
Programmer’s Guide

Publication number 16555-97011
First edition, January 1997

For Safety information, Warranties, and Regulatory

information, see the pages behind the Index

 Copyright Hewlett-Packard Company 1987, 1990, 1993, 1994, 1997
 All Rights Reserved

HP 16554A, HP 16555A, and
HP 16555D State/Timing Logic
Analyzers

ii

In This Book

This guide, combined with the
HP 16500/16501A Programmer’s

Guide, provides you with the information
needed to program the HP 16554A and
HP 16555A/D logic analyzer modules.
Each module has its own reference to
supplement the mainframe manual since
not all mainframes will be configured with
the same modules.

This manual is organized in three parts.
Part 1 consists of chapters 1 and 2 which
contain general information and
instructions to help you get started.

Chapter 1 also contains:

• Mainframe system commands that are
frequently used with the logic analyzer
module

• HP 16554A/HP 16555A/HP 16555D
logic analyzer command tree

• Alphabetic command-to-subsystem
directory

Chapter 2 contains module-level
commands.

Part 2 consists of chapters 3 through 16
which contain the subsystem commands
for the logic analyzer and chapter 17
which contains information on the
SYSTem:DATA and SYSTem:SETup
commands for this module.

Programming the HP 16554A/
HP 16555A/HP 16555D1

Module Level Commands2

MACHine Subsystem3

WLISt Subsystem4

SFORmat Subsystem5

STRigger (STRace) Subsystem6

SLISt Subsystem7

SWAVeform Subsystem8

SCHart Subsystem9

COMPare Subsystem10

TFORmat Subsystem11

TTRigger (TTRace) Subsystem12

TWAVeform Subsystem13

TLISt Subsystem14

iii

Part 3, chapter 18, contains program examples of actual tasks that show you
how to get started in programming the HP 16554A and HP 16555A/D logic
analyzers. These examples are written in HP BASIC 6.2; however, the
program concepts can be used in any other popular programming language.

Error messages for the HP 16554A and HP 16555A/D are included in generic
system error messages and are in the HP 16500/16501A Programmer’s

Guide.

iv

SPA Subsystem16

DATA and SETup Commands17

Programming Examples18

Index

SYMBol Subsystem15

v

vi

Contents

Part 1 General Information

1 Programming the HP 16554A/ HP 16555A/HP 16555D

Selecting the Module 1–3
Programming the Logic Analyzer 1–3
Mainframe Commands 1–5
Command Set Organization 1–8
Module Status Reporting 1–12
MESE<N> 1–13
MESR<N> 1–15

2 Module Level Commands

ARMLine 2–5
DBLock 2–5
MACHine 2–6
SPA 2–7
WLISt 2–7

Part 2 Commands

3 MACHine Subsystem

MACHine 3–4
ARM 3–5
ASSign 3–6
LEVelarm 3–7
NAME 3–8
REName 3–8
RESource 3–9
TYPE 3–10

Contents–1

4 WLISt Subsystem

WLISt 4–4
DELay 4–5
INSert 4–6
LINE 4–7
MINus 4–8
OSTate 4–9
OTIMe 4–9
OVERlay 4–10
PLUS 4–11
RANGe 4–12
REMove 4–12
XOTime 4–13
XSTate 4–13
XTIMe 4–14

5 SFORmat Subsystem

SFORmat 5–6
CLOCk 5–6
LABel 5–7
MASTer 5–9
MODE 5–10
MOPQual 5–11
MQUal 5–12
REMove 5–13
SETHold 5–13
SLAVe 5–15
SOPQual 5–16
SQUal 5–17
THReshold 5–18

Contents

Contents–2

6 STRigger (STRace) Subsystem

Qualifier 6–6
STRigger (STRace) 6–8
ACQuisition 6–8
BRANch 6–9
CLEar 6–11
FIND 6–12
MLENgth 6–13
RANGe 6–14
SEQuence 6–15
STORe 6–16
TAG 6–17
TAKenbranch 6–18
TCONtrol 6–19
TERM 6–20
TIMER 6–21
TPOSition 6–22

7 SLISt Subsystem

SLISt 7–7
COLumn 7–7
CLRPattern 7–8
DATA 7–9
LINE 7–9
MMODe 7–10
OPATtern 7–11
OSEarch 7–12
OSTate 7–13
OTAG 7–14
OVERlay 7–15
REMove 7–15
RUNTil 7–16
TAVerage 7–17
TMAXimum 7–17
TMINimum 7–18
VRUNs 7–18

Contents

Contents–3

XOTag 7–19
XOTime 7–19
XPATtern 7–20
XSEarch 7–21
XSTate 7–22
XTAG 7–22

8 SWAVeform Subsystem

SWAVeform 8–4
ACCumulate 8–5
ACQuisition 8–5
CENTer 8–6
CLRPattern 8–6
CLRStat 8–7
DELay 8–7
INSert 8–8
MLENgth 8–8
RANGe 8–9
REMove 8–10
TAKenbranch 8–10
TPOSition 8–11

9 SCHart Subsystem

SCHart 9–4
ACCumulate 9–4
CENTer 9–5
HAXis 9–5
VAXis 9–6

10 COMPare Subsystem

COMPare 10–4
CLEar 10–5
CMASk 10–5
COPY 10–6
DATA 10–6

Contents

Contents–4

FIND 10–8
LINE 10–9
MENU 10–9
RANGe 10–10
RUNTil 10–11
SET 10–12

11 TFORmat Subsystem

TFORmat 11–4
ACQMode 11–5
LABel 11–6
REMove 11–7
THReshold 11–8

12 TTRigger (TTRace) Subsystem

Qualifier 12–6
TTRigger (TTRace) 12–8
ACQuisition 12–9
BRANch 12–9
CLEar 12–12
EDGE 12–13
FIND 12–14
MLENgth 12–16
RANGe 12–17
SEQuence 12–18
SPERiod 12–19
TCONtrol 12–20
TERM 12–21
TIMER 12–22
TPOSition 12–23

Contents

Contents–5

13 TWAVeform Subsystem

TWAVeform 13–7
ACCumulate 13–7
ACQuisition 13–8
CENTer 13–9
CLRPattern 13–9
CLRStat 13–9
DELay 13–10
INSert 13–11
MLENgth 13–12
MINus 13–13
MMODe 13–14
OCONdition 13–15
OPATtern 13–16
OSEarch 13–17
OTIMe 13–18
OVERlay 13–18
PLUS 13–19
RANGe 13–20
REMove 13–20
RUNTil 13–21
SPERiod 13–22
TAVerage 13–23
TMAXimum 13–23
TMINimum 13–24
TPOSition 13–24
VRUNs 13–25
XCONdition 13–26
XOTime 13–26
XPATtern 13–27
XSEarch 13–28
XTIMe 13–29

Contents

Contents–6

14 TLISt Subsystem

TLISt 14–7
COLumn 14–7
CLRPattern 14–8
DATA 14–9
LINE 14–9
MMODe 14–10
OCONdition 14–11
OPATtern 14–12
OSEarch 14–13
OSTate 14–14
OTAG 14–14
REMove 14–15
RUNTil 14–16
TAVerage 14–17
TMAXimum 14–17
TMINimum 14–18
VRUNs 14–18
XCONdition 14–19
XOTag 14–19
XOTime 14–20
XPATtern 14–20
XSEarch 14–21
XSTate 14–22
XTAG 14–23

15 SYMBol Subsystem

SYMBol 15–5
BASE 15–5
PATTern 15–6
RANGe 15–7
REMove 15–8
WIDTh 15–8

Contents

Contents–7

16 SPA Subsystem

MODE 16–7
OVERView:BUCKet 16–8
OVERView:HIGH 16–9
OVERView:LABel 16–10
OVERView:LOW 16–11
OVERView:MLENgth 16–12
OVERView:OMARker 16–13
OVERView:OVSTatistic 16–14
OVERView:XMARker 16–15
HISTogram:HSTatistic 16–16
HISTogram:LABel 16–17
HISTogram:OTHer 16–18
HISTogram:QUALifier 16–19
HISTogram:RANGe 16–20
HISTogram:TTYPe 16–21
TINTerval:AUTorange 16–22
TINTerval:QUALifier 16–23
TINTerval:TINTerval 16–24
TINTerval:TSTatistic 16–25

17 DATA and SETup Commands

Introduction 17–2

Data Format 17–3
SYSTem:DATA 17–4
Section Header Description 17–6
Section Data 17–6
Data Preamble Description 17–7
Acquisition Data Description 17–11
Time Tag Data Description 17–13
SYSTem:SETup 17–13

Contents

Contents–8

Part 3 Programming Examples

18 Programming Examples

Making a Timing Analyzer Measurement 18–3
Making a State Analyzer Measurement 18–5
Making a State Compare Analyzer Measurement 18–9
Transferring the Logic Analyzer Configuration 18–14
Checking for Measurement Completion 18–18
Sending Queries to the Logic Analyzer 18–19

Index

Contents

Contents–9

Contents–10

Part 1

1 Introduction to Programming
2 Module Level Commands

General Information

1

Programming the HP 16554A/
HP 16555A/HP 16555D

Introduction

This chapter introduces you to the basic command structure used to
program the logic analyzer. Also included is an example program that
sets up the timing analyzer for a basic timing measurement.
Additional program examples are in chapter 18.

1–2

Selecting the Module

Before you can program the logic analyzer, you must first "select" it. This
directs your commands to the logic analyzer.

To select the module, use the system command :SELect followed by the
numeric reference for the slot location of the logic analyzer (1 through 10
refering to slots A through J respectively). For example, if the logic analyzer
is in slot E, then the command:

:SELect 5

would select this module. For more information on the select command,
refer to the HP 16500/16501A Programmer’s Guide. It is available through
your HP Sales Office.

Programming the Logic Analyzer

A typical logic analyzer program will do the following:

• select the appropriate module

• name a specified analyzer

• specify the analyzer type

• assign pods

• assign labels

• sets pod thresholds

• specify a trigger condition

• set up the display

• specify acquisition type

• start acquiring data

Programming the HP 16554A/ HP 16555A/HP 16555D
Selecting the Module

1–3

The following example program sets up the logic analyzer to make a simple
timing analyzer measurement.

Example 10 OUTPUT XXX;":SELECT 3"
 20 OUTPUT XXX;":MACH1:NAME ’TIMING’"
 30 OUTPUT XXX;":MACH1:TYPE TIMING"
 40 OUTPUT XXX;":MACH1:ASSIGN 1"
 50 OUTPUT XXX;":MACH1:TFORMAT:LABEL ’COUNT’,POS,0,0,255"
 60 OUTPUT XXX;":MACH1:TTRIGGER:TERM A, ’COUNT’, ’#HFF’"

 70 OUTPUT XXX;":MACH1:TWAVEFORM:RANGE 1E −6"
 80 OUTPUT XXX;":MENU 3,5"
 90 OUTPUT XXX;":MACH1:TWAVEFORM:INSERT ’COUNT’"
 100 OUTPUT XXX;":RMODE SINGLE"
 110 OUTPUT XXX;":START"
 120 END

The three Xs (XXX) after the "OUTPUT" statements in the previous example
refer to the device address required for programming over either HP-IB or
RS-232-C. Refer to your controller manual and programming language
reference manual for information on initializing the interface.

Program Comments

Line 10 selects the logic analyzer in slot C.

Line 20 names machine (analyzer) 1 "TIMING".

Line 30 specifies machine 1 is a timing analyzer.

Line 40 assigns pods 1 and 2 to machine 1.

Line 50 sets up the Timing Format menu by assigning the label COUNT, and
assigning a polarity and channels to the label.

Line 60 selects the trigger pattern for the timing analyzer.

Line 70 sets the range to 100 ns (10 times s/div).

Line 80 changes the onscreen display to the Timing Waveforms menu.

Line 90 inserts the label "COUNT" in the Timing Waveform menu.

Line 100 specifies the Single run mode.

Line 110 starts data acquisition.

For more information on the specific logic analyzer commands, refer to
chapters 2 through 17.

Programming the HP 16554A/ HP 16555A/HP 16555D
Programming the Logic Analyzer

1–4

Mainframe Commands

These commands are part of the HP 16500/16501A mainframe system and
are mentioned here only for reference. For more information on these
commands, refer to the HP 16500/16501A Programmer’s Guide.

CARDcage? Query

The CARDcage query returns a string of integers which identifies the
modules that are installed in the mainframe. The returned string is in two
parts. The first five two-digit numbers identify the card type. The
identification number for the HP 16554A and HP 16555A/D logic analyzers is
34. A "−1" in the first part of the string indicates no card is installed in the
slot.

The five single-digit numbers in the second part of the string indicate which
card has the controlling software for the module; that is, where the master
card is located.

Example 12,11, −1, −1,34,2,2,0,0,5

A returned string of 12,11,-1,-1,34,2,2,0,0,5 means that an
oscilloscope time base card (ID number 11) is loaded in slot B and the
oscilloscope acquisition card (ID number 12) is loaded in slot A. The next
two slots (C and D) are empty (−1). Slot E contains a logic analyzer module
(ID number 34).

The next group of numbers (2,2,0,0,5) indicate that a two-card module is
installed in slots A and B with the master card in slot B. The "0" indicates an
empty slot, or the module software is not recognized or is not loaded. The
last digit (5) in this group indicates a one-card module is loaded in slot E.
Complete information for the CARDcage query is in the HP 16500/16501A

Programmer’s Guide.

Programming the HP 16554A/ HP 16555A/HP 16555D
Mainframe Commands

1–5

MENU Command/query

The MENU command selects a new displayed menu. The first parameter (X)
specifies the desired module. The optional, second parameter specifies the
desired menu in the module. The second parameter defaults to 0 if it is not
specified. The query returns the currently selected and displayed menu.

For the HP 16554A/HP 16555A/HP 16555D Logic Analyzers:

If a machine is turned off, its menus are not available. The Mixed Display is
available only when one or both analyzers are state analyzers.

SELect Command/query

The SELect command selects which module or intermodule will have parser
control. SELect 0 selects the intermodule, SELect 1 through 5 selects
modules A through E respectively. Values −1 and −2 select software options
1 and 2. The SELect query returns the currently selected module.

STARt Command

The STARt command starts the specified module. If the specified module is
configured for intermodule (group run), STARt will start all modules
configured as part of the intermodule run.

• X,0 — State/Timing
Configuration

• X,1 — Format 1

• X,2 — Format 2

• X,3 — Trigger 1

• X,4 — Trigger 2

• X,5 — Waveform 1

• X,6 — Waveform 2

• X,7 — Listing 1

• X,8 — Listing 2

• X,9 — Mixed Display

• X,10 — Compare 1

• X,11 — Compare 2

• X,12 — Chart 1

• X,13 — Chart 2

• X,14 — SPA 1

• X,15 — SPA 2

Programming the HP 16554A/ HP 16555A/HP 16555D
Mainframe Commands

1–6

STOP Command

The STOP command stops the specified module. If the specified module is
configured as part of an intermodule run, STOP will stop all associated
modules.

STARt and STOP are overlapped commands. Overlapped commands allow
execution of subsequent commands while the logic analyzer operations
initiated by the overlapped command are still in progress. For more
information, see *OPC and *WAI commands in Chapter 5 of the
HP 16500/16501A Programmer’s Guide.

RMODe Command/query

The RMODe command specifies the run mode (single or repetitive) for a
module. If the selected module is configured for intermodule, the
intermodule run mode will be set by this command. The RMODe query
returns the current setting.

SYSTem:ERRor? Query

The SYSTem:ERRor query returns the oldest error in the error queue. In
order to return all the errors in the error queue, a simple FOR/NEXT loop can
be written to query the queue until all errors are returned. Once all errors
are returned, the query will return zeros.

SYSTem:PRINt Command/query

The SYSTem:PRINt command initiates a print of the screen or listing buffer
over the current printer communication interface. The SYSTem:PRINt query
sends the screen or listing buffer data over the current controller
communication interface.

MMEMory Subsystem

The MMEMory Subsystem provides access to both internal disc drives for
loading and storing configurations.

INTermodule Subsystem

The INTermodule Subsystem commands are used to specify intermodule
arming between multiple modules.

Programming the HP 16554A/ HP 16555A/HP 16555D
Mainframe Commands

1–7

Command Set Organization

The command set for the HP 16554A/HP 16555A/HP 16555D is divided into
module-level commands and subsystem commands. Module-level commands
are listed in Chapter 2, "Module Level Commands" and each of the subsystem
commands are covered in their individual chapters starting with Chapter 3,
"MACHine Subsystem."

Each of these chapters contains a description of the subsystem, syntax
diagrams, and the commands in alphabetical order. The commands are
shown in long form and short form using upper and lowercase letters. For
example, LABel indicates that the long form of the command is LABEL and
the short form is LAB. Each of the commands contain a description of the
command and its arguments, the command syntax, and a programming
example.

Figure 1-1 on the following page shows the command tree for the
HP 16554A/HP 16555A/HP 16555D logic analyzer module. The (x) following
the SELect command at the top of the tree represents the slot number where
the logic analyzer module is installed. The number may range from 1 through
10, representing slots A through J, respectively.

Programming the HP 16554A/ HP 16555A/HP 16555D
Command Set Organization

1–8

HP 16554A/HP 16555A/HP 16555D Command Tree

Figure 1-1

Programming the HP 16554A/ HP 16555A/HP 16555D
Command Set Organization

1–9

Table 1-1

Alphabetical Command-to-Subsystem Directory

Command Where Used
ACCumulate SCHart, SWAVeform, TWAVeform
ACQMode TFORmat
ACQuisition STRigger, SWAVeform, TTRigger,

TWAVeform
ARM MACHine
ARMLine Module Level Commands
ASSign MACHine
AUTorange SPA
BASE SYMBol
BRANch STRigger, TTRigger
BUCKet SPA
CENter SCHart, SWAVeform, TWAVeform
CLEar COMPare, STRigger, TTRigger
CLOCk SFORmat
CLRPattern SLISt, SWAVeform, TLISt, TWAVeform
CLRStat SWAVeform, TWAVeform
CMASk COMPare
COLumn SLISt, TLISt
COPY COMPare
DATA COMPare, SLISt, TLISt
DBLock Module Level Commands
DELay SWAVeform, TWAVeform, WLISt
EDGE TTRigger
FIND COMPare, STRigger, TTRigger
HAXis SCHart
HIGH SPA
HISTatistic SPA
HISTogram SPA
INSert SWAVeform, TWAVeform, WLISt
LABel SFORmat, SPA, TFORmat
LEVelarm MACHine
LINE COMPare, SLISt, TLISt, WLISt
LOW SPA
MASTer SFORmat
MENU COMPare
MINus TWAVeform, WLISt
MLENgth SPA, STRigger, SWAVeform, TTRigger,

TWAVeform
MMODe SLISt, TLISt, TWAVeform
MODE SPA

Command Where Used
MOPQual SFORmat
MQUal SFORmat
NAME MACHine
OCONdition TLISt, TWAVeform
OMARker SPA
OPATtern SLISt, TLISt, TWAVeform
OSEarch SLISt, TLISt, TWAVeform
OSTate SLISt, TLISt, WLISt
OTAG SLISt, TLISt
OTHer SPA
OTIMe TWAVeform, WLISt
OVERlay SLISt, TWAVeform, WLISt
OVERView SPA
OVSTatistic SPA
PATTern SYMBol
PLUS TWAVeform, WLISt
QUALifier SPA
RANGe COMPare, SPA, STRigger, SWAVeform,

SYMBol, TFORmat, TWAVeform, WLISt
REMove SFORmat, SLISt, SWAVeform, SYMBol,

TFORmat, TLISt, TWAVeform, WLISt
REName MACHine
RESource MACHine
RUNTil COMPare, SLISt, TLISt, TWAVeform
SEQuence STRigger, TTRigger
SET COMPare
SETHold SFORmat
SLAVe SFORmat
SOPQual SFORmat
SPERiod TFORmat, TWAVeform
SETHold SFORmat
SLAVe SFORmat
SOPQual SFORmat
SPERiod TFORmat, TWAVeform
SQUal SFORmat
STORe STRigger
TAG STRigger
TAKenbranch STRigger, SWAVeform

TAVerage SLISt, TLISt, TWAVeform

Programming the HP 16554A/ HP 16555A/HP 16555D
Command Set Organization

1–10

Table 1-1, continued

Alphabetical Command-to-Subsystem Directory, continued

Command Where Used
TCONtrol STRigger, TTRigger
TERM STRigger, TTRigger
THReshold SFORmat, TFORmat
TIMER STRigger, TTRigger
TINTerval SPA
TMAXimum SLISt, TLISt, TWAVeform
TMINimum SLISt, TLISt, TWAVeform
TPOSition STRigger, SWAVeform, TTRigger,

TWAVeform
TSTatistic SPA
TTYPe SPA
TYPE MACHine

Command Where Used
VAXis SCHart
VRUNs SLISt, TLISt, TWAVeform
WIDTh SYMBol
XCONdition TLISt, TWAVeform
XMARker SPA
XOTag SLISt, TLISt
XOTime SLISt, TLISt, TWAVeform, WLISt
XPATtern SLISt, TLISt, TWAVeform
XSEarch SLISt, TLISt, TWAVeform
XSTate SLISt, TLISt, WLISt
XTAG SLISt, TLISt
XTIMe TWAVeform, WLISt

Programming the HP 16554A/ HP 16555A/HP 16555D
Command Set Organization

1–11

Module Status Reporting

Each module reports its status to the Module Event Status Register
(MESR<N>), which in turn reports to the Combined Event Status Register
(CESR) in the HP 16500/16501A mainframe (see HP 16500/16501A

Programmer’s Guide chapter 6). The Module Event Status Register is
enabled by the Module Event Status Enable Register (MESE<N>).

