of values.

INCLUDES nested too deeply
INCLUDE statements are nested past the maximum depth of five.
(Because this is a system dependency, your system may not allow
nesting to five.)

Input line too long
Lines longer than the maximum of 255 characters were used.

Invalid forcing line
You probably did not include the appropriate pod data file in the
source file.
You may have misspelled the name of the forcing line in an ENABLE
statement.
The pod data file may have been modified to contain a FORCELN
name more than six characters long.

F-4

Error Messages

Missing checksum, should be xxxx
There were no checksums in a binary program, or the checksums were
missing the delimiter characters (* or $).

Missing label
A label was used as the target of a GOTO, but was not created (through
a LABEL statement). Also, check for misspelling of label names.

Mixed symbolic label names with hex label numbers
Within a single program, all of the labels must be symbolically named
or all of the labels must be hexadecimal digits. The two cannot be
mixed.

Program not found
A literally-numbered program used as the target of an execute
statement (i.e., EXECUTE PROGRAM 96) was not present in the
source file(s) that was compiled.

Syntax error
The indicated line contains a statement that is incorrectly formed. It
may have a misspelled word, it may be incomplete, it may be missing a
keyword, or a keyword or hexadecimal constant may have been used
as a symbolic name.

Note that the spelling that the 9010A uses on its display is not strictly
compatible with the compiled language.

Example: 9010A Display: SET-TRAP BAD PWR SUPPLY? YES
9LC Syntax: TRAP BAD POWER SUPPLY - YES

Refer to the appropriate syntax diagram to verify correct spelling and
syntax.

Too many labels
More than 16 labels were used in one program.

Too many symbolic names
You used more than 100 local symbolic names (register/label names)
or more than 200 global symbolic names (program names and register
names).

F-5

Error Messages

Undefined symbolic name
A symbolic register name was used before that register was declared in
an ASSIGN statement or the register name was misspelled or a
symbolically-named program used as the target of an Execute
statement (i.e., EXECUTE PROGRAM MISSING) was not present
in the source file(s) that was compiled.

USAGE: 9lc [-isda] [-h hexfile] [-I [lisfile]] srcfile

You have tried to use the compiler program incorrectly (i.e., an illegal
option was specified, you did not put a filename after the -h flag, etc.).
The usage line above shows the correct format for using the compiler.

Warning: illegal character
A character outside of the DPY / AUX character set has been used. For
example, you have attempted to use parenthesis0 or brackets [] in a
DPY/ AUX string. Valid characters are described on the AUX and
DPY pages in Section 6, Language Reference.

-
Warning: incorrect byte count

The byte count listed on the program statement is incorrect. The
program has probably been edited.

Warning: invalid separator character
A character other than a tab, space, or dash was used to separate a
DPY/ AUX string from the keyword.

Warning: string too long, discarding: xxxx
There are more than 32 characters in the AUX/DPY string. The
compiler program will ignore all characters past the first 32.

“ expected in INCLUDE statement
Missing quote surrounding the filename to be included.

F-6

Error Messages

-.

FILE TRANSFER ERROR MESSAGES
Address descriptors must precede program information

You attempted to save address descriptors after saving programs.

Address descriptors previously saved in this file
You attempted to save address descriptors more than once.

Cannot open (filename)
An illegal file name was entered.
You attempted to open a file for writing on a write-protected disk.
You attempted to open a file that does not exist.
You attempted to create a file on a full disk.

Cannot open temporary file
There is not enough room to open a temporary file.

Data transmission error detected
A checksum error was detected, indicating that data transmission
errors occurred. This is possibly due to a bad connection between the
9010A and host computer, or the time delay specified by the Setup
parameter NEWLINE is not a large enough value. Check the
connections and try again, or try a larger time delay value.

Illegal option
An illegal option was used. Enter a valid option.

Illegal program ordering
You attempted to save a program with a number LOWER than a
program already saved.

Incorrect data format for transfer
You pressed the wrong keys on the 9010A.
Port setup parameters were set incorrectly.
The 9010A started from a stall.

Check the port parameters and try again.

F - 7

Error Messages

No address descriptors to save
You attempted to save address descriptors when none were transferred
from the 9010A.

No program information to save
You attempted to save programs when none were transferred from the
9010A.

Not a valid port
The port name entered is not valid for the host system. Use avalid port
name.

Other information already saved prevents entire file save
You attempted to save an entire file after already saving other
information.

Program (program number) already saved
You attempted to save the same program more than once.

Program (program number) not found
You attempted to save a program that was not transferred from the
9010A.

Programs already saved will cause illegal ordering
You attempted to save all programs after some have already been
saved.

Setup information must precede program information
You attempted to save setup information after saving programs.

Setup information previously saved in this file
You attempted to save setup information more than once.

-.

Error Messages

DISK VERIFICATION PROGRAM ERROR MESSAGES
The following messages are the result of file configuration errors. If the
errors persist after an attempt to recopy the indicated files, contact a
Fluke Technical Service Center for advice.

Data file VERIFY.DAT not found
The file VERIFY.DAT does not reside on the system default device.
Copy VERIFY.DAT from the original diskette to the system default
device.

File (filename) not found
The file filename does not reside on the system default device. If the file
is needed, copy it from the original diskette to the system default
device.

File (filename) error -- signature Is tslg), should be (slg)
The indicated file has been corrupted or has been modified. Check that
the appropriate Copy command was used (in systems where different
commands are used for binary and ASCII data), check for bad blocks
on the disk, or verify that the version number for the file is the same as
specified in the VERIFY.DAT file.