The MESE<N> and MESR<N> instructions are not used in conjunction with
the SELect command, so they are not listed in the HP 16554A/HP 16555A/
HP 16555D’s command tree.

The following descriptions of the MESE<N> and MESR<N> instructions
provide the module specific information needed to enable and interpret the
contents of the registers.

Figure 1-2

Module Status Reporting

Programming the HP 16554A/ HP 16555A/HP 16555D
Module Status Reporting

1–12

MESE<N>

Command :MESE<N><enable_mask>

The MESE<N> command sets the Module Event Status Enable register bits.
The MESE register contains a mask value for the bits enabled in the MESR
register. A one in the MESE will enable the corresponding bit in the MESR, a
zero will disable the bit.

The first parameter <N> specifies the module. The second parameter
specifies the enable value.

Refer to table 1-2 for information about the Module Event Status register bits,
bit weights, and what each bit masks for the module. Complete information
for status reporting is in chapter 6 of the HP 16500/16501A Programmer’s

Guide manual.

<N> {1|2|3|4|5|6|7|8|9|10} number of slot in which the module resides. 1
refers to slot A, and so on.

<enable_mask> integer from 0 to 255

Example OUTPUT XXX;":MESE5 1"

Query :MESE<N>?

The MESE query returns the current setting.
Returned Format [:MESE<N>]<enable_mask><NL>

Example 10 OUTPUT XXX;":MESE5?"
 20 ENTER XXX; Mes
 30 PRINT Mes
 40 END

Programming the HP 16554A/ HP 16555A/HP 16555D
MESE<N>

1–13

Table 1-2 Module Event Status Enable Register (A "1" enables the MESR bit)

Bit Weight Enables

7 128 Not used

6 64 Not used

5 32 Not used

4 16 Not used

3 8 Pattern searches failed

2 4 Trigger found

1 2 RNT-Run until satisfied

0 1 MC-Measurement complete

The Module Event Status Enable Register contains a mask value for the bits
to be enabled in the Module Event Status Register (MESR). A one in the
MESE enables the corresponding bit in the MESR, and a zero disables the bit.

Programming the HP 16554A/ HP 16555A/HP 16555D
MESE<N>

1–14

MESR<N>

Query :MESR<N>?

The MESR<N> query returns the contents of the Module Event Status
register. When you read the MESR, the value returned is the total bit weights
of all bits that are set at the time the register is read. Reading the register
clears the Module Event Status Register.

Table 1-3 shows each bit in the Module Event Status Register and its bit
weight for this module.

The parameter 1 through 10 refers to the module in slot A through J
respectively.

Returned Format [MESR<N>]<status><NL>

<N> {1|2|3|4|5|6|7|8|9|10} number of slot in which the module resides

<status> integer from 0 to 255

Example 10 OUTPUT XXX;":MESR5?"
 20 ENTER XXX; Mer
 30 PRINT Mer
 40 END

Programming the HP 16554A/ HP 16555A/HP 16555D
MESR<N>

1–15

Table 1-3 Module Event Status Register

Bit Weight Condition

7 128 Not used

6 64 Not used

5 32 Not used

4 16 Not used

3 8 1 = One or more pattern searches failed
0 = Pattern searches did not fail

2 4 1 = Trigger found
0 = Trigger not found

1 2 1 = Run until satisfied
0 = Run until not satisfied

0 1 1 = Measurement complete
0 = Measurement not complete

Programming the HP 16554A/ HP 16555A/HP 16555D
MESR<N>

1–16

2

Module Level Commands

Introduction

The logic analyzer module level commands access the global
functions of the HP 16554A/HP 16555A/HP 16555D logic analyzer
module. These commands are:

• ARMLine

• DBLock

• MACHine

• SPA

• WLISt

2–2

Module Level Syntax Diagram

Figure 2-1

Module Level Commands

2–3

Table 2-1 Module Level Parameter Values

Parameter Type of Parameter or Command Reference

machine_num MACHine{1|2}

arm_parm arm parameters see chapter 3

assign_parm assignment parameters see chapter 3

level_parm level parameters see chapter 3

name_parm name parameters see chapter 3

rename_parm rename parameters see chapter 3

res_parm resource parameters see chapter 3

type_parm type parameters see chapter 3

sformat_cmds state format subsystem commands see chapter 5

strace_cmds state trace subsystem commands see chapter 6

slist_cmds state list subsystem commands see chapter 7

swaveform_cmds state waveform subsystem commands see chapter 8

schart_cmds state chart subsystem commands see chapter 9

compare_cmds compare subsystem commands see chapter 10

tformat_cmds timing format subsystem commands see chapter 11

ttrace_cmds timing trace subsystem commands see chapter 12

twaveform_cmds timing waveform subsystem
commands

see chapter 13

tlist_cmds timing listing subsystem commands see chapter 14

symbol_cmds symbol subsystem commands see chapter 15

mode_parm SPA mode parameters see chapter 16

overv_cmds SPA overview commands see chapter 16

hist_cmds SPA histogram commands see chapter 16

tint_cmds SPA time interval commands see chapter 16

Wlist_cmds waveforms/listing commands see chapter 4

Module Level Commands

2–4

ARMLine

Command :ARMLine MACHine<N>

The ARMLine command selects which machine generates the arm out signal
on the IMB (intermodule bus). This command is only valid when two
analyzers are on. However, the query is always valid.

<N> {1|2}

Example OUTPUT XXX;":ARMLINE MACHINE1"

Query :ARMLine?

If the analyzer is set up for OR’d triggering, then the ARMLine query returns
an empty string. This cannot be used for setting up OR’d triggering.

Returned Format [:ARMLine]{MACHine<N>|}<NL>

Example OUTPUT XXX;":ARMLine?"

DBLock

Command :DBLock {PACKed | UNPacked}

The DBLock command specifies the data block format that is contained in
the response from a :SYSTem:DATA? query. See Chapter 17 for more
information on the :SYSTem:DATA command and query.

The PACKed option (default) uploads data in a compressed format. This
option is used to upload data for archiving, or for reloading back into the
analyzer. When an analyzer configuration is saved to disk, the PACKed data
format is always used (regardless of the current DBLock selection).

Module Level Commands
ARMLine

2–5

The UNPacked option uploads data in a format that is easy to interpret and
process. The UNPacked format cannot be downloaded back into the analyzer.

Example OUTPUT XXX;":DBLOCK PACKED"

Query :DBLock?

The DBLock query returns the current data block format selection.
Returned Format [:DBLock]{PACKed | UNPacked}<NL>

Example OUTPUT XXX;":DBLock?"

MACHine

Command :MACHine<N>

The MACHine command selects which of the two machines (analyzers) the
subsequent commands or queries will refer to. MACHine is also a subsystem
containing commands that control the logic analyzer system level functions.
Examples include pod assignments, analyzer names, and analyzer type. See
chapter 3 for details about the MACHine subsystem.

<N> {1|2}

Example OUTPUT XXX;":MACHINE1:NAME ’DRAMTEST’"

Module Level Commands
MACHine

2–6

SPA

Command :SPA<N>

The SPA command selects which of the two analyzers the subsequent
commands or queries will refer to. SPA is also a subsystem containing
commands that control the logic analyzer SPA functions. See chapter 16 for
details about the SPA subsystem.

<N> {1|2}

Example OUTPUT XXX;":SPA1:MODE OVERVIEW"

WLISt

Command :WLISt

The WLISt selector accesses the commands used to place markers and query
marker positions in Timing/State Mixed mode. The WLISt subsystem also
contains commands that allows you to insert waveforms from other
time-correlated machines and modules. The details of the WLISt subsystem
are in chapter 4.

Example OUTPUT XXX;":WLIST:OTIME 40.0E −6"

Module Level Commands
SPA

2–7

2–8

Part 2

3 MACHine Subsystem
4 WLISt Subsystem
5 SFORmat Subsystem
6 STRigger (STRace) Subsystem
7 SLISt Subsystem
8 SWAVeform Subsystem
9 SCHart Subsystem

10 COMPare
11 TFORmat Subsystem
12 TTRigger (TTRace) Subsystem
13 TWAVeform Subsystem
14 TLISt Subsystem
15 SYMBol Subsystem
16 SPA Subsystem
17 DATA and SETup Commands

Commands

3

MACHine Subsystem

Introduction

The MACHine subsystem contains the commands that control the
machine level of operation of the logic analyzer. Some of the functions
are normally found in the Trigger menu. These commands are:

• ARM

• LEVelarm

The functions of three of these commands reside in the State/Timing
Configuration menu. These commands are:

• ASSign

• NAME

• TYPE

Even though the functions of the following commands reside in the
Format menu they are at the machine level of the command tree and
are therefore located in the MACHine subsystem. These commands
are:

• REName

• RESource

3–2

Machine Subsystem Syntax Diagram

Figure 3-1

MACHine Subsystem

3–3

Table 3-1 Machine Subsystem Parameter Values

Parameter Value

arm_source {RUN | INTermodule | MACHine {1|2}}

pod_list {NONE | <pod_num>[, <pod_num>]...}

pod_num integer from 1 to 12

arm_level integer from 1 to 11 representing sequence level

machine_name string of up to 10 alphanumeric characters

res_id {<state_terms>|H|J} for state analyzer
or
{<state_terms>|EDGE{1|2}} for timing analyzer

new_text string of up to 8 alphanumeric characters

state_terms {A|B|C|D|E|F|G|I| RANGE{1|2}|TIMER{1|2}}

res_terms {<res_id>[,<res_id>]...}

MACHine

Selector :MACHine<N>

The MACHine <N> selector specifies which of the two analyzers (machines)
available in the module the commands or queries following will refer to.
Because the MACHine<N> command is a root level command, it will normally
appear as the first element of a compound header.

<N> {1|2} (the machine number)

Example OUTPUT XXX; ":MACHINE1:NAME ’TIMING’"

MACHine Subsystem
MACHine

3–4

ARM

Command :MACHine{1|2}:ARM <arm_source>

The ARM command specifies the arming source of the specified analyzer
(machine). The RUN option disables the arm source. For example, if you do
not want to use either the intermodule bus or the other machine to arm the
current machine, you specify the RUN option.

If you are using an HP 16500C mainframe, you can set up OR’d Triggering by
arming the module from INTermodule when intermodule is set to Group Run
with OR TRIGGER. See the HP 16500C Programmer’s Guide for details.

<arm_source> {RUN|INTermodule|MACHine{1|2}}

Example OUTPUT XXX;":MACHINE1:ARM MACHINE2"

Query :MACHine{1|2}:ARM?

The ARM query returns the source that the current analyzer (machine) will
be armed by.

Returned Format [:MACHine{1|2}:ARM] <arm_source>

Example OUTPUT XXX;":MACHINE1:ARM?"

MACHine Subsystem
ARM

3–5

ASSign

Command :MACHine{1|2}:ASSign <pod_list>

The ASSign command assigns pods to a particular analyzer (machine). The
ASSign command will assign two pods for each pod number you specify
because pods must be assigned to analyzers in pairs. NONE clears all pods
from the specified analyzer (machine) and places them in the "unassigned"
category.

If you specify a pod number greater than currently available, the logic
analysis system generates an "Argument out of range" error.

<pod_list> {NONE | <pod >#[, <pod >#]...}

<pod># an integer from 1 to 12

Example This example assigns pod pairs 1/2 and 5/6 to machine 1:

OUTPUT XXX;":MACHINE1:ASSIGN 5, 2, 1"

Query :MACHine{1|2}:ASSign?

The ASSign query returns which pods are assigned to the current analyzer
(machine).

Returned Format [:MACHine{1|2}:ASSign] <pod_list><NL>

Example OUTPUT XXX;":MACHINE1:ASSIGN?"

MACHine Subsystem
ASSign

3–6

LEVelarm

Command :MACHine{1|2}:LEVelarm <arm_level>

The LEVelarm command allows you to specify the sequence level for a
specified machine that will be armed by the Intermodule Bus or the other
machine. This command is only valid if the specified machine is on and the
arming source is not set to RUN with the ARM command.

<arm_level> integer from 1 to 11 representing sequence level

Example OUTPUT XXX;":MACHINE1:LEVELARM 2"

Query :MACHine{1|2}:LEVelarm?

The LEVelarm query returns the current sequence level receiving the arming
for a specified machine.

Returned Format [:MACHine{1|2}:LEVelarm] <arm_level><NL>

Example OUTPUT XXX;":MACHINE1:LEVELARM?"

MACHine Subsystem
LEVelarm

3–7

NAME

Command :MACHine{1|2}:NAME <machine_name>

The NAME command allows you to assign a name of up to 10 characters to a
particular analyzer (machine) for easier identification. Spaces are valid
characters.

<machine_name> string of up to 10 alphanumeric characters

Example OUTPUT XXX;":MACHINE1:NAME ’DRAM TEST’"

Query :MACHine{1|2}:NAME?

The NAME query returns the current analyzer name as an ASCII string.
Returned Format [:MACHine{1|2}:NAME] <machine name><NL>

Example OUTPUT XXX;":MACHINE1:NAME?"

REName

Command :MACHine{1|2}:REName {{<res_id>, <new_text>} |
DEFault}

The REName command allows you to assign a specific name of up to eight
characters to terms A through J, Range 1 and 2, Timer 1 and 2, and Edge 1
and 2. The terms do not have to be assigned to the specified machine. The
DEFault option sets all resource term names to the default names assigned
when turning on the instrument.

MACHine Subsystem
NAME

3–8

<res_id> {<state_terms>|H|J} for state analyzer
{<state_terms>|EDGE{1|2}} for timing analyzer

<new_text> string of up to 8 alphanumeric characters

<state_terms> {A|B|C|D|E|F|G|I| RANGe1 | RANGe2 | TIMer1 | TIMer2}

Example OUTPUT XXX;":MACHINE1:RENAME A,’DATA’"

Query :MACHine{1|2}:RENAME? <res_id>

The REName query returns the current names for specified terms assigned
to the specified analyzer.

Returned Format [:MACHine{1|2}:RENAME] <res_id>,<new_text><NL>

Example OUTPUT XXX;":MACHINE1:RENAME? D"

RESource

Command :MACHine{1|2}:RESource {<res_id>[,<res_id>]...}

The RESource command allows you to assign resource terms A through G
and I, Range 1 and 2, and Timer 1 and 2 to a particular analyzer.

In the timing analyzer only, two additional resource terms are available.
These terms are Edge 1 and 2. These terms are always assigned to the
machine that is configured as the timing analyzer.

In state analyzers that are not configured for high speed, terms H and J are
also available. H and J are not available to timing or high-speed analyzers.

<res_id> <state_terms> for high-speed state analyzer or
{<state_terms|H|J} for 100-MHz state analyzer or
{<state_terms>|EDGE{1|2}} for timing analyzer

<state_terms> {A|B|C|D|E|F|G|I|RANGe1| RANGe2 | TIMer1|TIMer2}

MACHine Subsystem
RESource

3–9

Example OUTPUT XXX;":MACHINE1:RESOURCE A,C,RANGE1"

Query :MACHine{1|2}:RESOURCE?

The RESource query returns the current resource terms assigned to the
specified analyzer. If no resource terms are assigned, no <res_id> is returned.

Returned Format [:MACHine{1|2}:RESOURCE] <res_id>[,<res_id>,...]<NL>

Example OUTPUT XXX;":MACHINE1:RESOURCE?"

TYPE

Command :MACHine{1|2}:TYPE <analyzer type>

The TYPE command specifies what type a specified analyzer (machine) will
be. The analyzer types are state or timing. State Compare (COMPare) and
SPA are considered to be state analyzers because they use an external clock,
but need to specified as COMPare or SPA.

The TYPE command also allows you to turn off a particular machine.

Only one timing analyzer can be specified at a time.

<analyzer
type>

{OFF|COMPare|SPA|STATe|TIMing}

Example OUTPUT XXX;":MACHINE1:TYPE STATE"

MACHine Subsystem
TYPE

3–10

Query :MACHine{1|2}:TYPE?

The TYPE query returns the current analyzer type for the specified analyzer.
Returned Format [:MACHine{1|2}:TYPE] <analyzer type><NL>

Example OUTPUT XXX;":MACHINE1:TYPE?"

MACHine Subsystem
TYPE

3–11

3–12

4

WLISt Subsystem

Introduction

The commands in the WLISt (Waveforms/LISting) subsystem control
the X and O marker placement on the waveforms portion of the
Timing/State mixed mode display. The XSTate and OSTate queries
return what states the X and O markers are on. Because the markers
can only be placed on the timing waveforms, the queries return what
state (state acquisition memory location) the marked pattern is stored
in.

In order to have mixed mode, one machine must be a state analyzer
with time tagging on (use MACHine<N>:STRigger:TAG TIME).

• DELay

• INSert

• LINE

• MINus

• OSTate

• OTIMe

• OVERlay

• PLUS

• RANGe

• REMove

• XOTime

• XSTate

• XTIMe

4–2

WLISt Subsystem Syntax Diagram

Figure 4-1

WLISt Subsystem

4–3

Table 4-1 WLISt Subsystem Parameter Values

Parameter Value

delay_value real number between -2500 s and +2500 s

module_spec {1|2|3|4|5|6|7|8|9|10} (slot where master card
is installed)

bit_id integer from 0 to 31

label_name string of up to 6 alphanumeric characters

line_num_mid_screen integer from -516096 to +516096 (HP 16554A) or -1040384 to
+1040384 (HP 16555A) or -2080768 to +2080768 (HP 16555D)

waveform string containing <acquisition_spec>{1|2}

acquisition_spec {A|B|C|D|E|F|G|H|I|J}

time_value real number

time_range real number between 10 ns and 10 ks

WLISt

Selector :WLISt

The WLISt (Waveforms/LISting) selector is used as a part of a compound
header to access the settings normally found in the Mixed Mode menu.
Because the WLISt command is a root-level command, it will always appear
as the first element of a compound header.

The WLISt subsystem is only available when one or more state analyzers with
time tagging on are specified.

Example OUTPUT XXX;":WLIST:XTIME 40.0E −6"

WLISt Subsystem
WLISt

4–4

DELay

Command :WLISt:DELay <delay_value>

The DELay command specifies the amount of time between the timing
trigger and the horizontal center of the the timing waveform display. The
allowable values for delay are −2500 s to +2500 s.

<delay_value> real number between −2500 s and +2500 s

Example OUTPUT XXX;":WLIST:DELAY 100E −6"

Query :WLISt:DELay?

The DELay query returns the current time offset (delay) value from the
trigger.

Returned Format [:WLISt:DELay] <delay_value><NL>

Example OUTPUT XXX;":WLIST:DELAY?"

WLISt Subsystem
DELay

4–5

INSert

Command :WLISt:INSert [<module_spec>,]<label_name>
[,{<bit_id>|OVERlay|ALL}]

The INSert command inserts waveforms in the timing waveform display. The
waveforms are added from top to bottom up to a maximum of 96 waveforms.
Once 96 waveforms are present, each time you insert another waveform, it
replaces the last waveform.

Time-correlated waveforms from the oscilloscope and another logic analyzer
module can also be inserted in the logic analyzer’s timing waveforms display.
Oscilloscope waveforms occupy the same display space as three logic
analyzer waveforms. When inserting waveforms from the oscilloscope or
another logic analyzer module, the optional first parameter must be used,
which is the module specifier. 1 through 10 corresponds to modules A
through J. If you do not specify the module, the selected module is assumed.

The second parameter specifies the label name that will be inserted. The
optional third parameter specifies the label bit number, overlay, or all. If a
number is specified, only the waveform for that bit number is added to the
screen.

If you specify OVERlay, all the bits of the label are displayed as a composite
overlaid waveform. If you specify ALL, all the bits are displayed sequentially.

If you do not specify the third parameter, ALL is assumed.

<module_spec> {1|2|3|4|5|6|7|8|9|10}

<label_name> string of up to 6 alphanumeric characters

<bit_id> integer from 0 to 31

Example OUTPUT XXX;":WLIST:INSERT 3, ’WAVE’,9"

WLISt Subsystem
INSert

4–6

Inserting Oscilloscope Waveforms

Command :WLISt:INSert <module_spec>,<label_name>

This inserts a waveform from an oscilloscope to the timing waveforms display.

<module_spec> {1|2|3|4|5|6|7|8|9|10} slot in which master card is installed

<label_name> string of one alpha and one numeric character, identical to that on the
oscilloscope waveform display.

Example OUTPUT XXX;":WLIST:INSERT 3, ’C1’"

LINE

Command :WLISt:LINE <line_num_mid_screen>

The LINE command allows you to scroll the timing analyzer listing vertically.
The command specifies the state line number relative to the trigger. The
analyzer then highlights the specified line at the center of the screen.

<line_num_mid_
screen>

integer from -516096 to +516096 (HP 16554A)
or -1040384 to +1040384 (HP 16555A)
or -2080768 to +2080768 (HP 16555D).

Example OUTPUT XXX;":WLIST:LINE 0"

WLISt Subsystem
LINE

4–7

Query :WLISt:LINE?

The LINE query returns the line number for the state currently in the data
listing roll box at center screen.

Returned Format [:WLISt:LINE] <line_num_mid_screen><NL>

Example OUTPUT XXX;":WLIST:LINE?"

MINus

Command :WLISt:MINus <module_spec>,<waveform>,<waveform>

The MINus command inserts time-correlated A−B (A minus B) oscilloscope
waveforms on the screen. The first parameter is the module specifier where
the oscilloscope module resides, where 1 through 10 refers to slots A through
J. The next two parameters specify which waveforms will be subtracted from
each other.

MINus only inserts oscilloscope waveforms. It cannot be used with analyzer
waveforms.

<module_spec> {1|2|3|4|5|6|7|8|9|10} (slot where master card is located)

<waveform> string containing <acquisition_spec>{1|2}

<acquisition_
spec>

{A|B|C|D|E|F|G|H|I|J} (slot where acquisition card is located)

Example OUTPUT XXX; ":WLIST:MINUS 1,’A1’,’A2’"

WLISt Subsystem
MINus

4–8

OSTate

Query :WLISt:OSTate?

The OSTate query returns the state where the O Marker is positioned. If data
is not valid, the query returns 2147483647.

Returned Format [:WLISt:OSTate] <state_num><NL>

<state_num> integer

Example OUTPUT XXX;":WLIST:OSTATE?"

OTIMe

Command :WLISt:OTIMe <time_value>

The OTIMe command positions the O Marker on the timing waveforms in the
mixed mode display. If the data is not valid, the command performs no
action.

<time_value> real number

Example OUTPUT XXX;":WLIST:OTIME 40.0E −6"

WLISt Subsystem
OSTate

4–9

Query :WLISt:OTIMe?

The OTIMe query returns the O Marker position in time. If data is not valid,
the query returns 9.9E37.

Returned Format [:WLISt:OTIMe] <time_value><NL>

Example OUTPUT XXX;":WLIST:OTIME?"

OVERlay

Command :WLISt:OVERlay <module_number>,<label>
[,<label>]...

The OVERlay command overlays two or more oscilloscope waveforms and
adds the resultant waveform to the current waveform display. The first
parameter of the command syntax specifies which slot contains the
oscilloscope time base card. The next parameters are the labels of the
waveforms that are to be overlaid.

Overlay only inserts oscilloscope waveforms. It cannot be used with analyzer
waveforms.

<module_spec> {1|2|3|4|5|6|7|8|9|10} (slot where master card is located)

<waveform> string containing <acquisition_spec>{1|2}

<acquisition_
spec>

{A|B|C|D|E|F|G|H|I|J} (slot where acquisition card is located)

Example OUTPUT XXX;":WLIST:OVERLAY 3, ’C1’,’B1’"

WLISt Subsystem
OVERlay

4–10

PLUS

Command :WLISt:PLUS <module_spec>,<waveform>,<waveform>

The PLUS command inserts time-correlated A+B oscilloscope waveforms on
the screen. The first parameter specifies which slot is the oscilloscope
module. 1 through 10 refers to slots A through J. The next two parameters
specify which waveforms will be added to each other.

PLUS only inserts oscilloscope waveforms. It cannot be used with analyzer
waveforms.

<module_spec> {1|2|3|4|5|6|7|8|9|10} (slot where master card is located)

<waveform> string containing <acquisition_spec>{1|2}

<acquisition_
spec>

{A|B|C|D|E|F|G|H|I|J} (slot where acquisition card is located)

Example OUTPUT XXX; ":WLIST:PLUS 1,’A1’,’A2’"

WLISt Subsystem
PLUS

4–11

RANGe

Command :WLISt:RANGe <time_value>

The RANGe command specifies the full-screen time in the timing waveform
menu. It is equivalent to ten times the seconds per division setting on the
display. The allowable values for RANGe are from 10 ns to 10 ks.

<time_range> real number between 10 ns and 10 ks

Example OUTPUT XXX;":WLIST:RANGE 100E −9"

Query :WLISt:RANGe?

The RANGe query returns the current full-screen time.
Returned Format [:WLISt:RANGe] <time_value><NL>

Example OUTPUT XXX;":WLIST:RANGE?"

REMove

Command :WLISt:REMove

The REMove command deletes all waveforms from the display.

Example OUTPUT XXX;":WLIST:REMOVE"

WLISt Subsystem
RANGe

4–12

XOTime

Query :WLISt:XOTime?

The XOTime query returns the time from the X marker to the O marker. If
data is not valid, the query returns 9.9E37.

Returned Format [:WLISt:XOTime] <time_value><NL>

<time_value> real number

Example OUTPUT XXX;":WLIST:XOTIME?"

XSTate

Query :WLISt:XSTate?

The XSTate query returns the state where the X Marker is positioned. If data
is not valid, the query returns 2147483647.

Returned Format [:WLISt:XSTate] <state_num><NL>

<state_num> integer

Example OUTPUT XXX;":WLIST:XSTATE?"

WLISt Subsystem
XOTime

4–13

XTIMe

Command :WLISt:XTIMe <time_value>

The XTIMe command positions the X Marker on the timing waveforms in the
mixed mode display. If the data is not valid, the command performs no
action.

<time_value> real number

Example OUTPUT XXX;":WLIST:XTIME 40.0E −6"

Query :WLISt:XTIMe?

The XTIMe query returns the X Marker position in time. If data is not valid,
the query returns 9.9E37.

Returned Format [:WLISt:XTIMe] <time_value><NL>

Example OUTPUT XXX;":WLIST:XTIME?"

WLISt Subsystem
XTIMe

4–14

5

SFORmat Subsystem

Introduction

The SFORmat subsystem contains the commands available for the
State Format menu in the HP 16554A/HP 16555A/HP 16555D logic
analyzer modules. These commands are:

• CLOCk

• LABel

• MASTer

• MODE

• MOPQual

• MQUal

• REMove

• SETHold

• SLAVe

• SOPQual

• SQUal

• THReshold

5–2

Figure 5-1

SFORmat Subsystem Syntax Diagram

SFORmat Subsystem

5–3

Figure 5-1 (continued)

SFORmat Subsystem Syntax Diagram (continued)

SFORmat Subsystem

5–4

Table 5-1 SFORmat Subsystem Parameter Values

Parameter Value

<N> an integer from 1 to 12

label_name string of up to 6 alphanumeric characters

polarity {POSitive | NEGative}

clock_bits format (integer from 0 to 65535) for a clock (clocks are assigned
in decreasing order)

upper_bits format (integer from 0 to 65535) for a pod (pods are assigned in
decreasing order)

lower_bits format (integer from 0 to 65535) for a pod (pods are assigned in
decreasing order)

clock_id {J | K | L | M}

clock_spec {OFF | RISing | FALLing | BOTH}

clock_pair_id {1 | 2}

qual_operation {AND|OR}

qual_num {1 | 2 | 3 | 4}

qual_level {OFF | LOW | HIGH}

pod_num an integer from 1 to 12

set_hold_value {0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9}

value voltage (real number) -6.00 to +6.00

SFORmat Subsystem

5–5

SFORmat

Selector :MACHine{1|2}:SFORmat

The SFORmat (State Format) selector is used as a part of a compound
header to access the settings in the State Format menu. It always follows the
MACHine selector because it selects a branch directly below the MACHine
level in the command tree.

Example OUTPUT XXX;":MACHINE2:SFORMAT:MASTER J, RISING"

CLOCk

Command :MACHine{1|2}:SFORmat:CLOCk<N> <clock_mode>

The CLOCk command selects the clocking mode for a given pod when the
pod is assigned to the state analyzer. When the MASTer option is specified,
the pod will sample all channels on the master clock. When the SLAVe option
is specified, the pod will sample all channels on the slave clock. When the
DEMultiplex option is specified, only one pod of a pod pair can acquire data.
The bits of the selected pod will be clocked by the demultiplex master for
labels with bits assigned under the Master pod. The same bits will be clocked
by the demultiplex slave for labels with bits assigned under the Slave pod.
The master clock always follows the slave clock when both are used.

<N> an integer from 1 to 12

<clock_mode> {MASTer | SLAVe | DEMultiplex}

Example OUTPUT XXX;":MACHINE1:SFORMAT:CLOCK2 MASTER"

SFORmat Subsystem
SFORmat

5–6

Query :MACHine{1|2}:SFORmat:CLOCk<N>?

The CLOCk query returns the current clocking mode for a given pod.
Returned Format [:MACHine{1|2}:SFORmat:CLOCK<N>] <clock_mode><NL>

Example OUTPUT XXX; ":MACHINE1:SFORMAT:CLOCK2?"

LABel

Command :MACHine{1|2}:SFORmat:LABel <name>[,<polarity>,
<clock_bits>, <upper_bits>,<lower_bits>
[,<upper_bits>,<lower_bits>]...]

The LABel command allows you to specify polarity and assign channels to
new or existing labels. If the specified label name does not match an existing
label name, a new label will be created.

The order of the pod-specification parameters is significant. The first one
listed will match the highest-numbered pod assigned to the machine you’re
using. Each pod specification after that is assigned to the next highest-
numbered pod. This way the specifications match the left-to-right
descending order of the pods you see on the Format display. Not including
enough pod specifications results in the lowest numbered pod(s) being
assigned a value of zero (all channels excluded). If you include more pod
specifications than there are pods for that machine, the extra ones will be
ignored. However, an error is reported any time more than 22 pod
specifications are listed.

The polarity can be specified at any point after the label name.

Because pods contain 16 channels, the format value for a pod must be
between 0 and 65535 (216−1). When giving the pod assignment in binary,
each bit will correspond to a single channel. A "1" in a bit position means the
associated channel in that pod is assigned to the label. A "0" in a bit position
means the associated channel in that pod is excluded from the label. Leading
zeroes may be omitted. For example, assigning #B1111001100 is equivalent
to entering "......****..**.." through the touchscreen.

A label can not have a total of more than 32 channels assigned to it.

SFORmat Subsystem
LABel

5–7

<name> string of up to 6 alphanumeric characters

<polarity> {POSitive | NEGative}

<clock_bits> format (integer from 0 to 65535) for a clock (clocks are assigned in
decreasing order)

<upper_bits>
<lower_bits>

format (integer from 0 to 65535) for a pod (pods are assigned in decreasing
order)

Example

510 OUTPUT XXX;":MACHINE2:SFORMAT:LABEL ’STAT’, POSITIVE, 0,127,40312"
520 OUTPUT XXX;":MACHINE2:SFORMAT:LABEL ’SIG 1’, #B11,#B0000000011111111,

#B0000000000000000 "

Query :MACHine{1|2}:SFORmat:LABel? <name>

The LABel query returns the current specification for the selected (by name)
label. If the label does not exist, nothing is returned. The polarity is always
returned as the first parameter. Numbers are always returned in decimal
format. Label names are case-sensitive.

Returned Format [:MACHine{1|2}:SFORmat:LABel] <name>,<polarity>
[, <assignment>]...<NL>

Example OUTPUT XXX;":MACHINE2:SFORMAT:LABEL? ’DATA’"

SFORmat Subsystem
LABel

5–8

MASTer

Command :MACHine{1|2}:SFORmat:MASTer <clock_id>,
<clock_spec>

The MASTer clock command allows you to specify a master clock for a given
machine. The master clock is used in all clocking modes (Master, Slave, and
Demultiplexed). Each command deals with only one clock (J,K,L,M);
therefore, a complete clock specification requires four commands, one for
each clock. Edge specifications (RISing, FALLing, or BOTH) are ORed.

At least one clock edge must be specified.

<clock_id> {J|K|L|M}

<clock_spec> {OFF|RISing|FALLing|BOTH}

Example OUTPUT XXX;":MACHINE2:SFORMAT:MASTER J, RISING"

Query :MACHine{1|2}:SFORmat:MASTer? <clock_id>

The MASTer query returns the clock specification for the specified clock.
Returned Format [:MACHine{1|2}:SFORmat:MASTer] <clock_id>,<clock_spec><NL>

Example OUTPUT XXX;":MACHINE2:SFORMAT:MASTER? <clock_id>"

SFORmat Subsystem
MASTer

5–9

MODE

Command :MACHine{1|2}:SFORmat:MODE {NORMal|FAST}

The MODE command places an HP 16555 state analyzer in either 100 MHz
(normal) or 110 MHz (fast) mode. The HP 16554A has only one state
analysis mode, 70 MHz. In 110-MHz mode, the h and j resource terms are not
available.

Example OUTPUT XXX;":MACHINE2:SFORMAT:MODE NORM"

Query :MACHine{1|2}:SFORmat:MODE?

The MODE query is valid for both the HP 16554 and HP 16555.
Returned Format [:MACHine{1|2}:SFORmat:MODE] {NORMal|FAST}<NL>

Example OUTPUT XXX;":MACHINE2:SFORMAT:MODE?"

SFORmat Subsystem
MODE

5–10

MOPQual

Command :MACHine{1|2}:SFORmat:MOPQual <clock_pair_id>,
<qual_operation>

The MOPQual (master operation qualifier) command allows you to specify
either the AND or the OR operation between master clock qualifier pair 1/2,
or between master clock qualifier pair 3/4. For example, you can specify a
master clock operation qualifier 1 AND 2.

<clock_pair_
id>

{1|2} where 2 indicates qualifier pair 3/4.

<qual_
operation>

{AND|OR}

Example OUTPUT XXX;":MACHINE1:SFORMAT:MOPQUAL 1,AND"

Query :MACHine{1|2}:SFORmat:MOPQual? <clock_pair_id>

The MOPQual query returns the operation qualifier specified for the master
clock.

Returned Format [:MACHine{1|2}:SFORmat:MOPQUal <clock_pair_id>]
<qual_operation><NL>

Example OUTPUT XXX;":MACHine1:SFORMAT:MOPQUAL? 1"

SFORmat Subsystem
MOPQual

5–11

MQUal

Command :MACHine{1|2}:SFORmat:MQUal <qual_num>,
<clock_id>,<qual_level>

The MQUal (master qualifier) command allows you to specify the level
qualifier for the master clock.

<qual_num> {1|2|3|4}

<clock_id> {J|K|L|M}

<qual_level> {OFF|LOW|HIGH}

Example OUTPUT XXX;":MACHINE2:SFORMAT:MQUAL 1,J,LOW"

Query :MACHine{1|2}:SFORmat:MQUal? <qual_num>

The MQUal query returns the qualifier specified for the master clock.
Returned Format [:MACHine{1|2}:SFORmat:MQUal] <qual_level><NL>

Example OUTPUT XXX;":MACHINE2:SFORMAT:MQUAL? 1"

SFORmat Subsystem
MQUal

5–12

REMove

Command :MACHine{1|2}:SFORmat:REMove {<name>|ALL}

The REMove command allows you to delete all labels or any one label for a
given machine.

<name> string of up to 6 alphanumeric characters

Example OUTPUT XXX;":MACHINE1:SFORMAT:REMOVE ’A’"
OUTPUT XXX;":MACHINE2:SFORMAT:REMOVE ALL"

SETHold

Command :MACHine{1|2}:SFORmat:SETHold
<pod_num>,<set_hold_value>

The SETHold (setup/hold) command allows you to set the setup and hold
specification for the state analyzer.

Even though the command requires integers to specify the setup and hold,
the query returns the current settings in a string. For example, if you send
the integer 0 for the setup and hold value, the query will return 3.5/0.0 ns as
an ASCII string when you have one clock and one edge specified.

SFORmat Subsystem
REMove

5–13

<pod_num> an integer from 1 to 12

<set_hold_
value>

integer {0|1|2|3|4|5|6|7|8|9} representing the following setup and
hold values:

Table 5-2 Setup and hold values

For one clock and one edge For one clock and both edges Multiple Clocks

0 = 3.5/0.0 ns 0 = 4.0/0.0 0 = 4.5/0.0

1 = 3.0/0.5 ns 1 = 3.5/0.5 1 = 4.0/0.5

2 = 2.5/1.0 ns 2 = 3.0/1.0 2 = 3.5/1.0

3 = 2.0/1.5 ns 3 = 2.5/1.5 3 = 3.0/1.5

4 = 1.5/2.0 ns 4 = 2.0/2.0 4 = 2.5/2.0

5 = 1.0/2.5 ns 5 = 1.5/2.5 5 = 2.0/2.5

6 = 0.5/3.0 ns 6 = 1.0/3.0 6 = 1.5/3.0

7 = 0.0/3.5 ns 7 = 0.5/3.5 7 = 1.0/3.5

N/A 8 = 0.0/4.0 8 = 0.5/4.0

N/A N/A 9 = 0.0/4.5

Example OUTPUT XXX;":MACHINE2:SFORMAT:SETHOLD 1,2"

Query :MACHine{1|2}:SFORMAT:SETHOLD? <pod_num>

The SETHold query returns the current setup and hold settings.
Returned Format [:MACHine{1|2}:SFORmat:SETHold <pod_num>]

<setup_and_hold_string><NL>

Example OUTPUT XXX;":MACHINE2:SFORMAT:SETHOLD? 3"

SFORmat Subsystem
SETHold

5–14

SLAVe

Command :MACHine{1|2}:SFORmat:SLAVe <clock_id>,
<clock_spec>

The SLAVe clock command allows you to specify a slave clock for a given
machine. The slave clock is only used in the Slave and Demultiplexed
clocking modes. Each command deals with only one clock (J,K,L,M);
therefore, a complete clock specification requires four commands, one for
each clock. Edge specifications (RISing, FALLing, or BOTH) are ORed.

When slave clock is being used at least one edge must be specified.

<clock_id> {J|K|L|M}

<clock_spec> {OFF|RISing|FALLing|BOTH}

Example OUTPUT XXX;":MACHINE2:SFORMAT:SLAVE J, RISING"

Query :MACHine{1|2}:SFORmat:SLAVe?<clock_id>

The SLAVe query returns the clock specification for the specified clock.
Returned Format [:MACHine{1|2}:SFORmat:SLAVe] <clock_id>,<clock_spec><NL>

Example OUTPUT XXX;":MACHINE2:SFORMAT:SLAVE? K"

SFORmat Subsystem
SLAVe

5–15

SOPQual

Command :MACHine{1|2}:SFORmat:SOPQual <clock_pair_id>,
<qual_operation>

The SOPQual (slave operation qualifier) command allows you to specify
either the AND or the OR operation between slave clock qualifier pair 1/2, or
between slave clock qualifier pair 3/4. For example you can specify a slave
clock operation qualifier 1 AND 2.

<clock_pair_
id>

{1|2} where 2 specifies qualifier pair 3/4

<qual_
operation>

{AND|OR}

Example OUTPUT XXX;":MACHine2:SFORMAT:SOPQUAL 1,AND"

Query :MACHine{1|2}:SFORmat:SOPQual? <clock_pair_id>

The SOPQual query returns the operation qualifier specified for the slave
clock.