Illegal or missing signature for file (filename)
The VERIFY.DAT file may have been altered. Try using a new copy
from the original diskette.

(XI files tested -- <I> bad signatures, (1) missing files
Provides a summary of the errors that occurred while running the
VERIFY program.

F-9/F-l 0

INDEX

Abbreviations, Keyword, 4-17
Address Space Information, 4-8

Format

/-

Coding Shortcuts, 4-16
Default Entries, 4-18
Unary Operator Shorthand, 4-18

Command Line Mode, 5-8
Comments, Program, 4-7
Compiler Program (9LC)

How it works, l-5
Package, 1-7
Using, 5-6

Computer Systems, Host, 1-4
CP/M Operating Systems, 3-17

General Program, 4-4
Hex, 5-16
Source, 5-14

Fluke 1720A Instrument Controller, 3-4
Fluke 1722A Instrument Controller, 3-9

General Program Format, 4-4
Getting Started, 3-1

Data Files, Pod, l-8,4-11
Default Entries, 4-18
Default Setup Parameters, Appendix D
Disk Verification Program, 1-7

Hex Format, 5-6
Host Computer Systems

W/M Operating Systems, 3-17
Fluke 1720A Instrument Controller, 3-4
Fluke 1722A Instrument Controller, 3-9
IBM Personal Computer, 3-13
Kaypro II Personal Computer, 3-17

Errors, Syntax, 5-11
Extensions, Language, 1-6

IBM Personal Computer, 3-13
Inclusion, File, 4-19
Information

Address Space, 4-8
Setup, 4-9

File Transfer Program (XFER), 1-7 Interaction, Pad/9010A, 4-12

Files Interactive Mode, 5-6

./-- Inclusion, 4-19
Pod Data, 1-8, 4-11

Source, 5-4, 5-14
Kaypro II Personal Computer, 3-17
Keyword Abbreviations, 4-17, Appendix C

1

index

Keywords, Appendix A
Keywords, Optional, 4-17, Appendix C

Labels, Symbolic, 4-26
Language Extensions, l-6
Listing File Options, S-10

M o d e s
Command Line, 5-8
Interactive, 5-6

Names
Predefined Register, 4-29, Appendix B
Symbolic, 4-22
Symbolic Program, 4-24
Symbolic Register, 4-28

Operator Shorthand, Unary, 4-18
Optional Keywords, 4-17
Options, Listing File, 5-11

Parameter Limits, Appendix E
Pod Data Files, l-8, 4-11
Predefined Register Names, 4-29, Appendix B
Preparing Source Files, 5-4
Program

Comments, 4-7
General Format, 4-4
Names, Symbolic, 4-24
Transferring, 5-12
Writing, Section 4

Programs
Compiler, 1-7
Disk Verification, 1-7
File Transfer, 1-7
9OlOA, 4-8

Setup Information, 4-9
Setup Keywords, Appendix A
Setup Parameters, Default, Appendix D
Shortcuts, Coding, 4-16
Shorthand, Operator, Unary, 4-M
Source Files, Preparing, 5-4
Source Format, 5-14
Space Information, Address, 4-8
Statements, Section 6
Symbolic

Labels, 4-26
Names, 4-22
Program Names, 4-27
Register Names, 4-28

Syntax Diagrams
Notation, 6-4
Symbols, 6-5

Syntax Errors, 5-11, Appendix F

Transferring Programs, 5-12

Unary Operator Shorthand, 4-18
Use with the 9005A, 1-8
Using the Compiler, 5-6

Writing Programs, Section 4

XFER, File Transfer Program, 1-7

9LC, Compiler Program, 5-6
9005A, Using with the, 1-8
9OlOA/Pod Interaction, 4-12
9010A Programs, 4-8

Reference, Language, Section 6
Register Names, Predefined, 4-29, Appendix B
Register Names, Symbolic, 4-28

2

9010A Language Compiler Software Error Report Form
We would like to know how the9010A Language Compiler meets your expectations, and whether you

/--- encoun te red any shor tcomings , inc lud ing miss ing fea tu res you cons ider impor tan t , cases where the
program does something unexpected, and bugs of all kinds. This information will help us to improve
the product.

We suggest that you retain this sheet as an original and use a photocopy for each report.

Date: Name of User:

Co. Name: Dept:

Street: City:

Mail Stop: Phone No.

Model Number (i.e., 9OlOA-920, etc. from diskette label):

Software Version Number (from diskette label):

Program Name and Version Number (i.e.. XFER ver 1.0, 8080.POD ver. 1.2, etc.):

Host Operating System (include Version Number):

Host Computer System (i.e.. IBM PC):

Description of problem:

How can problem be reproduced? (Attach listing or separate sheet of paper, if appropriate)

Were you able to work around the problem? If so. how?

Return completed form to: John Fluke Mfg. Co., Inc.

/-- Digital Service Products
M / S 2 6 7 D
9LC Product Manager
P.O. Box c9090
Everett, WA 98206

	Contents
	Introduction
	How To USe This Manual
	Getting Started
	Writing Programs
	Using the Compiler
	Language Reference
	Source File Syntax
	Setup Parameters
	9010A Program Statements
	Appendices
	Keywords
	Predifined Register Names
	Optional Keywords & Abbreviations
	Default Setup Parameters
	Parameter Limits
	Error Messages

	Index & Change/Errata