Returned Format [:MACHine{1|2}:SFORmat:SOPQual <clock_pair_id>]
<qual_operation><NL>

Example OUTPUT XXX;":MACHiNE2:SFORMAT:SOPQUAL? 1"

SFORmat Subsystem
SOPQual

5–16

SQUal

Command :MACHine{1|2}:SFORmat:SQUal
<qual_num>,<clock_id>,<qual_level>

The SQUal (slave qualifier) command allows you to specify the level qualifier
for the slave clock.

<qual_num> {1|2|3|4}

<clock_id> {J|K|L|M}

<qual_level> {OFF|LOW|HIGH}

Example OUTPUT XXX;":MACHINE2:SFORMAT:SQUAL 1,J,LOW"

Query :MACHine{1|2}:SFORmat:SQUal?<qual_num>

The SQUal query returns the qualifier specified for the slave clock.
Returned Format [:MACHine{1|2}:SFORmat:SQUal] <clock_id>,<qual_level><NL>

Example OUTPUT XXX;":MACHINE2:SFORMAT:SQUAL? 1"

SFORmat Subsystem
SQUal

5–17

THReshold

Command :MACHine{1|2}:SFORmat:THReshold<N>
{TTL|ECL|<voltage>}

The THReshold command allows you to set the voltage threshold for a given
pod to ECL, TTL, or a specific voltage from −6.00 V to +6.00 V in 0.05 volt
increments.

<N> an integer from 1 to 12 indicating pod number

<voltage> real number between −6.00 to +6.00

TTL default value of +1.6 V

ECL default value of −1.3 V

Example OUTPUT XXX;":MACHINE1:SFORMAT:THRESHOLD1 4.0"

Query :MACHine{1|2}:SFORmat:THReshold<N>?

The THReshold query returns the current threshold for a given pod.
Returned Format [:MACHine{1|2}:SFORmat:THReshold<N>] <value><NL>

Example OUTPUT XXX;":MACHINE1:SFORMAT:THRESHOLD4?"

SFORmat Subsystem
THReshold

5–18

6

STRigger (STRace) Subsystem

Introduction

The STRigger subsystem contains the commands available for the
State Trigger menu in the HP 16554A/HP 16555A/HP 16555D logic
analyzer modules. The State Trigger subsystem will also accept the
STRace selector as used in previous HP 16500-Series logic analyzer
modules to eliminate the need to rewrite programs containing STRace
as the selector keyword. The STRigger subsystem commands are:

• ACQuisition

• BRANch

• CLEar

• FIND

• MLENgth

• RANGe

• SEQuence

• STORe

• TAG

• TAKenbranch

• TCONtrol

• TERM

• TIMER

• TPOSition

6–2

Figure 6-1

STRigger Subsystem Syntax Diagram

STRigger (STRace) Subsystem

6–3

Figure 6-1 (continued)

STRigger Subsystem Syntax Diagram (continued)

STRigger (STRace) Subsystem

6–4

Table 6-1 STRigger Subsystem Parameter Values

Parameter Value

branch_qualifier <qualifier>

qualifier see "Qualifier" on page 6–6

to_lev_num integer from 1 to last level

proceed_qualifier <qualifier>

occurrence number from 1 to 1048575

label_name string of up to 6 alphanumeric characters

start_pattern
stop_pattern

"{#B{0|1}...|
#Q{0|1|2|3|4|5|6|7}...|
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F}...|
{0|1|2|3|4|5|6|7|8|9}...} "

num_of_levels integer from 2 to 12

lev_of_trig integer from 1 to (number of existing sequence levels - 1)

store_qualifier <qualifier>

state_tag_qualifier <qualifier>

timer_num {1|2}

timer_value 400 ns to 500 seconds

term_id {A|B|C|D|E|F|G|H|I|J} (H and J not available in
110 MHz mode)

pattern "{#B{0|1|X}...|
#Q{0|1|2|3|4|5|6|7|X}...|
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F|X}...|
{0|1|2|3|4|5|6|7|8|9}...}"

post_value integer from 0 to 100 representing percentage

memory_length {4096 | 8192 | 16384 | 32768 | 65536 |
131072 | 262144 |
516096 (HP 16554A only)
524288 | 1040384 (HP 16555A only)
524288 | 1048576 | 2080768 (HP 16555D
only)}

STRigger (STRace) Subsystem

6–5

Qualifier

The qualifier for the state trigger subsystem can be terms A through J, Timer
1 and 2, and Range 1 and 2. In addition, qualifiers can be the NOT boolean
function of terms, timers, and ranges. The qualifier can also be an expression
or combination of expressions as shown below and figure 6-2, "Complex
Qualifier," on page 6-10.

The following parameters show how qualifiers are specified in all commands
of the STRigger subsystem that use <qualifier> .

<qualifier> { "ANYSTATE" | "NOSTATE" | "<expression>" }

<expression> {<expression1a>|<expression1b>|<expression1a> OR
 <expression1b>|<expression1a> AND <expression1b>}

<expression1a> {<expression1a_term>|(<expression1a_term>[OR
 <expression1a_term>]*)|(<expression1a_term>[AND
<expression1a_term>]*)}

<expression1a_
term>

{ <expression2a>|<expression2b>|<expression2c>|<expression2d>}

<expression1b> {<expression1b_term>|(<expression1b_term>[OR
 <expression1b_term>]*)|(<expression1b_term>[AND
<expression1b_term>]*)}

<expression1b_
term>

{<expression2e>|<expression2f>|<expression2g>|<expression2h>}

<expression2a> {<term3a>|<term3b>|(<term3a> <boolean_op> <term3b>)}

<expression2b> {<term3c>|<range3a>|(<term3c> <boolean_op> <range3a>)}

<expression2c> {<term3d>}

<expression2d> {<term3e>|<timer3a>|(<term3e> <boolean_op> <timer3a>)}

<expression2e> {<term3f>|<term3g>|(<term3f> <boolean_op> <term3g>)}

<expression2f> {<term3h>|<range3b>|(<term3h> <boolean_op> <range3b>)}

<expression2g> {<term3i>}

<expression2h> {<term3j>|<timer3b>|(<term3j> <boolean_op> <timer3b>)}

<boolean_op> {AND | NAND | OR | NOR | XOR | NXOR}

STRigger (STRace) Subsystem
Qualifier

6–6

<term3a> { A | NOTA }

<term3b> { B | NOTB }

<term3c> { C | NOTC }

<term3d> { D | NOTD }

<term3e> { E | NOTE }

<term3f> { F | NOTF }

<term3g> { G | NOTG }

<term3h> { H | NOTH }

<term3i> { I | NOTI }

<term3j> { J | NOTJ }

<range3a> { IN_RANGE1 | OUT_RANGE1 }

<range3b> { IN_RANGE2 | OUT_RANGE2 }

<timer3a> { TIMER1< | TIMER1>}

<timer3b> { TIMER2< | TIMER2>}

H, NOTH, J, and NOTJ are not available in 110-MHz mode.

Qualifier Rules The following rules apply to qualifiers:

• Qualifiers are quoted strings and, therefore, need quotes.

• Expressions are evaluated from left to right.

• Parentheses are used to change the order evaluation and are optional.

• An expression must map into the combination logic presented in the
combination pop-up menu (see figure 6-2 on page 6-10).

Examples ’A’
’(A OR B)’
’((A OR B) AND C)’
’((A OR B) AND C AND IN_RANGE2)’
’((A OR B) AND (C AND IN_RANGE1))’
’IN_RANGE1 AND (A OR B) AND C’

STRigger (STRace) Subsystem
Qualifier

6–7

STRigger (STRace)

Selector :MACHine{1|2}:STRigger

The STRigger (STRace) (State Trigger) selector is used as a part of a
compound header to access the settings found in the State Trace menu. It
always follows the MACHine selector because it selects a branch directly
below the MACHine level in the command tree.

Example OUTPUT XXX;":MACHINE1:STRIGGER:TAG TIME"

ACQuisition

Command :MACHine{1|2}:STRigger:ACQuisition
{AUTOmatic|MANual}

The ACQuisition command allows you to specify the acquisition mode for the
State analyzer.

Example OUTPUT XXX;":MACHINE1:STRIGGER:ACQUISITION AUTOMATIC"

Query :MACHine{1|2}:STRigger:ACQuisition?

The ACQuisition query returns the current acquisition mode.
Returned Format [:MACHine{1|2}:STRigger:ACQuisition] {AUTOmatic|MANual}<NL>

Example OUTPUT XXX;":MACHINE1:STRIGGER:ACQUISITION?"

STRigger (STRace) Subsystem
STRigger (STRace)

6–8

BRANch

Command :MACHine{1|2}:STRigger:BRANch<N>
<branch_qualifier>,<to_level_number>

The BRANch command defines the branch qualifier for a given sequence
level. When this branch qualifier is matched, it will cause the sequencer
to jump to the specified sequence level. The branch qualifier functions like
the "else on" branch of a sequence level.

The terms used by the branch qualifier (A through J, except in 110-MHz
mode) are defined by the TERM command. The meaning of IN_RANGE and
OUT_RANGE is determined by the RANGE command.

Within the limitations shown by the syntax definitions, complex expressions
may be formed using the AND and OR operators. Expressions are limited to
what you could manually enter through the State Trigger menu. Regarding
parentheses, the syntax definitions on the next page show only the required
ones. Additional parentheses are allowed as long as the meaning of the
expression is not changed. Figure 6-2 shows a complex expression as seen in
the State Trigger menu.

Example The following statements are all correct and have the same meaning. Notice
that the conventional rules for precedence are not followed. The expressions
are evaluated from left to right.

OUTPUT XXX;":MACHINE1:STRIGGER:BRANCH1 ’C AND D OR F OR G’, 1"
OUTPUT XXX;":MACHINE1:STRIGGER:BRANCH1 ’((C AND D) OR (F OR G))’, 1"
OUTPUT XXX;":MACHINE1:STRIGGER:BRANCH1 ’F OR (C AND D) OR G’,1"

<N> integer from 1 to <number_of_levels>

<to_level_
number>

integer from 1 to <number_of_levels>

<number_of_
levels>

integer from 2 to the number of existing sequence levels (maximum 12)

<branch_
qualifier>

<qualifier> see "Qualifier" on page 6-6

STRigger (STRace) Subsystem
BRANch

6–9

Example OUTPUT XXX;":MACHINE1:STRIGGER:BRANCH1 ’ANYSTATE’, 3"
OUTPUT XXX;":MACHINE1:STRIGGER:BRANCH2 ’A’, 7"
OUTPUT XXX;":MACHINE1:STRIGGER:BRANCH3 ’((A OR B) OR NOTG)’, 1"

Query :MACHine{1|2}:STRigger:BRANch<N>?

The BRANch query returns the current branch qualifier specification for a
given sequence level.

Returned Format [:MACHine{1|2}:STRigger:BRANch<N>]
<branch_qualifier>,<to_level_num><NL>

Example OUTPUT XXX;":MACHINE1:STRIGGER:BRANCH3?"

Figure 6-2

Complex qualifier

Figure 6-2 is a front panel representation of the complex qualifier (a Or b)
Or (f Or g) .

STRigger (STRace) Subsystem
BRANch

6–10

Example The following example would be used to specify the complex qualifier shown
in figure 6-2.

OUTPUT XXX;":MACHINE1:STRIGGER:BRANCH1 ’((A OR B) AND (F OR
G))’, 2"

Terms A through E, RANGE 1, and TIMER 1 must be grouped together
and terms F through J, RANGE 2, and TIMER 2 must be grouped together.
In the first level, terms from one group may not be mixed with terms from the
other. For example, the expression ((A OR IN_RANGE2) AND (C OR G)) is
not allowed because the term C cannot be specified in the F, G, and I group.

In the first level, the operators you can use are AND, NAND, OR, NOR,
XOR, NXOR. Either AND or OR may be used at the second level to join the two
groups together. It is acceptable for a group to consist of a single term.
Thus, an expression like (B AND G) is legal, since the two operands are both
simple terms from separate groups.

CLEar

Command :MACHine{1|2}:STRigger:CLEar
{All|SEQuence|RESource}

The CLEar command allows you to clear all settings in the State Trigger
menu, clear only the Sequence levels, or clear only the resource term
patterns. Cleared settings are replaced with the defaults.

Example OUTPUT XXX;":MACHINE1:STRIGGER:CLEAR RESOURCE"

STRigger (STRace) Subsystem
CLEar

6–11

FIND

Command :MACHine{1|2}:STRigger:FIND<N>
<proceed_qualifier>,<occurrence>

The FIND command defines the proceed qualifier for a given sequence level.
The qualifier tells the state analyzer when to proceed to the next sequence
level. When this proceed qualifier is matched the specified number of times,
the sequencer will proceed to the next sequence level. In the sequence level
where the trigger is specified, the FIND command specifies the trigger
qualifier (see SEQuence command).

The terms A through J are defined by the TERM command. The meaning of
IN_RANGE and OUT_RANGE is determined by the RANGe command.
Expressions are limited to what you could manually enter through the State
Trigger menu. Regarding parentheses, the syntax definitions below show
only the required ones. Additional parentheses are allowed as long as the
meaning of the expression is not changed. See page 6-9 for a detailed
example.

<N> integer from 1 to (number of existing sequence levels −1)

<occurrence> integer from 1 to 1048575

<proceed_
qualifier>

<qualifier> see "Qualifier" on page 6-6

Example OUTPUT XXX;":MACHINE1:STRIGGER:FIND1 ’ANYSTATE’, 1"
OUTPUT XXX;":MACHINE1:STRIGGER:FIND3 ’((NOTA AND NOTB) OR
G)’, 1"

STRigger (STRace) Subsystem
FIND

6–12

Query :MACHine{1|2}:STRigger:FIND4?

The FIND query returns the current proceed qualifier specification for a
given sequence level.

Returned Format [:MACHine{1|2}:STRigger:FIND<N>]
<proceed_qualifier>,<occurrence><NL>

Example OUTPUT XXX;":MACHINE1:STRIGGER:FIND<N>?"

MLENgth

Command :MACHine{1|2}:STRigger:MLENgth <memory_length>

The MLENgth command allows you to specify the analyzer memory depth.
Valid memory depths range from 4096 states (or samples) through the
maximum system memory depth minus 8192 states (HP 16554A or
HP 16555A) or minus 16384 states (HP 16555D). Memory depth is affected
by acquisition mode. If the <memory_length> value sent with the command
is not a legal value, the closest legal setting will be used.

<memory_length> {4096 | 8192 | 16384 | 32768 | 65536 | 131072 | 262144
| 516096 (HP 16554A only)
| 524288 | 1040384 (HP 16555A only)
| 524288 | 1048576 | 2080768 (HP 16555D only)}

Example OUTPUT XXX;":MACHINE1:STRIGGER:MLENGTH 262144"

Query :MACHine{1|2}:STRigger:MLENgth?

The MLENgth query returns the current analyzer memory depth selection.
Returned Format [:MACHine{1|2}:STRigger:MLENgth] <memory_length><NL>

Example OUTPUT XXX;":MACHINE1:STRIGGER:MLENGTH?"

STRigger (STRace) Subsystem
MLENgth

6–13

RANGe

Command :MACHine{1|2}:STRigger:RANGe<N> <label_name>,
<start_pattern>,<stop_pattern>

The RANGe command allows you to specify a range recognizer term for the
specified machine. Since a range can only be defined across one label and
since a label must contain 32 or fewer bits, the value of the start pattern or
stop pattern will be between (232)−1 and 0.

When these values are expressed in binary, they represent the bit values for
the label at one of the range recognizers’ end points. Don’t cares are not
allowed in the end point pattern specifications.

<label_name> string of up to 6 alphanumeric characters

<start_pattern>

<stop_pattern>

"{#B{0|1} . . . |
#Q{0|1|2|3|4|5|6|7} . . . |
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F} . . . |
{0|1|2|3|4|5|6|7|8|9} . . . }"

<N> {1 | 2}

Example OUTPUT XXX;":MACHINE1:STRIGGER:RANGE1 ’DATA’, ’127’, ’255’ "
OUTPUT XXX;":MACHINE1:STRIGGER:RANGE2 ’ABC’, ’#B00001111’,
’#HCF’ "

STRigger (STRace) Subsystem
RANGe

6–14

Query :MACHine{1|2}:STRigger:RANGe<N>?

The RANGe query returns the range recognizer end point specifications for
the range.

Returned Format [:MACHine{1|2}:STRigger:RANGe<N>]
<label_name>,<start_pattern>,<stop_pattern><NL>

Example OUTPUT XXX;":MACHINE1:STRIGGER:RANGE1?"

SEQuence

Command :MACHine{1|2}:STRigger:SEQuence <num_levels>,
<trig_level>

The SEQuence command redefines the state analyzer trigger sequence.
First, it deletes the current sequence. Then it inserts the number of levels
specified, with default settings, and assigns the trigger to be at a specified
sequence level. The number of levels may be between 2 and 12.

<num_levels> integer from 2 to 12

<trig_level> integer from 1 to (number of existing sequence levels − 1)

Example OUTPUT XXX;":MACHINE1:STRIGGER:SEQUENCE 4,3"

Query :MACHine{1|2}:STRigger:SEQuence?

The SEQuence query returns the current sequence specification.
Returned Format [:MACHine{1|2}:STRigger:SEQuence] <num_levels>,

<trig_level><NL>

Example OUTPUT XXX;":MACHINE1:STRIGGER:SEQUENCE?"

STRigger (STRace) Subsystem
SEQuence

6–15

STORe

Command :MACHine{1|2}:STRigger:STORe<N> <store_qualifier>

The STORe command defines the store qualifier for a given sequence level.
Any data matching the STORe qualifier will be stored in memory as part of
the current trace data. The qualifier may be a single term or a complex
expression. The terms A through J are defined by the TERM command. The
meaning of IN_RANGE1 and 2 and OUT_RANGE1 and 2 is determined by the
RANGe command.

Expressions are limited to what you could manually enter through the State
Trigger menu. Regarding parentheses, the syntax definitions below show
only the required ones. Additional parentheses are allowed as long as the
meaning of the expression is not changed.

A detailed example is provided starting on page 6-10.

<N> an integer from 1 to the number of existing sequence levels (maximum 12)

<store_
qualifier>

<qualifier> see "Qualifier" on page 6-6

Example OUTPUT XXX;":MACHINE1:STRIGGER:STORE1 ’ANYSTATE’"
OUTPUT XXX;":MACHINE1:STRIGGER:STORE2 ’OUT_RANGE1’"
OUTPUT XXX;":MACHINE1:STRIGGER:STORE3 ’(NOTC AND NOTD AND
NOTI)’"

Query :MACHine{1|2}:STRigger:STORe<N>?

The STORe query returns the current store qualifier specification for a given
sequence level <N>.

Returned Format [:MACHine{1|2}:STRigger:STORe<N>] <store_qualifier><NL>

Example OUTPUT XXX;":MACHINE1:STRIGGER:STORE4?"

STRigger (STRace) Subsystem
STORe

6–16

TAG

Command :MACHine{1|2}:STRigger:TAG
{OFF|TIME| <state_tag_qualifier >}

The TAG command selects the type of count tagging (state or time) to be
performed during data acquisition. State tagging is indicated when the
parameter is the state tag qualifier, which will be counted in the qualified
state mode. The qualifier may be a single term or a complex expression. The
terms A through J are defined by the TERM command. The terms
IN_RANGE1 and 2 and OUT_RANGE1 and 2 are defined by the RANGe
command.

Expressions are limited to what you could manually enter through the State
Trigger menu. Regarding parentheses, the syntax definitions below show
only the required ones. Additional parentheses are allowed as long as the
meaning of the expression is not changed. A detailed example is provided
starting on page 6-10.

<state_tag_
qualifier>

<qualifier> see "Qualifier" on page 6-6

Example OUTPUT XXX;":MACHINE1:STRIGGER:TAG OFF"
OUTPUT XXX;":MACHINE1:STRIGGER:TAG TIME"
OUTPUT XXX;":MACHINE1:STRIGGER:TAG ’(IN_RANGE OR NOTF)’"
OUTPUT XXX;":MACHINE1:STRIGGER:TAG ’((IN_RANGE OR A) AND E)’"

Query :MACHine{1|2} :STRigger:TAG?

The TAG query returns the current count tag specification.
Returned Format [:MACHine{1|2}:STRigger:TAG]

{OFF|TIME|<state_tag_qualifier>}<NL>

Example OUTPUT XXX;":MACHINE1:STRIGGER:TAG?"

STRigger (STRace) Subsystem
TAG

6–17

TAKenbranch

Command :MACHine{1|2}:STRigger:TAKenbranch {STORe|NOSTore}

The TAKenbranch command allows you to specify whether the state causing
the branch is stored or not stored for the specified machine. The states
causing the branch are defined by the BRANch and FIND commands.

Example OUTPUT XXX;":MACHINE2:STRIGGER:TAKENBRANCH STORE"

Query :MACHine{1|2}:STRigger:TAKenbranch?

The TAKenbranch query returns the current setting.
Returned Format [:MACHine{1|2}:STRigger:TAKenbranch] {STORe|NOSTore}<NL>

Example OUTPUT XXX;":MACHINE2:STRIGGER:TAKENBRANCH?

STRigger (STRace) Subsystem
TAKenbranch

6–18

TCONtrol

Command :MACHine{1|2}:STRigger:TCONtrol<N> <timer_num>,
{OFF|STARt|PAUSe|CONTinue}

The TCONtrol (timer control) command allows you to turn off, start, pause,
or continue the timer for the specified level. The time value of the timer is
defined by the TIMER command. There are two timers and they are available
for either machine but not both machines simultaneously.

<N> integer from 1 to the number of existing sequence levels (maximum 12)

<timer_num> {1|2}

Example OUTPUT XXX;":MACHINE2:STRIGGER:TCONTROL6 1, PAUSE"

Query :MACHine{1|2}:STRigger:TCONTROL<N>? <timer_num>

The TCONtrol query returns the current TCONtrol setting of the specified
level.

Returned Format [:MACHine{1|2}:STRigger:TCONTROL<N> <timer_num>]
{OFF|STARt|PAUSe|CONTinue}<NL>

Example OUTPUT XXX;":MACHINE2:STRIGGER:TCONTROL6? 1"

STRigger (STRace) Subsystem
TCONtrol

6–19

TERM

Command :MACHine{1|2}:STRigger:TERM <term_id>,
<label_name>,<pattern>

The TERM command allows you to specify a pattern recognizer term in the
specified machine. Each command deals with only one label in the given
term; therefore, a complete specification could require several commands.
Since a label can contain 32 or fewer bits, the range of the pattern value will
be between 232 − 1 and 0. When the value of a pattern is expressed in binary,
it represents the bit values for the label inside the pattern recognizer term.
Because the pattern parameter may contain don’t cares and be represented
in several bases, it is handled as a string of characters rather than a number.

Eight of the 10 terms (A through G and I) are always available for either
machine but not both simultaneously. Terms H and J are not available unless
the machine is configured as a state analyzer running in NORMal mode.

If you send the TERM command to a machine with a term that has not been
assigned to that machine, an error message "Legal command but settings
conflict" is returned.

<term_id> {A|B|C|D|E|F|G|H|I|J}

<label_name> string of up to 6 alphanumeric characters

<pattern> "{#B{0|1|X} . . . |
#Q{0|1|2|3|4|5|6|7|X} . . . |
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F|X} . . . |
{0|1|2|3|4|5|6|7|8|9} . . . }"

Example OUTPUT XXX;":MACHINE1:STRIGGER:TERM A,’DATA’,’255’ "
OUTPUT XXX;":MACHINE1:STRIGGER:TERM B,’ABC’,’#BXXXX1101’ "

STRigger (STRace) Subsystem
TERM

6–20

Query :MACHine{1|2}:STRigger:TERM? <term_id>,
<label_name>

The TERM query returns the specification of the term specified by term
identification and label name.

Returned Format [:MACHine{1|2}:STRAce:TERM]
<term_id>,<label_name>,<pattern><NL>

Example OUTPUT XXX;":MACHINE1:STRIGGER:TERM? B,’DATA’ "

TIMER

Command :MACHine{1|2}:STRigger:TIMER{1|2} <time_value >

The TIMER command sets the time value for the specified timer. The limits
of the timer are 400 ns to 500 seconds in 16 ns to 500 µs increments. The
increment value varies with the time value of the specified timer. There are
two timers and they are available for either machine but not both machines
simultaneously.

<time_value> real number from 400 ns to 500 seconds in increments which vary from 16 ns
to 500 µs.

Example OUTPUT XXX;":MACHINE1:STRIGGER:TIMER1 100E −6"

Query :MACHine{1|2}:STRigger:TIMER{1|2}?

The TIMER query returns the current time value for the specified timer.
Returned Format [:MACHine{1|2}:STRigger:TIMER{1|2}] <time_value><NL>

Example OUTPUT XXX;":MACHINE1:STRIGGER:TIMER1?"

STRigger (STRace) Subsystem
TIMER

6–21

TPOSition

Command :MACHine{1|2}:STRigger:TPOSition
{STARt|CENTer|END| POSTstore,<poststore >}

The TPOSition (trigger position) command allows you to set the trigger at
the start, center, end or at any position in the trace (poststore). Poststore is
defined as 0 to 100 percent with a poststore of 100 percent being the same as
start position and a poststore of 0 percent being the same as an end trace.

<poststore> integer from 0 to 100 representing percentage of poststore.

Example OUTPUT XXX;":MACHINE1:STRIGGER:TPOSITION END"
OUTPUT XXX;":MACHINE2:STRIGGER:TPOSITION POSTstore,75"

Query :MACHine{1|2}:STRigger:TPOSition?

The TPOSition query returns the current trigger position setting.
Returned Format [:MACHine{1|2}:STRigger:TPOSition] {STARt|CENTer|END|

POSTstore, <poststore >} <NL>

Example OUTPUT XXX;":MACHINE1:STRIGGER:TPOSITION?"

STRigger (STRace) Subsystem
TPOSition

6–22

7

SLISt Subsystem

Introduction

The SLISt subsystem contains the commands available for the State
Listing menu in the HP 16554A/HP 16555A/HP 16555D logic analyzer
modules. These commands are:

• COLumn

• CLRPattern

• DATA

• LINE

• MMODe

• OPATtern

• OSEarch

• OSTate

• OTAG

• OVERlay

• REMove

• RUNTil

• TAVerage

• TMAXimum

• TMINimum

• VRUNs

• XOTag

• XOTime

• XPATtern

• XSEarch

• XSTate

• XTAG

7–2

Figure 7-1

SLISt Subsystem Syntax Diagram

SLISt Subsystem

7–3

Figure 7-1 (continued)

SLISt Subsystem Syntax Diagram (continued)

SLISt Subsystem

7–4

Figure 7-1 (continued)

SLISt Subsystem Syntax Diagram (continued)

SLISt Subsystem

7–5

Table 7-1 SLISt Subsystem Parameter Values

Parameter Value

mod_num {1|2|3|4|5|6|7|8|9|10}

col_num integer from 1 to 61

line_number integer from -516096 to +516096 (HP 16554A) or from -1040384
to +1040384 (HP 16555A) or from -2080768 to +2080768
(HP 16555D)

label_name a string of up to 6 alphanumeric characters

base {BINary|HEXadecimal|OCTal|DECimal|TWOS|
ASCii|SYMBol|IASSembler} for labels or
{ABSolute|RELative} for tags

line_num_mid_screen integer from -516096 to +516096 (HP 16554A) or from -1040384
to +1040384 (HP 16555A) or from -2080768 to +2080768
(HP 16555D)

label_pattern "{#B{0|1|X}...|
#Q{0|1|2|3|4|5|6|7|X}...|
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F|X}...|
{0|1|2|3|4|5|6|7|8|9}...}"

occurrence integer from -516096 to +516096 (HP 16554A) or from -1040384
to +1040384 (HP 16555A) or from -2080768 to +2080768
(HP 16555D)

time_value real number

state_value real number

run_until_spec {OFF|LT,<value>|GT,<value>|
INRange,<value>,<value>|
OUTRange,<value>,<value>}

value real number

SLISt Subsystem

7–6

SLISt

Selector :MACHine{1|2}:SLISt

The SLISt selector is used as part of a compound header to access those
settings normally found in the State Listing menu. It always follows the
MACHine selector because it selects a branch directly below the MACHine
level in the command tree.

Example OUTPUT XXX;":MACHINE1:SLIST:LINE 256"

COLumn

Command :MACHine{1|2}:SLISt:COLumn <col_num>
[,<module_num>,MACHine{1|2}],<label_name>,<base>

The COLumn command allows you to configure the state analyzer listing by
assigning a label name and base to one of the 61 vertical columns in the
menu. A column number of 1 refers to the leftmost column. When a label is
assigned to a column it replaces the original label in that column.

When the label name is "TAGS," the TAGS column is assumed and the next
parameter must specify RELative or ABSolute.

<col_num> integer from 1 to 61

<module_num> {1|2|3|4|5|6|7|8|9|10}

<label_name> a string of up to 6 alphanumeric characters; "TAGS" to insert state or time
tags.

<base> {BINary|HEXadecimal|OCTal|DECimal|TWOS|ASCii|SYMBol|
IASSembler} for labels or
{ABSolute|RELative} for tags

Example OUTPUT XXX;":MACHINE1:SLIST:COLUMN 4,’ADDR’,HEX"

SLISt Subsystem
SLISt

7–7

Query :MACHine{1|2}:SLISt:COLumn? <col_num>

The COLumn query returns the column number, module slot, machine, label
name, and base for the specified column.

Returned Format [:MACHine{1|2}:SLISt:COLumn]
<col_num>,<module_num>,MACHine{1|2}, <label_name>,<base><NL>

Example OUTPUT XXX;":MACHINE1:SLIST:COLUMN? 4"

CLRPattern

Command :MACHine{1|2}:SLISt:CLRPattern {X|O|ALL}

The CLRPattern command allows you to clear the marker patterns in the
Specify Patterns menu.

Example OUTPUT XXX;":MACHINE1:SLISt:CLRPATTERN X"

SLISt Subsystem
CLRPattern

7–8

DATA

Query :MACHine{1|2}:SLISt:DATA? <line_number>,
<label_name>

The DATA query returns the value at a specified line number for a given
label. The format will be the same as the one shown in the listing display.

Returned Format [:MACHine{1|2}:SLISt:DATA] <line_number>,<label_name>,
 <pattern_string><NL>

<line_number> integer from -516096 to +516096 (HP 16554A) or from -1040384 to +1040384
(HP 16555A) or from -2080768 to +2080768 (HP 16555D)

<label_name> string of up to 6 alphanumeric characters

<pattern_
string>

"{#B{0|1|X} . . . |
#Q{0|1|2|3|4|5|6|7|X} . . . |
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F|X} . . . |
{0|1|2|3|4|5|6|7|8|9} . . . }"

Example OUTPUT XXX;":MACHINE1:SLIST:DATA? 512, ’RAS’"

LINE

Command :MACHine{1|2}:SLISt:LINE <line_num_mid_screen>

The LINE command allows you to scroll the state analyzer listing vertically.
The command specifies the state line number relative to the trigger. The
analyzer highlights the specified line at the center of the screen.

<line_num_mid_
screen>

integer from -516096 to +516096 (HP 16554A) or from -1040384 to +1040384
(HP 16555A) or from -2080768 to +2080768 (HP 16555D)

Example OUTPUT XXX;":MACHINE1:SLIST:LINE 0"

SLISt Subsystem
DATA

7–9

Query :MACHine{1|2}:SLISt:LINE?

The LINE query returns the line number for the state currently in the box at
the center of the screen.

Returned Format [:MACHine{1|2}:SLISt:LINE] <line_num_mid_screen><NL>

Example OUTPUT XXX;":MACHINE1:SLIST:LINE?"

MMODe

Command :MACHine{1|2}:SLISt:MMODe <marker_mode>

The MMODe command (Marker Mode) selects the mode controlling the
marker movement and the display of marker readouts. When PATTern is
selected, the markers will be placed on patterns. When STATe is selected
and state tagging is on, the markers move on qualified states counted
between normally stored states. When TIME is selected and time tagging is
enabled, the markers move on time between stored states. When MSTats is
selected and time tagging is on, the markers are placed on patterns, but the
readouts will be time statistics.

<marker_mode> {OFF|PATTern|STATe|TIME|MSTats}

Example OUTPUT XXX;":MACHINE1:SLIST:MMODE TIME"

SLISt Subsystem
MMODe

7–10

Query :MACHine{1|2}:SLISt:MMODe?

The MMODe query returns the current marker mode selected.
Returned Format [:MACHine{1|2}:SLISt:MMODe] <marker_mode><NL>

Example OUTPUT XXX;":MACHINE1:SLIST:MMODE?"

OPATtern

Command :MACHine{1|2}:SLISt:OPATtern
<label_name>,<label_pattern>

The OPATtern command allows you to construct a pattern recognizer term
for the O Marker which is then used with the OSEarch criteria when moving
the marker on patterns. Because this command deals with only one label at a
time, a complete specification could require several invocations.

When the value of a pattern is expressed in binary, it represents the bit
values for the label inside the pattern recognizer term. In whatever base is
used, the value must be between 0 and 232 − 1, since a label may not have
more than 32 bits. Because the <label_pattern> parameter may contain
don’t cares, it is handled as a string of characters rather than a number.

<label_name> string of up to 6 alphanumeric characters

<label_pattern> "{#B{0|1|X} . . . |
#Q{0|1|2|3|4|5|6|7|X} . . . |
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F|X} . . . |
{0|1|2|3|4|5|6|7|8|9} . . . }"

Example OUTPUT XXX;":MACHINE1:SLIST:OPATTERN ’DATA’,’255’ "
OUTPUT XXX;":MACHINE2:SLIST:OPATTERN ’ABC’,’#BXXXX1101’ "

SLISt Subsystem
OPATtern

7–11

Query :MACHine{1|2}:SLISt:OPATtern? <label_name>

The OPATtern query returns the pattern specification for a given label name.
Returned Format [:MACHine{1|2}:SLISt:OPATtern]

<label_name>,<label_pattern><NL>

Example OUTPUT XXX;":MACHINE1:SLIST:OPATTERN? ’A’"

OSEarch

Command :MACHine{1|2}:SLISt:OSEarch <occurrence>,<origin>

The OSEarch command defines the search criteria for the O marker, which is
then used with associated OPATtern recognizer specification when moving
the markers on patterns. The origin parameter tells the marker to begin a
search with the trigger, the start of data, or with the X marker. The actual
occurrence the marker searches for is determined by the occurrence
parameter of the OSEarch recognizer specification, relative to the origin. An
occurrence of 0 places the marker on the selected origin. With a negative
occurrence, the marker searches before the origin. With a positive
occurrence, the marker searches after the origin.

<occurrence> integer from -516096 to +516096 (HP 16554A) or from -1040384 to +1040384
(HP 16555A) or from -2080768 to +2080768 (HP 16555D)

<origin> {TRIGger|STARt|XMARker}

Example OUTPUT XXX;":MACHINE1:SLIST:OSEARCH +10,TRIGGER"

SLISt Subsystem
OSEarch

7–12

Query :MACHine{1|2}:SLISt:OSEarch?

The OSEarch query returns the search criteria for the O marker.
Returned Format [:MACHine{1|2}:SLISt:OSEarch] <occurrence>,<origin><NL>

Example OUTPUT XXX;":MACHINE1:SLIST:OSEARCH?"

OSTate

Query :MACHine{1|2}:SLISt:OSTate?

The OSTate query returns the line number in the listing where the O marker
resides. If data is not valid , the query returns 2147483647.

Returned Format [:MACHine{1|2}:SLISt:OSTate] <state_num><NL>

<state_num> integer from -516096 to +516096 or 2147483647 (HP 16554A), or from
-1040384 to +1040384 or 2147483647 (HP 16555A) or from -2080768 to
+2080768 or 2147483647 (HP 16555D)

Example OUTPUT XXX;":MACHINE1:SLIST:OSTATE?"

SLISt Subsystem
OSTate

7–13

OTAG

Command :MACHine{1|2}:SLISt:OTAG
{<time_value>|<state_value>}

The OTAG command specifies the tag value on which the O Marker should be
placed. The tag value is time when time tagging is on, or states when state
tagging is on. If the data is not valid tagged data, no action is performed.

<time_value> real number

<state_value> real number

Example :OUTPUT XXX;":MACHINE1:SLIST:OTAG 40.0E −6"

Query :MACHine{1|2}:SLISt:OTAG?

The OTAG query returns the O Marker position in time when time tagging is
on or in states when state tagging is on, regardless of whether the marker
was positioned in time or through a pattern search. If data is not valid, the
query returns 9.9E37 for time tagging, or returns 2147483647 for state
tagging.

Returned Format [:MACHine{1|2}:SLISt:OTAG] {<time_value>|<state_value>}<NL>

Example OUTPUT XXX;":MACHINE1:SLIST:OTAG?"

SLISt Subsystem
OTAG

7–14

OVERlay

Command :MACHine{1|2}:SLISt:OVERlay <col_num>,
<module_num>,MACHine{1|2},<label_name>

The OVERlay command allows you to add time-correlated labels from other
modules or machines to the state listing. The added labels are interleaved
with the column specified. The column must already contain a label.

<col_num> integer from 1 to 61

<Module_num> {1|2|3|4|5|6|7|8|9|10}

<label_name> a string of up to 6 alphanumeric characters

Example OUTPUT XXX;":MACHINE1:SLIST:OVERlay,25,5,MACHINE2,’DATA’"

REMove

Command :MACHine{1|2}:SLISt:REMove

The REMove command removes all labels, except the leftmost label, from
the listing menu.

Example OUTPUT XXX;":MACHINE1:SLIST:REMOVE"

SLISt Subsystem
OVERlay

7–15

RUNTil

Command :MACHine{1|2}:SLISt:RUNTil <run_until_spec>

The RUNTil (run until) command allows you to define a stop condition when
the trace mode is repetitive. Specifying OFF causes the analyzer to make
runs until either the display’s STOP field is touched or the STOP command is
issued.

There are four conditions based on the time between the X and O markers.
Using this difference in the condition is effective only when time tags have
been turned on (see the TAG command in the STRace subsystem). These
four conditions are as follows:

• The difference is less than (LT) some value.

• The difference is greater than (GT) some value.

• The difference is inside some range (INRange).

• The difference is outside some range (OUTRange).

End points for the INRange and OUTRange should be at least 8 ns apart since
this is the minimum time resolution of the time tag counter.

<run_until_
spec>

{OFF|LT,<value>|GT,<value>|INRange,<value>,<value>
|OUTRange,<value>,<value>}

<value> real number from −9E9 to +9E9

Example OUTPUT XXX;":MACHINE1:SLIST:RUNTIL GT,800.0E −6"

Query :MACHine{1|2}:SLISt:RUNTil?

 The RUNTil query returns the current stop criteria.
Returned Format [:MACHine{1|2}:SLISt:RUNTil] <run_until_spec><NL>

Example OUTPUT XXX;":MACHINE1:SLIST:RUNTIL?"

SLISt Subsystem
RUNTil

7–16

TAVerage

Query :MACHine{1|2}:SLISt:TAVerage?

The TAVerage query returns the value of the average time between the X
and O Markers. If the number of valid runs is zero, the query returns 9.9E37.
Valid runs are those where the pattern search for both the X and O markers
was successful, resulting in valid time measurements.

Returned Format [:MACHine{1|2}:SLISt:TAVerage] <time_value><NL>

<time_value> real number

Example OUTPUT XXX;":MACHINE1:SLIST:TAVERAGE?"

TMAXimum

Query :MACHine{1|2}:SLISt:TMAXimum?

The TMAXimum query returns the value of the maximum time between the X
and O Markers. If data is not valid, the query returns 9.9E37.

Returned Format [:MACHine{1|2}:SLISt:TMAXimum] <time_value><NL>

<time_value> real number

Example OUTPUT XXX;":MACHINE1:SLIST:TMAXIMUM?"

SLISt Subsystem
TAVerage

7–17

TMINimum

Query :MACHine{1|2}:SLISt:TMINimum?

The TMINimum query returns the value of the minimum time between the X
and O Markers. If data is not valid, the query returns 9.9E37.

Returned Format [:MACHine{1|2}:SLISt:TMINimum] <time_value><NL>

<time_value> real number

Example OUTPUT XXX;":MACHINE1:SLIST:TMINIMUM?"

VRUNs

Query :MACHine{1|2}:SLISt:VRUNs?

The VRUNs query returns the number of valid runs and total number of runs
made. Valid runs are those where the pattern search for both the X and O
markers was successful, resulting in valid time measurements.

Returned Format [:MACHine{1|2}:SLISt:VRUNs] <valid_runs>,<total_runs><NL>

<valid_runs> zero or positive integer

<total_runs> zero or positive integer

Example OUTPUT XXX;":MACHINE1:SLIST:VRUNS?"

SLISt Subsystem
TMINimum

7–18

XOTag

Query :MACHine{1|2}:SLISt:XOTag?

The XOTag query returns the time from the X to O markers when the marker
mode is time, or number of states from the X to O markers when the marker
mode is state. If there is no data in the time mode the query returns 9.9E37.
If there is no data in the state mode, the query returns 2147483647.

Returned Format [:MACHine{1|2}:SLISt:XOTag] {<XO_time>|<XO_states>}<NL>

<XO_time> real number

<XO_states> integer

Example OUTPUT XXX;":MACHINE1:SLIST:XOTAG?"

XOTime

Query :MACHine{1|2}:SLISt:XOTime?

The XOTime query returns the time from the X to O markers when the
marker mode is time, or number of states from the X to O markers when the
marker mode is state. If there is no data in the time mode the query returns
9.9E37. If there is no data in the state mode, the query returns 2147483647.

Returned Format [:MACHine{1|2}:SLISt:XOTime] {<XO_time>|<XO_states>}<NL>

<XO_time> real number

<XO_states> integer

Example OUTPUT XXX;":MACHINE1:SLIST:XOTIME?"

SLISt Subsystem
XOTag

7–19

XPATtern

Command :MACHine{1|2}:SLISt:XPATtern
<label_name>,<label_pattern>

The XPATtern command allows you to construct a pattern recognizer term
for the X marker which is then used with the XSEarch criteria when moving
the marker on patterns. Since this command deals with only one label at a
time, a complete specification could require several invocations.

When the value of a pattern is expressed in binary, it represents the bit
values for the label inside the pattern recognizer term. In whatever base is
used, the value must be between 0 and 232 − 1, since a label may not have
more than 32 bits. Because the <label_pattern> parameter may contain
don’t cares, it is handled as a string of characters rather than a number.

<label_name> string of up to 6 alphanumeric characters

<label_pattern> "{#B{0|1|X} . . . |
#Q{0|1|2|3|4|5|6|7|X} . . . |
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F|X} . . . |
{0|1|2|3|4|5|6|7|8|9} . . . }"

Examples OUTPUT XXX;":MACHINE1:SLIST:XPATTERN ’DATA’,’255’ "
OUTPUT XXX;":MACHINE1:SLIST:XPATTERN ’ABC’,’#BXXXX1101’ "

Query :MACHine{1|2}:SLISt:XPATtern? <label_name>

The XPATtern query returns the pattern specification for a given label name.
Returned Format [:MACHine{1|2}:SLISt:XPATtern]

<label_name>,<label_pattern><NL>

Example OUTPUT XXX;":MACHINE1:SLIST:XPATTERN? ’A’"

SLISt Subsystem
XPATtern

7–20

XSEarch

Command :MACHine{1|2}:SLISt:XSEarch <occurrence>,<origin>

The XSEarch command defines the search criteria for the X marker, which is
then with associated XPATtern recognizer specification when moving the
markers on patterns. The origin parameter tells the marker to begin a search
from the trigger or from the start of data. The occurrence parameter
determines which occurrence of the XPATtern recognizer specification,
relative to the origin, the marker actually searches for. An occurrence of 0
places a marker on the selected origin.

<occurrence> integer from -516096 to +516096 (HP 16554A), or from -1040384 to
+1040384 (HP 16555A)or from -2080768 to +2080768 (HP 16555D)

<origin> {TRIGger|STARt}

Example OUTPUT XXX;":MACHINE1:SLIST:XSEARCH +10,TRIGGER"

Query :MACHine{1|2}:SLISt:XSEarch?

The XSEarch query returns the search criteria for the X marker.
Returned Format [:MACHine{1|2}:SLISt:XSEarch] <occurrence>,<origin><NL>

Example OUTPUT XXX;":MACHINE1:SLIST:XSEARCH?"

SLISt Subsystem
XSEarch

7–21

XSTate

Query :MACHine{1|2}:SLISt:XSTate?

The XSTate query returns the line number in the listing where the X marker
resides. If data is not valid, the query returns 2147483647.

Returned Format [:MACHine{1|2}:SLISt:XSTate] <state_num><NL>

<state_num> integer from -516096 to +516096 or 2147483647 (HP 16554A), or from
-1040384 to +1040384 or 2147483647 (HP 16555A) or from -2080768 to
+2080768 or 2147483647 (HP 16555D)

Example OUTPUT XXX;":MACHINE1:SLIST:XSTATE?"

XTAG

Command :MACHine{1|2}:SLISt:XTAG
{<time_value>|<state_value>}

The XTAG command specifies the tag value on which the X marker should be
placed. The tag value is time when time tagging is on, and states when state
tagging is on. If the data is not valid tagged data, no action is performed.

<time_value> real number

<state_value> integer

Example OUTPUT XXX;":MACHINE1:SLIST:XTAG 40.0E −6"

SLISt Subsystem
XSTate

7–22

Query :MACHine{1|2}:SLISt:XTAG?

The XTAG query returns the X marker position in time when time tagging is
on or in states when state tagging is on, regardless of whether the marker
was positioned in time or through a pattern search. If data is not valid tagged
data, the query returns 9.9E37 for time tagging, or returns 2147483647 for
state tagging.

Returned Format [:MACHine{1|2}:SLISt:XTAG] {<time_value>|<state_value>}<NL>

Example OUTPUT XXX;":MACHINE1:SLIST:XTAG?"

SLISt Subsystem
XTAG

7–23

7–24

8

SWAVeform Subsystem

Introduction

The commands in the State Waveform subsystem allow you to
configure the display so that you can view state data as waveforms. Up
to 96 channels, identified by label name and bit number, can be
displayed at a time. The 12 commands in this subsystem are
analogous to their counterparts in the Timing Waveform subsystem.
In this subsystem the X axis is restricted to representing only samples
(states), regardless of whether time tagging is on or off. As a result,
the only commands which can be used for scaling are DELay and
RANge.

The way to manipulate the X and O markers on the Waveform display
is through the State Listing (SLISt) subsystem. Using the marker
commands from the SLISt subsystem will affect the markers on the
Waveform display.

The commands in the SWAVeform subsystem are:

• ACCumulate

• ACQuisition

• CENter

• CLRPattern

• CLRStat

• DELay

• INSert

• MLENgth

• RANGe

• REMove

• TAKenbranch

• TPOSition

8–2

Figure 8-1

SWAVeform Subsystem Syntax Diagram

SWAVeform Subsystem

8–3

Table 8-1 SWAVeform Subsystem Parameter Values

Parameter Value

number_of_samples integer from -516096 to +516096 (HP 16554A) or from -1040384
to +1040384 (HP 16555A) or from -2080768 to +2080768
(HP 16555D)

label_name string of up to 6 alphanumeric characters

bit_id {OVERlay|<bit_num>|ALL}

bit_num integer representing a label bit from 0 to 31

range_values integer from 10 to 5000 (representing (10 × states/Division))

mark_type {X|O|XO|TRIGger}

percent integer from 0 to 100

memory_length {4096 | 8192 | 16384 | 32768 | 65536 |
131072 | 262144 |
516096 (HP 16554A only)
524288 | 1040384 (HP 16555A only)
524288 | 1048576 | 2080768 (HP 16555D
only)}

SWAVeform

Selector :MACHine{1|2}:SWAVeform

The SWAVeform (State Waveform) selector is used as part of a compound
header to access the settings in the State Waveform menu. It always follows
the MACHine selector because it selects a branch directly below the
MACHine level in the command tree.

Example OUTPUT XXX;":MACHINE2:SWAVEFORM:RANGE 40"

SWAVeform Subsystem
SWAVeform

8–4

ACCumulate

Command :MACHine{1|2}:SWAVeform:ACCumulate
{{ON|1}|{OFF|0}}

The ACCumulate command allows you to control whether the waveform
display gets erased between individual runs or whether subsequent
waveforms are allowed to be displayed over the previous waveforms.

Example OUTPUT XXX;":MACHINE1:SWAVEFORM:ACCUMULATE ON"

Query MACHine{1|2}:SWAVeform:ACCumulate?

The ACCumulate query returns the current setting. The query always shows
the setting as the characters, "0" (off) or "1" (on).

Returned Format [MACHine{1|2}:SWAVeform:ACCumulate] {0|1}<NL>

Example OUTPUT XXX;":MACHINE1:SWAVEFORM:ACCUMULATE?"

ACQuisition

Command :MACHine{1|2}:SWAVeform:ACQuisition {AUTOmatic|MANual}

The ACQuisition command allows you to specify the acquisition mode for the
state analyzer. The acquisition modes are automatic and manual.

Example OUTPUT XXX;":MACHINE2:SWAVEFORM:ACQUISITION AUTOMATIC"

SWAVeform Subsystem
ACCumulate

8–5

Query MACHine{1|2}:SWAVeform:ACQuisition?

The ACQuisition query returns the current acquisition mode.
Returned Format [MACHine{1|2}:SWAVeform:ACQuisition] {AUTOmatic|MANual}<NL>

Example OUTPUT XXX;":MACHINE2:SWAVEFORM:ACQUISITION?"

CENTer

Command :MACHine{1|2}:SWAVeform:CENTer <marker_type>

The CENTer command allows you to center the waveform display about the
specified markers. The markers are placed on the waveform in the SLISt
subsystem.

<marker_type> {X|O|XO|TRIGger}

Example OUTPUT XXX;":MACHINE1:SWAVEFORM:CENTER X"

CLRPattern

Command :MACHine{1|2}:SWAVeform:CLRPattern {X|O|ALL}

The CLRPattern command allows you to clear the marker patterns in the
selected Specify Patterns menu.

Example OUTPUT XXX;":MACHINE1:SWAVEFORM:CLRPATTERN"

SWAVeform Subsystem
CENTer

8–6

CLRStat

Command :MACHine{1|2}:SWAVeform:CLRStat

The CLRStat command allows you to clear the waveform statistics without
having to stop and restart the acquisition.

Example OUTPUT XXX;":MACHINE1:SWAVEFORM:CLRSTAT"

DELay

Command :MACHine{1|2}:SWAVeform:DELay <number_of_samples>

The DELay command allows you to specify the number of samples between
the State trigger and the horizontal center of the screen for the waveform
display.

<number_of_
samples>

integer from -516096 to +516096 (HP 16554A) or from -1040384 to
+1040384 (HP 16555A) or from -2080768 to +2080768 (HP 16555D)

Example OUTPUT XXX;":MACHINE2:SWAVEFORM:DELAY 127"

Query MACHine{1|2}:SWAVeform:DELay?

The DELay query returns the current sample offset value.
Returned Format [MACHine{1|2}:SWAVeform:DELay] <number_of_samples><NL>

Example OUTPUT XXX;":MACHINE1:SWAVEFORM:DELAY?"

SWAVeform Subsystem
CLRStat

8–7

INSert

Command MACHine{1|2}:SWAVeform:INSert <label_name>,
<bit_id>

The INSert command allows you to add waveforms to the state waveform
display. Waveforms are added from top to bottom on the screen. When 96
waveforms are present, inserting additional waveforms replaces the last
waveform. Bit numbers are zero-based, so a label with 8 bits is referenced as
bits 0 through 7. Specifying OVERlay causes a composite waveform display
of all bits or channels for the specified label.

<label_name> string of up to 6 alphanumeric characters

<bit_id> {OVERlay | <bit_num> | ALL}

<bit_num> integer representing a label bit from 0 to 31

Example OUTPUT XXX;":MACHINE1:SWAVEFORM:INSERT ’WAVE’, 19"
OUTPUT XXX;":MACHINE1:SWAVEFORM:INSERT ’ABC’, OVERLAY"
OUTPUT XXX;":MACH1:SWAV:INSERT ’POD1’, #B1001"

MLENgth

Command :MACHine{1|2}:SWAVeform:MLENgth <memory_length>

The MLENgth command allows you to specify the analyzer memory depth.
Valid memory depths range from 4096 states (or samples) through the
maximum system memory depth minus 8192 states. Memory depth is
affected by acquisition mode. If the <memory_depth> value sent with the
command is not a legal value, the closest legal setting will be used.

<memory_length> {4096 | 8192 | 16384 | 32768 | 65536 | 131072 | 262144
| 516096 (HP 16554A)
| 524288 | 1040384 (HP 16555A)
| 524288 | 1048576 | 2080768 (HP 16555D)}

SWAVeform Subsystem
INSert

8–8

Example OUTPUT XXX;":MACHINE1:SWAVEFORM:MLENGTH 262144"

Query :MACHine{1|2}:SWAVeform:MLENgth?

The MLENgth query returns the current analyzer memory depth selection.
Returned Format [:MACHine{1|2}:SWAVeform:MLENgth] <memory_length><NL>

Example OUTPUT XXX;":MACHINE1:SWAVEFORM:MLENGTH?"

RANGe

Command MACHine{1|2}:SWAVeform:RANGe <number_of_samples>

The RANGe command allows you to specify the number of samples across
the screen on the State Waveform display. It is equivalent to ten times the
states per division setting (states/Div) on the front panel. A number between
10 and 5000 may be entered.

<number_of_
samples>

integer from 10 to 5000

Example OUTPUT XXX;":MACHINE2:SWAVEFORM:RANGE 80"

Query MACHine{1|2}:SWAVeform:RANGe?

The RANGe query returns the current range value.
Returned Format [MACHine{1|2}:SWAVeform:RANGe] <number_of_samples><NL>

Example OUTPUT XXX;":MACHINE2:SWAVEFORM:RANGE?"

SWAVeform Subsystem
RANGe

8–9

REMove

Command :MACHine{1|2}:SWAVeform:REMove

The REMove command clears the waveform display before building a new
display.

Example OUTPUT XXX;":MACHINE1:SWAVEFORM:REMOVE"

TAKenbranch

Command MACHine{1|2}:SWAVeform:TAKenbranch {STORe|NOSTore}

The TAKenbranch command allows you to control whether the states that
cause branching are stored or not stored. This command is only available
when the acquisition mode is set to manual.

Example OUTPUT XXX;":MACHINE2:SWAVEFORM:TAKENBRANCH STORE"

Query MACHine{1|2}:SWAVeform:TAKenbranch?

The TAKenbranch query returns the current setting.
Returned Format [MACHine{1|2}:SWAVeform:TAKenbranch] {STORe|NOSTore}<NL>

Example OUTPUT XXX;":MACHINE2:SWAVEFORM:TAKENBRANCH?"

SWAVeform Subsystem
REMove

8–10

TPOSition

Command MACHine{1|2}:SWAVeform:TPOSition
{STARt|CENTer|END|POSTstore,<percent>}

The TPOSition command allows you to control where the trigger point is
placed. The trigger point can be placed at the start, center, end, or at a
percentage of post store. The post store option is the same as the User
Defined option when setting the trigger point from the front panel.

The TPOSition command is only available when the acquisition mode is set to
manual.

<percent> integer from 1 to 100

Example OUTPUT XXX;":MACHINE2:SWAVEFORM:TPOSITION CENTER"

Query MACHine{1|2}:SWAVeform:TPOSition?

The TPOSition query returns the current trigger setting.
Returned Format [MACHine{1|2}:SWAVeform:TPOSition]

{STARt|CENTer|END|POSTstore,<percent>}<NL>

Example OUTPUT XXX;":MACHINE2:SWAVEFORM:TPOSition?"

SWAVeform Subsystem
TPOSition

8–11

8–12

9

SCHart Subsystem

Introduction

The State Chart subsystem provides the commands necessary for
programming the HP 16554A/HP 16555A/HP 16555D’s Chart display.
The commands allow you to build charts of label activity, using data
normally found in the Listing display. The chart’s Y axis is used to
show data values for the label of your choice. The X axis can be used
in two different ways. In one, the X axis represents states (shown as
rows in the State Listing display). In the other, the X axis represents
the data values for another label.

When states are plotted along the X axis, X and O markers are
available. Because the State Chart display is simply an alternative way
of looking at the data in the State Listing, the X and O markers are
manipulated through the SLISt subsystem. Because the programming
commands do not force the menus to switch, you can position the
markers in the SLISt subsystem and see the effects in the State Chart
display.

The commands in the SCHart subsystem are:

• ACCumulate

• CENTer

• HAXis

• VAXis

9–2

Figure 9-1

SCHart Subsystem Syntax Diagram

Table 9-1 SCHart Subsystem Parameter Values

Parameter Value

state_low_value integer between ±516096 (HP 16554A), ±1040384 (HP
16555A), or ±2080768 (HP 16555D)

state_high_value integer from <state_low_value> to 516096 (HP
16554A), 1040384 (HP 16555A), or 2080768 (HP 16555D)

label_name a string of up to 6 alphanumeric characters

label_low_value string from 0 to 232 - 1 (#HFFFFFFFF)

label_high_value string from <label_low_value> to 232 - 1
(#HFFFFFFFF)

low_value string from 0 to 232 - 1 (#HFFFFFFFF)

high_value string from low_value to 232 - 1 (#HFFFFFFFF)

marker_type {X | O | XO | TRIGger}

SCHart Subsystem

9–3

SCHart

Selector :MACHine{1|2}:SCHart

The SCHart selector is used as part of a compound header to access the
settings found in the State Chart menu. It always follows the MACHine
selector because it selects a branch below the MACHine level in the
command tree.

Example OUTPUT XXX;":MACHINE1:SCHART:VAXIS ’A’, ’0’, ’9’"

ACCumulate

Command MACHine{1|2}:SCHart:ACCumulate {{ON|1} | {OFF|0}}

The ACCumulate command controls whether the chart display gets erased
between each individual run or whether subsequent waveforms are displayed
over the previous waveforms.

Example OUTPUT XXX;":MACHINE1:SCHART:ACCUMULATE OFF"

Query MACHine{1|2}:SCHart:ACCumulate?

The ACCumulate query returns the current setting. The query always shows
the setting as the character "0" (off) or "1" (on).

Returned Format [:MACHine{1|2}:SCHart:ACCumulate] {0|1}<NL>

Example OUTPUT XXX;":MACHINE1:SCHART:ACCUMULATE?"

SCHart Subsystem
SCHart

9–4

CENTer

Command MACHine{1|2}:SCHart:CENTer <marker_type>

The CENTer command centers the chart display about the specified markers.
The markers are placed in the SLISt subsystem.

<marker_type> {X | O | XO | TRIGger}

Example OUTPUT XXX;":MACHINE1:SCHART:CENTER XO"

HAXis

Command MACHine{1|2}:SCHart:HAXis
{STAtes,<state_low_value>,<state_high_value>|
<label_name>,<label_low_value>,<label_high_value>,
<state_low_value>,<state_high_value>}

The HAXis command allows you to select whether states or a label’s values
will be plotted on the horizontal axis of the chart. The axis is scaled by
specifying the high and low values. The shortform for STATES is STA. This
is an intentional deviation from the normal truncation rule.

<state_low_
value>

integer from –516096 to +516096 (HP 16554A), or from –1040384 to
+1040384 (HP 16555A), or from –2080768 to +2080768 (HP 16555D)

<state_high_
value>

integer from <state_low_value> to +516096 (HP 16554A), +1040384
(HP 16555A), or +2080768 (HP 16555D)

<label_name> a string of up to 6 alphanumeric characters

<label_low_
value>

string from 0 to 232−−1 (#HFFFFFFFF)

<label_high_
value>

string from <label_low_value> to 232–1 (#HFFFFFFFF)

SCHart Subsystem
CENTer

9–5

Example OUTPUT XXX;":MACHINE1:SCHART:HAXIS STATES, −100, 100"

OUTPUT XXX;":MACHINE1:SCHART:HAXIS ’READ’, ’ −511’, ’511’,
0,300"

Query MACHine{1|2}:SCHart:HAXis?

The HAXis query returns the current horizontal axis label and scaling.
Returned Format [:MACHine{1|2}:SCHart:HAXis] {STAtes,<state_low_value>,

<state_high_value>|<label_name>,<label_low_value>,
<label_high_value><state_low_value>,<state_high_value>}

Example OUTPUT XXX;":MACHINE1:SCHART:HAXIS?"

VAXis

Command MACHine{1|2}:SCHart:VAXis
<label_name>,<low_value>,<high_value>

The VAXis command allows you to choose which label will be plotted on the
vertical axis of the chart and scales the vertical axis by specifying the high
value and low value.

<label_name> a string of up to 6 alphanumeric characters

<low_value> string from 0 to 232–1 (#HFFFFFFFF)

<high_value> string from <low_value> to 232–1 (#HFFFFFFFF)

Example OUTPUT XXX;":MACHINE2:SCHART:VAXIS ’SUM1’, ’0’, ’99’"
OUTPUT XXX;":MACHINE1:SCHART:VAXIS ’BUS’, ’#H00FF’, ’#H0500’"

SCHart Subsystem
VAXis

9–6

Query MACHine{1|2}:SCHart:VAXis?

The VAXis query returns the current vertical axis label and scaling.
Returned Format [:MACHine{1|2}:SCHart:VAXis] <label_name>,<low_value>,

<high_value><NL>

Example OUTPUT XXX;":MACHINE1:SCHART:VAXIS?"

SCHart Subsystem
VAXis

9–7

9–8

10

COMPare Subsystem

Introduction

Commands in the state COMPare subsystem provide the ability to do a
bit-by-bit comparison between the acquired state data listing and a
compare data image. The commands are:

• CLEar

• CMASk

• COPY

• DATA

• FIND

• LINE

• MENU

• RANGe

• RUNTil

• SET

10–2

COMPare Subsystem Syntax Diagram

Figure 10-1

COMPare Subsystem

10–3

Table 10-1 COMPare Subsystem Parameter Values

Parameter Value

label_name string of up to 6 characters

care_spec string of characters "{*|.}..."

* care

. don’t care

line_num integer from –122880 to +122880 (HP 16554A) or –253951 to
+253951 (HP 16555A) or -507903 to +507903 (HP 16555D)

data_pattern "{#B{0|1|X} ... |
#Q{0|1|2|3|4|5|6|7|X} ... |
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F|X} ... |

{0|1|2|3|4|5|6|7|8|9} ... }"

difference_occurrence integer from 1 to 122880 (HP 16554A) or 253951 (HP 16555A)
or 507903 (HP 16555D)

start_line integer from –122880 to +122880 (HP 16554A) or –253951 to
+253951 (HP 16555A) or -507,903 to +507903 (HP 16555D)

stop_line integer from <start_line> to +122880 (HP 16554A) or
+253951 (HP 16555A) or +507903 (HP 16555D)

COMPare

Selector :MACHine{1|2}:COMPare

The COMPare selector is used as part of a compound header to access the
settings found in the Compare menu. It always follows the MACHine selector
because it selects a branch directly below the MACHine level in the command
tree.

Example OUTPUT XXX;":MACHINE1:COMPARE:FIND? 819"

COMPare Subsystem
COMPare

10–4

CLEar

Command :MACHine{1|2}:COMPare:CLEar

The CLEar command clears all "don’t cares" in the reference listing and
replaces them with zeros except when the CLEar command immediately
follows the SET command (see SET command).

Example OUTPUT XXX;":MACHINE2:COMPARE:CLEAR

CMASk

Command :MACHine{1|2}:COMPare:CMASk <label_name>,
<care__spec>

The CMASk (Compare Mask) command allows you to set the bits in the
channel mask for a given label in the compare listing image to "compares" or
"don’t compares."

The CMASk query returns the state of the bits in the channel mask for a
given label in the compare listing image.

<label_name> a string of up to 6 alphanumeric characters

<care_spec> string of characters "{*|.}..." (32 characters maximum)

* care

. don’t care

Example OUTPUT XXX;":MACHINE2:COMPARE:CMASK ’DATA’, ’*.**..**’"

COMPare Subsystem
CLEar

10–5

COPY

Command :MACHine{1|2}:COMPare:COPY

The COPY command copies the current acquired State Listing for the
specified machine into the Compare Listing template. This makes the current
acquisition the reference listing. It does not affect the compare range or
channel mask settings.

Example OUTPUT XXX;":MACHINE2:COMPARE:COPY"

DATA

Command :MACHine{1|2}:COMPare:DATA
{<label_name>,<line_num>,<data_pattern>|
<line_num>,<data_pattern>[, <data_pattern>]... }

The DATA command allows you to edit the compare listing image for a given
label and state row. When DATA is sent to an instrument where no compare
image is defined (such as at power-up) all other data in the image is set to
don’t cares.

Not specifying the <label_name> parameter allows you to write data
patterns to more than one label for the given line number. The first pattern
is placed in the leftmost label, with the following patterns being placed in a
left-to-right fashion as seen on the Compare display. Specifying more
patterns than there are labels simply results in the extra patterns being
ignored.

Because don’t cares (Xs) are allowed in the data pattern, it must always be
expressed as a string. You may still use different bases, but don’t cares
cannot be used in a decimal number.

COMPare Subsystem
COPY

10–6

<label_name> a string of up to 6 alphanumeric characters

<line_num> integer from –122880 to +122880 (HP 16554A) or –253951 to +253951
(HP 16555A) or –507903 to +507903 (HP 16555D)

<data_pattern> "{#B{0|1|X} . . . |
#Q{0|1|2|3|4|5|6|7|X} . . . |
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F|X} . . . |
{0|1|2|3|4|5|6|7|8|9} . . . }"

Example OUTPUT XXX;":MACHINE2:COMPARE:DATA ’CLOCK’, 42, ’#B011X101X’"
OUTPUT XXX;":MACHINE2:COMPARE:DATA ’OUT3’, 0, ’#HFF40’"
OUTPUT XXX;":MACH1:COMP:DATA 129,’#BXX00’,’#B1101’,’#B10XX’"

OUTPUT XXX;":MACH1:COMP:DATA −511,’4’,’64’,’16’,’256’,’8’,’6’"

Query :MACHine{1|2}:COMPare:DATA? <label_name>,
<line_num>

The DATA query returns the value of the compare listing image for a given
label and state row.

Returned Format [:MACHine{1|2}:COMPare:DATA] <label_name>,<line_num>,
<data_pattern><NL>

Example

10 DIM Label$[6], Response$[80]
15 PRINT "This program shows the values for a signal’s Compare listing"
20 INPUT "Enter signal label: ", Label$
25 OUTPUT XXX;":SYSTEM:HEADER OFF" !Turn headers off (from responses)
30 OUTPUT XXX;":MACHINE2:COMPARE:RANGE?"
35 ENTER XXX; First, Last !Read in the range’s end-points
40 PRINT "LINE #", "VALUE of "; Label$
45 FOR State = First TO Last !Print compare value for each state
50 OUTPUT XXX;":MACH2:COMPARE:DATA? ’" Label$ "’," VAL$(State)
55 ENTER XXX; Response$
60 PRINT State, Response$
65 NEXT State
70 END

COMPare Subsystem
DATA

10–7

FIND

Query :MACHine{1|2}:COMPare:FIND? <diff_occurrence>

The FIND query is used to get the line number of a specified difference
occurrence (first, second, third, etc.) within the current compare range, as
dictated by the RANGe command. A difference is counted for each line
where at least one of the current labels has a discrepancy between its
acquired state data listing (difference listing) and its compare data image
(reference listing).

Invoking the FIND query updates both the Listing and Compare displays so
that the line number returned is in the center of the screen.

If <diff_occurrence> is greater than the number of differences, the query
returns the last difference and the associated line number.

Returned Format [:MACHine{1|2}:COMPare:FIND] <difference_occurrence>,
<line_number><NL>

<diff_
occurrence>

integer from 1 to 122880 (HP 16554A) or 253952 (HP 16555A) or 507904
(HP 16555D).

<line_number> integer from –122880 to +122880 (HP 16554A) or –253951 to +253951
(HP 16555A) or –507903 to +507903 (HP 16555D).

Example OUTPUT XXX;":MACHINE2:COMPARE:FIND? 26"

COMPare Subsystem
FIND

10–8

LINE

Command :MACHine{1|2}:COMPare:LINE <line_num>

The LINE command allows you to center the compare listing display about a
specified line number. The Listing menu also changes so that the specified
line is displayed midscreen.

<line_num> integer from –122880 to +122880 (HP 16554A) or –253951 to +253951
(HP 16555A) or –507903 to +507903 (HP 16555D).

Example OUTPUT XXX;":MACHINE2:COMPARE:LINE –511"

Query :MACHine{1|2}:COMPare:LINE?

The LINE query returns the current line number specified.
Returned Format [:MACHine{1|2}:COMPare:LINE] <line_num>}<NL>

Example OUTPUT XXX;":MACHINE4:COMPARE:LINE?"

MENU

Command :MACHine{1|2}:COMPare:MENU {REFerence|DIFFerence}

The MENU command allows you to display the reference or the difference
listings in the Compare menu.

Example OUTPUT XXX;":MACHINE2:COMPARE:MENU REFERENCE"

COMPare Subsystem
LINE

10–9

RANGe

Command :MACHine{1|2}:COMPare:RANGe {FULL |
PARTial,<start_line>,<stop_line>}

The RANGe command allows you to define the boundaries for the
comparison. The range entered must be a subset of the lines in the
acquisition memory.

<start_line> integer from –122880 to +122880 (HP 16554A) or –253951 to +253951
(HP 16555A) or –507904 to +507904 (HP 16555D)

<stop_line> integer from <start_line> to +122880 (HP 16554A) or +253951
(HP 16555A) or +507904 (HP 16555D)

Example OUTPUT XXX;":MACHINE1:COMPARE:RANGE PARTIAL, –511, 512"
OUTPUT XXX;":MACHINE2:COMPARE:RANGE FULL"

Query :MACHine{1|2}:COMPare:RANGe?

The RANGe query returns the current boundaries for the comparison.
Returned Format [:MACHine{1|2}:COMPare:RANGe] {FULL|PARTial,<start_line>,

<stop_line>}<NL>

Example 10 DIM String$[100]
20 OUTPUT 707;":SELECT 2"
30 OUTPUT 707;":MACHINE1:COMPARE:RANGE?"
40 ENTER 707;String$
50 PRINT "RANGE IS ";String$
60 END

COMPare Subsystem
RANGe

10–10

RUNTil

Command :MACHine{1|2}:COMPare:RUNTil {OFF | LT,<value> |
GT,<value> | INRange,<value>,<value> |
OUTRange,<value>,<value> | EQUal | NEQual}

The RUNTil (run until) command allows you to define a stop condition when
the trace mode is repetitive. Specifying OFF causes the analyzer to make
runs until either the display’s STOP field is touched or the STOP command is
issued.

There are four conditions based on the time between the X and O markers.
Using this difference in the condition is effective only when time tags have
been turned on (see the TAG command in the STRigger subsystem). These
four conditions are as follows:

• The difference is less than (LT) some value.

• The difference is greater than (GT) some value.

• The difference is inside some range (INRange).

• The difference is outside some range (OUTRange).

End points for the INRange and OUTRange should be at least 8 ns apart since
this is the minimum time resolution of the time tag counter.

There are two conditions which are based on a comparison of the acquired
state data and the reference listing. You can run until one of the following
conditions is true:

• Every channel of every label has the same value (EQUal).

• Any channel of any label has a different value (NEQual).

<value> real number from −9E9 to +9E9

Example OUTPUT XXX;":MACHINE2:COMPARE:RUNTIL EQUAL"

COMPare Subsystem
RUNTil

10–11

Query :MACHine{1|2}:COMPare:RUNTil?

The RUNTil query returns the current stop criteria for the comparison when
running in repetitive trace mode.

Returned Format [:MACHine{1|2}:COMPare:RUNTil] {OFF| LT,<value>|GT,<value>|
INRange,<value>,<value>|OUTRange,<value>,<value>|EQUal|NEQual}
<NL>

Example OUTPUT XXX;":MACHINE2:COMPARE:RUNTIL?"

SET

Command :MACHine{1|2}:COMPare:SET

The SET command sets every state in the reference listing to "don’t cares." If
you send the SET command by mistake you can immediately send the CLEar
command to restore the previous data. This is the only time the CLEar
command will not replace "don’t cares" with zeros.

Example OUTPUT XXX;":MACHINE2:COMPARE:SET"

COMPare Subsystem
SET

10–12

11

TFORmat Subsystem

Introduction

The TFORmat subsystem contains the commands available for the
Timing Format menu in the HP 16554A/HP 16555A/HP 16555D logic
analyzer module. These commands are:

• ACQMode

• LABel

• REMove

• THReshold

11–2

TFORmat Subsystem Syntax Diagram

Figure 11-1

TFORmat Subsystem

11–3

Table 11-1 TFORmat Subsystem Parameter Values

Parameter Value

<N> an integer from 1 to 12

name string of up to 6 alphanumeric characters

polarity {POSitive | NEGative}

upper_bits format (integer from 0 to 65535) for a pod (pods are
assigned in decreasing order)

lower_bits format (integer from 0 to 65535) for a pod (pods are
assigned in decreasing order)

value voltage (real number) -6.00 to +6.00

clock_bits format (integer from 0 to 65535) for a clock (clocks are
assigned in decreasing order)

TFORmat

Selector :MACHine{1|2}:TFORmat

The TFORmat selector is used as part of a compound header to access those
settings normally found in the Timing Format menu. It always follows the
MACHine selector because it selects a branch directly below the MACHine
level in the language tree.

Example OUTPUT XXX;":MACHINE1:TFORMAT:ACQMODE?"

TFORmat Subsystem
TFORmat

11–4

ACQMode

Command :MACHine{1|2}:TFORmat:ACQMode {FULL | HALF}

The ACQMode (acquisition mode) command allows you to select the
acquisition mode for the timing analyzer. The options are:

• conventional mode at full-channel 125 MHz (HP 16554A) or 250 MHz
(HP 16555A/D)

• conventional mode at half-channel 250 MHz (HP 16554A) or 500 MHz
(HP 16555A/D).

Example OUTPUT XXX;":MACHINE2:TFORMAT:ACQMODE HALF"

Query :MACHine{1|2}:TFORmat:ACQMode?

The ACQMode query returns the current acquisition mode.
Returned Format [:MACHine{1|2}:TFORmat:ACQMode] {FULL | HALF}<NL>

Example OUTPUT XXX;":MACHINE2:TFORMAT:ACQMODE?"

TFORmat Subsystem
ACQMode

11–5

LABel

Command :MACHine{1|2}:TFORmat:LABel <name>[,<polarity>,
<clock_bits>,[<clock_bits>,]<upper_bits>,
<lower_bits>[,<upper_bits>,<lower_bits>]...]

The LABel command allows you to specify polarity and to assign channels to
new or existing labels. If the specified label name does not match an existing
label name, a new label will be created.

The order of the pod-specification parameters is significant. The first one
listed will match the highest numbered pod assigned to the machine you’re
using. Each pod specification after that is assigned to the next highest
numbered pod. This way they match the left-to-right descending order of the
pods you see on the Format display. Not including enough pod specifications
results in the lowest numbered pods being assigned a value of zero (all
channels excluded). If you include more pod specifications than there are
pods for that machine, the extra ones will be ignored. However, an error is
reported any time more than 22 pod specifications are listed.

The polarity can be specified at any point after the label name.

Because pods contain 16 channels, the format value for a pod must be
between 0 and 65535 (216−1). When giving the pod assignment in binary,
each bit will correspond to a single channel. A "1" in a bit position means the
associated channel in that pod is assigned to the label. A "0" in a bit position
means the associated channel in that pod is excluded from the label. Leading
zeroes may be omitted. For example, assigning #B1111001100 is equivalent
to entering "......****..**.." through the touchscreen.

A label can not have a total of more than 32 channels assigned to it.

<name> string of up to 6 alphanumeric characters

<polarity> {POSitive | NEGative}

<clock_bits> format (integer from 0 to 65535) for a clock (clocks are assigned in
decreasing order)

TFORmat Subsystem
LABel

11–6

<upper_bits> format (integer from 0 to 65535) for a pod (pods are assigned in decreasing
order)

<lower_bits> format (integer from 0 to 65535) for a pod (pods are assigned in decreasing
order)

Example OUTPUT XXX;":MACHINE2:TFORMAT:LABEL ’STAT’,POSITIVE,0,127,
40312"
OUTPUT XXX;":MACHINE2:TFORMAT:LABEL ’SIG 1’, #B11,
#B0000000011111111,#B0000000000000000 "

Query :MACHine{1|2}:TFORmat:LABel? <name>

The LABel query returns the current specification for the selected (by name)
label. If the label does not exist, nothing is returned. Numbers are always
returned in decimal format.

Returned Format [:MACHine{1|2}:TFORmat:LABel] <name>,<polarity>
[,<assignment>]...<NL>

<assignment> format (integer from 0 to 65535) for a pod (pods are assigned in decreasing
order)

Example OUTPUT XXX;":MACHINE2:TFORMAT:LABEL? ’DATA’"

REMove

Command :MACHine{1|2}:TFORmat:REMove {<name>|ALL}

The REMove command allows you to delete all labels or any one label
specified by name for a given machine.

<name> string of up to 6 alphanumeric characters

Example OUTPUT XXX;":MACHINE1:TFORMAT:REMOVE ’A’"

TFORmat Subsystem
REMove

11–7

THReshold

Command :MACHine{1|2}:TFORmat:THReshold<N>
{TTL|ECL|<value>}

The THReshold command allows you to set the voltage threshold for a given
pod to ECL, TTL, or a specific voltage from −6.00 V to +6.00 V in 0.05 volt
increments.

<N> pod number (integer from 1 to 12)

<value> voltage (real number) −6.00 to +6.00

TTL default value of +1.6 V

ECL default value of −1.3 V

Example OUTPUT XXX;":MACHINE1:TFORMAT:THRESHOLD1 4.0"

Query :MACHine{1|2}:TFORmat:THReshold<N>?

The THReshold query returns the current threshold for a given pod.
Returned Format [:MACHine{1|2}:TFORmat:THReshold<N>] <value><NL>

Example OUTPUT XXX;":MACHINE1:TFORMAT:THRESHOLD2?"

TFORmat Subsystem
THReshold

11–8

12

TTRigger (TTRace) Subsystem

Introduction

The TTRigger subsystem contains the commands available for the
Timing Trigger menu in the HP 16554A/HP 16555A/HP 16555D logic
analyzer module. The Timing Trigger subsystem will also accept the
TTRace selector as used in previous HP 16500-series logic analyzer
modules to eliminate the need to rewrite programs containing TTRace
as the selector keyword. The TTRigger subsystem commands are:

• ACQuisition

• BRANch

• CLEar

• EDGE

• FIND

• MLENgth

• RANGe

• SEQuence

• SPERiod

• TCONtrol

• TERM

• TIMER

• TPOSition

12–2

Figure 12-1

TTRigger Subsystem Syntax Diagram

TTRigger (TTRace) Subsystem

12–3

Figure 12-1 (continued)

TTRigger Subsystem Syntax Diagram (continued)

TTRigger (TTRace) Subsystem

12–4

Table 12-1 TTRigger Parameter Values

Parameter Value

branch_qualifier <qualifier>

to_level_num integer from 1 to last sequence level
proceed_qualifier <qualifier>

occurrence number from 1 to 1048575
label_name string of up to 6 alphanumeric characters
start_pattern
stop_pattern

"{#B{0|1}...|
#Q{0|1|2|3|4|5|6|7}...|
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F}...|
{0|1|2|3|4|5|6|7|8|9}...}"

num_of_levels integer from 1 to 10
timer_num {1|2}

timer_value 400 ns to 500 seconds
term_id {A|B|C|D|E|F|G|I}

pattern "{#B{0|1|X}...|
#Q{0|1|2|3|4|5|6|7|X}...|
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F|X}...|
{0|1|2|3|4|5|6|7|8|9}...}"

qualifier see "Qualifier" on page 12-6
post_value integer from 0 to 100 representing percentage
time_val real number
duration_time real number from 8 ns to 5 s based on the sample period
sample_period real number from 4 ns (HP 16554A) or 2 ns (HP 16555A/D) to

8 ms
edge_spec string consisting of {E | F | R | .}

memory_length {4096 | 8192 | 16384 | 32768 | 65536 |
131072 | 262144 |
516096 | 1040384 (HP 16554A)
524288 | 1048576 | 2088960(HP 16555A)
524288 | 1048576 | 2097152 | 4177920
(HP 16555D only)}

TTRigger (TTRace) Subsystem

12–5

Qualifier

The qualifier for the timing trigger subsystem can be terms A through G and
I, Timer 1 and 2, Range 1 and 2, and Edge 1 and 2. In addition, qualifiers can
be the NOT boolean function of terms, timers, and ranges. The qualifier can
also be an expression or combination of expressions as shown below and
figure 12-2, "Complex Qualifier," on page 12-11.

The following parameters show how qualifiers are specified in all commands
of the TTRigger subsystem that use <qualifier> .

<qualifier> { "ANYSTATE" | "NOSTATE" | "<expression>" }

<expression> {<expression1a>|<expression1b>|<expression1a> OR
 <expression1b>|<expression1a> AND <expression1b>}

<expression1a> {<expression1a_term>|(<expression1a_term>[OR
 <expression1a_term>]*)|(<expression1a_term>[AND
<expression1a_term>]*)}

<expression1b> {<expression1b_term>|(<expression1b_term>[OR
 <expression1b_term>]*)|(<expression1b_term>[AND
<expression1b_term>]*)}

<expression1a_
term>

{<expression2a>|<expression2b>|<expression2c>| <expression2d>}

<expression1b_
term>

{<expression2e>|<expression2f>|<expression2g>| <expression2h>}

<expression2a> {<term3a>|<term3b>|(<term3a> <boolean_op> <term3b>)}

<expression2b> {<term3c>|<range3a>|(<term3c> <boolean_op> <range3a>)}

<expression2c> {<term3d>|<edge3a|(<term3d> <boolean_op> <edge3a>)}

<expression2d> {<term3e>|<timer3a>|(<term3e> <boolean_op> <timer3a>)}

<expression2e> {<term3f>|<term3g>|(<term3f> <boolean_op> <term3g>)}

<expression2f> {<range3b>}

<expression2g> {<term3i>|<edge3b>|(<term3i> <boolean_op> <edge3b>)}

<expression2h> {<timer3b>}

<boolean_op> {AND | NAND | OR | NOR | XOR | NXOR}

TTRigger (TTRace) Subsystem
Qualifier

12–6

<term3a> { A | NOTA }

<term3b> { B | NOTB }

<term3c> { C | NOTC }

<term3d> { D | NOTD }

<term3e> { E | NOTE }

<term3f> { F | NOTF }

<term3g> { G | NOTG }

<term3i> { I | NOTI }

<range3a> { IN_RANGE1 | OUT_RANGE1 }

<range3b> { IN_RANGE2 | OUT_RANGE2 }

<edge3a> {EDGE1 | NOT EDGE1}

<edge3b> {EDGE2 | NOT EDGE2}

<timer3a> { TIMER1< | TIMER1>}

<timer3b> { TIMER2< | TIMER2>}

* = is optional such that it can be used zero or more times
+ = must be used at least once and can be repeated

TTRigger (TTRace) Subsystem
Qualifier

12–7

Qualifier Rules

The following rules apply to qualifiers:

• Qualifiers are quoted strings and, therefore, need quotes.

• Expressions are evaluated from left to right.

• Parentheses are used to change the order evaluation and, therefore, are
optional.

• An expression must map into the combination logic presented in the
combination pop-up menu within the TTRigger menu.

Examples ’A’
’(A OR B)’
’((A OR B) AND C)’
’((A OR B) AND C AND IN_RANGE2)’
’((A OR B) AND (C AND IN_RANGE1))’
’IN_RANGE1 AND (A OR B) AND C’

TTRigger (TTRace)

Selector :MACHine{1|2}:TTRigger

The TTRigger (TTRace) (Timing Trigger) selector is used as a part of a
compound header to access the settings found in the Timing Trigger menu.
It always follows the MACHine selector because it selects a branch directly
below the MACHine level in the command tree.

Example OUTPUT XXX;":MACHINE1:TTRIGGER:TAG TIME"

TTRigger (TTRace) Subsystem
TTRigger (TTRace)

12–8

ACQuisition

Command :MACHine{1|2}:TTRigger:ACQuisition
{AUTOmatic|MANual}

The ACQuisition command allows you to specify the acquisition mode for the
timing analyzer.

Example OUTPUT XXX;":MACHINE1:TTRIGGER:ACQUISITION AUTOMATIC"

Query :MACHine{1|2}:TTRigger:ACQuisition?

The ACQuisition query returns the current acquisition mode specified.
Returned Format [:MACHine{1|2}:TTRigger:ACQuisition] {AUTOmatic|MANual}<NL>

Example OUTPUT XXX;":MACHINE1:TTRIGGER:ACQUISITION?"

BRANch

Command :MACHine{1|2}:TTRigger:BRANch<N>
<branch_qualifier>,<to_level_number>

The BRANch command defines the branch qualifier for a given sequence
level. When this branch qualifier is matched, it will cause the sequencer
to jump to the specified sequence level. BRANch functions like the "else on"
branch of the front-panel sequence level.

The terms used by the branch qualifier (A through G and I) are defined by
the TERM command. The meaning of IN_RANGE and OUT_RANGE is
determined by the RANGe command. The edge terms are defined by the
EDGE command.

TTRigger (TTRace) Subsystem
ACQuisition

12–9

Within the limitations shown by the syntax definitions, complex expressions
may be formed using the AND and OR operators. Expressions are limited to
what you could manually enter through the Timing Trigger menu. Regarding
parentheses, the syntax definitions on the next page show only the required
ones. Additional parentheses are allowed as long as the meaning of the
expression is not changed. Figure 12-2, on page 12-11, shows a complex
expression as seen in the Timing Trigger menu.

Example The following statements are all correct and have the same meaning. Notice
that the conventional rules for precedence are not followed. The expressions
are evaluated from left to right.
OUTPUT XXX;":MACHINE1:TTRIGGER:BRANCH1 ’C AND D OR F OR G’, 1"
OUTPUT XXX;":MACHINE1:TTRIGGER:BRANCH1 ’((C AND D) OR (F OR
G))’, 1"
OUTPUT XXX;":MACHINE1:TTRIGGER:BRANCH1 ’F OR (C AND D) OR
G’,1"

<N> integer from 1 to <number_of_levels>

<to_level_
number>

integer from 1 to <number_of_levels>

<number_of_
levels>

integer from 1 to the number of existing sequence levels (maximum 10)

<branch_
qualifier>

<qualifier> see "Qualifier" on page 12-6

Example OUTPUT XXX;":MACHINE1:TTRIGGER:BRANCH1 ’ANYSTATE’, 3"
OUTPUT XXX;":MACHINE2:TTRIGGER:BRANCH2 ’A’, 7"
OUTPUT XXX;":MACHINE1:TTRIGGER:BRANCH3 ’((A OR B) OR NOTG)’,
1"

TTRigger (TTRace) Subsystem
BRANch

12–10

Query :MACHine{1|2}:TTRigger:BRANch<N>?

The BRANch query returns the current branch qualifier specification for a
given sequence level.

Returned Format [:MACHine{1|2}:TTRigger:BRANch<N>]
<branch_qualifier>,<to_level_num><NL>

Example OUTPUT XXX;":MACHINE1:TTRIGGER:BRANCH3?"

Figure 12-2

Complex Qualifier

Figure 12-2 is a front-panel representation of the complex qualifier (a Or
b) Or (f Or g) .

Example This example would be used to specify this complex qualifier.

OUTPUT XXX;":MACHINE1:TTRIGGER:BRANCH1 ’((A OR B) AND (F OR
G))’, 2"

TTRigger (TTRace) Subsystem
BRANch

12–11

Terms A through E, RANGE 1, EDGE1, and TIMER 1 must be grouped together
and terms F, G, and I, RANGE 2, EDGE2, and TIMER 2 must be grouped together.
In the first level, terms from one group may not be mixed with terms from the
other. For example, the expression ((A OR IN_RANGE2) AND (C OR G))
is not allowed because the term C cannot be specified in the F, G, and I group.

In the first level, the operators you can use are AND, NAND, OR, NOR,
XOR, NXOR. Either AND or OR may be used at the second level to join the
two groups together. It is acceptable for a group to consist of a single term.
Thus, an expression like (B AND G) is legal since the two operands are both
simple terms from separate groups.

CLEar

Command :MACHine{1|2}:TTRigger:CLEar
{All|SEQuence|RESource}

The CLEar command allows you to clear all settings in the Timing Trigger
menu, clear only the sequence levels, or clear only the resource term
patterns. Cleared values are set to their defaults.

Example OUTPUT XXX;":MACHINE1:TTRIGGER:CLEAR RESOURCE"

TTRigger (TTRace) Subsystem
CLEar

12–12

EDGE

Command :MACHine{1|2}:TTRigger:EDGE<N> <label_name>,
<edge_spec>

The EDGE command allows you to define edge specifications for a given
label. Edge specifications can be R (rising), F (falling), E (either), or "."
(don’t care). Edges are sent in the same string with the rightmost string
character specifying what the rightmost bit will be.

The <edge_spec> string length must match the exact number of bits assigned
to the specified label. If the string length does not match the number of bits, the
"Parameter string invalid" message is displayed.

<N> {1|2}

<label_name> string of up to 6 alphanumeric characters

<edge_spec> string consisting of {R|F|E|.} [to total number of bits]

Example For 8 bits assigned:

OUTPUT XXX;":MACHINE1:TTRIGGER:EDGE1 ’DATA’, ’....F..E’"

For 16 bits assigned:
OUTPUT XXX;":MACHINE1:TTRIGGER:EDGE1 ’DATA’,
’....EEE.....F..R’"

TTRigger (TTRace) Subsystem
EDGE

12–13

Query :MACHine{1|2}:TTRigger:EDGE<N>? <label_name>

The EDGE query returns the current specification for the given label.
Returned Format [:MACHine{1|2}:TTRigger:EDGE<N>] <label_name>,<edge_spec><NL>

Example OUTPUT XXX;":MACHINE1:TTRIGGER:EDGE1? ’DATA’"

FIND

Command :MACHine{1|2}:TTRigger:FIND<N> <time_qualifier>,
<condition_mode>

The FIND command defines the qualifier for a given sequence level. The
qualifier tells the timing analyzer when to proceed to the next sequence level.
When this proceed qualifier is matched for either the specified time or
occurrence, the sequencer will proceed to the next sequence level. In the
sequence level where the trigger is specified, the FIND command specifies
the trigger qualifier (see SEQuence command).

The terms A through G and I are defined by the TERM command. The
meaning of IN_RANGE and OUT_RANGE is determined by the RANGe
command. The edge terms are defined by the EDGE command. Expressions
are limited to what you could manually enter through the Timing Trigger
menu. Regarding parentheses, the syntax definitions below show only the
required ones. Additional parentheses are allowed as long as the meaning of
the expression is not changed. See figure 12-2 on page 12-11 for a detailed
example.

<N> integer from 1 to the number of existing sequence levels (maximum 10)

<time_
qualifier>

<qualifier> see "Qualifier" on page 12-6

<condition_
mode>

{{GT|LT}, <duration_time>|OCCurrence, <occurrence>}

GT greater than

TTRigger (TTRace) Subsystem
FIND

12–14

LT less than

<duration_
time>

real number from 8 ns to 5.00 seconds depending on sample period

<occurrence> integer from 1 to 1048575

Example OUTPUT XXX;":MACHINE1:TTRIGGER:FIND1 ’ANYSTATE’, GT, 10E −6"
OUTPUT XXX;":MACHINE1:TTRIGGER:FIND3 ’((NOTA AND NOTB) OR
G)’, OCCURRENCE, 10"

Query :MACHine{1|2}:TTRigger:FIND4?

The FIND query returns the current time qualifier specification for a given
sequence level.

Returned Format [:MACHine{1|2}:TTRigger:FIND<N>]
<time_qualifier>,<condition_mode><NL>

Example OUTPUT XXX;":MACHINE1:TTRIGGER:FIND<N>?"

TTRigger (TTRace) Subsystem
FIND

12–15

MLENgth

Command :MACHine{1|2}:TTRigger:MLENgth <memory_length>

The MLENgth command allows you to specify the analyzer memory depth.
Valid memory depths range from 4096 samples through the maximum system
memory depth minus 8192 samples (HP 16554A/HP 16555A) or minus 16384
samples (HP 16555D). Memory depth is affected by acquisition mode. If the
<memory_depth> value sent with the command is not a legal value, the
closest legal setting will be used.

<memory_length> {4096 | 8192 | 16384 | 32768 | 65536 | 131072 | 262144 |
516096 | 524288 | 1040384 (HP 16554A)
524288 | 1040384 | 1048576 | 2088960 (HP 16555A)
524288 | 1048576 | 2080768 | 2097152 | 4177920 (HP 16555D)}

Example OUTPUT XXX;":MACHINE1:TTRIGGER:MLENGTH 262144"

Query :MACHine{1|2}:TTRigger:MLENgth?

The MLENgth query returns the current analyzer memory depth selection.
Returned Format [:MACHine{1|2}:TTRigger:MLENgth] <memory_length><NL>

Example OUTPUT XXX;":MACHINE1:TTRIGGER:MLENGTH?"

TTRigger (TTRace) Subsystem
MLENgth

12–16

RANGe

Command :MACHine{1|2}:TTRigger:RANGe<N> <label_name>,
<start_pattern>,<stop_pattern>

The RANGe command allows you to specify a range recognizer term for the
specified machine. Since a range can only be defined across one label and,
since a label must contain 32 or fewer bits, the value of the start pattern or
stop pattern will be between 232−1 and 0.

When these values are expressed in binary, they represent the bit values for
the label at one of the range recognizers’ end points. Don’t cares are not
allowed in the end point pattern specifications.

<label_name> string of up to 6 alphanumeric characters

<N> {1|2}

<start_pattern>
<stop_pattern>

"{#B{0|1} . . . |
#Q{0|1|2|3|4|5|6|7} . . . |
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F} . . . |
{0|1|2|3|4|5|6|7|8|9} . . . }"

Example OUTPUT XXX;":MACHINE1:TTRIGGER:RANGE1 ’DATA’, ’127’, ’255’ "
OUTPUT XXX;":MACHINE1:TTRIGGER:RANGE2 ’ABC’, ’#B00001111’,
’#HCF’ "

Query :MACHine{1|2}:TTRigger:RANGe<N>?

The RANGe query returns the range recognizer end point specifications for
the range.

Returned Format [:MACHine{1|2}:TTRiger:RANGe<N>] <label_name>,<start_pattern>,
<stop_pattern><NL>

Example OUTPUT XXX;":MACHINE1:TTRIGGER:RANGE1?"

TTRigger (TTRace) Subsystem
RANGe

12–17

SEQuence

Command :MACHine{1|2}:TTRigger:SEQuence <number_of_levels>

The SEQuence command defines the timing analyzer trigger sequence. First
it deletes the current sequence, then it inserts the number of levels specified,
with default settings. The number of levels can be between 1 and 10 when
the analyzer is armed by the RUN key.

In timing analyzers, the trigger is always the last level.

<number_of_
levels>

integer from 1 to 10

Example OUTPUT XXX;":MACHINE1:TTRIGGER:SEQUENCE 4"

Query :MACHine{1|2}:TTRigger:SEQuence?

The SEQuence query returns the current sequence specification.
Returned Format [:MACHine{1|2}:TTRigger:SEQuence] <number_of_levels>,

 <level_of_trigger><NL>

Example OUTPUT XXX;":MACHINE1:TTRIGGER:SEQUENCE?"

TTRigger (TTRace) Subsystem
SEQuence

12–18

SPERiod

Command :MACHine{1|2}:TTRigger:SPERiod <sample_period>

The SPERiod command allows you to set the sample period of the timing
analyzer.

<sample_period> real number from 4 ns (HP 16554A) or 2 ns (HP 16555A/D) to 8 ms

Example OUTPUT XXX;":MACHINE1:TTRIGGER:SPERIOD 50E −9"

Query :MACHine{1|2}:TTRigger:SPERiod?

The SPERiod query returns the current sample period.
Returned Format [:MACHine{1|2}:TTRigger:SPERiod] <sample_period><NL>

Example OUTPUT XXX;":MACHINE1:TTRIGGER:SPERIOD?"

TTRigger (TTRace) Subsystem
SPERiod

12–19

TCONtrol

Command :MACHine{1|2}:TTRigger:TCONtrol<N> <timer_num>,
{OFF|STARt|PAUSe|CONTinue}

The TCONtrol (timer control) command allows you to turn off, start, pause,
or continue the timer for the specified level. The time value of the timer is
defined by the TIMER command.

<N> integer from 1 to the number of existing sequence levels (maximum 10)

<timer_num> {1|2}

Example OUTPUT XXX;":MACHINE2:TTRIGGER:TCONTROL6 1, PAUSE"

Query :MACHine{1|2}:TTRigger:TCONTROL<N>? <timer_num>

The TCONtrol query returns the current TCONtrol setting of the specified
level.

Returned Format [:MACHine{1|2}:TTRigger:TCONTROL<N> <timer_num>]
{OFF|STARt|PAUSe|CONTinue}<NL>

Example OUTPUT XXX;":MACHINE2:TTRIGGER:TCONTROL6? 1"

TTRigger (TTRace) Subsystem
TCONtrol

12–20

TERM

Command :MACHine{1|2}:TTRigger:TERM <term_id>,
<label_name>,<pattern>

The TERM command allows you to a specify a pattern recognizer term in the
specified machine. Each command deals with only one label in the given
term; therefore, a complete specification could require several commands.
Since a label can contain 32 or fewer bits, the range of the pattern value will
be between 232 − 1 and 0. When the value of a pattern is expressed in binary,
it represents the bit values for the label inside the pattern recognizer term.
Since the pattern parameter may contain don’t cares and be represented in
several bases, it is handled as a string of characters rather than a number.

Eight of the 10 terms (A through G and I) are available (terms H and J are
not available) to either machine but not both simultaneously. If you send the
TERM command to a machine with a term that has not been assigned to that
machine, an error message "Legal command but settings conflict" is returned.

<term_id> {A|B|C|D|E|F|G|I}

<label_name> string of up to 6 alphanumeric characters

<pattern> "{#B{0|1|X} . . . |
#Q{0|1|2|3|4|5|6|7|X} . . . |
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F|X} . . . |
{0|1|2|3|4|5|6|7|8|9} . . . }"

Example OUTPUT XXX;":MACHINE1:TTRIGGER:TERM A,’DATA’,’255’ "
OUTPUT XXX;":MACHINE1:TTRIGGER:TERM B,’ABC’,’#BXXXX1101’ "

TTRigger (TTRace) Subsystem
TERM

12–21

Query :MACHine{1|2}:TTRigger:TERM?
<term_id>,<label_name>

The TERM query returns the specification of the term indicated by term
identification and label name.

Returned Format [:MACHine{1|2}:TTRigger:TERM]
<term_id>,<label_name>,<pattern><NL>

Example OUTPUT XXX;":MACHINE1:TTRIGGER:TERM? B,’DATA’ "

TIMER

Command :MACHine{1|2}:TTRigger:TIMER{1|2} <time_value >

The TIMER command sets the time value for the specified timer. The limits
of the timer are 400 ns to 500 seconds in 16 ns to 500 µs increments. The
increment value varies with the time value of the specified timer.

<time_value> real number from 400 ns to 500 seconds in increments which vary from 16 ns
to 500 µs.

Example OUTPUT XXX;":MACHINE1:TTRIGGER:TIMER1 100E −6"

Query :MACHine{1|2}:TTRigger:TIMER{1|2}?

The TIMER query returns the current time value for the specified timer.
Returned Format [:MACHine{1|2}:TTRigger:TIMER{1|2}] <time_value><NL>

Example OUTPUT XXX;":MACHINE1:TTRIGGER:TIMER1?"

TTRigger (TTRace) Subsystem
TIMER

12–22

TPOSition

Command :MACHine{1|2}:TTRigger:TPOSition
{STARt|CENTer|END|DELay, <time_val>|
POSTstore,<poststore>}

The TPOSition (trigger position) command allows you to set the trigger at
the start, center, end or at any position in the trace (poststore). Poststore is
defined as 0 to 100 percent with a poststore of 100 percent being the same as
start position and a poststore of 0 percent being the same as an end trace.

The DELay mode can be used to set the time between the trigger point and
the start of the trace, causing the trace to begin after the trigger point.

<time_val> real number from either (2 × sample period) or 16 ns, whichever is greater, to
(516096 × sample period)(HP 16554A) or (1040384 × sample period)
(HP 16555A/D).

<poststore> integer from 0 to 100 representing percentage of poststore.

Example OUTPUT XXX;":MACHINE1:TTRIGGER:TPOSITION END"
OUTPUT XXX;":MACHINE1:TTRIGGER:TPOSITION POSTstore,75"

Query :MACHine{1|2}:TTRigger:TPOSition?

The TPOSition query returns the current trigger position setting.
Returned Format [:MACHine{1|2}:TTRigger:TPOSition] {STARt|CENTer|END|DELay,

<time_val>|POSTstore, <poststore >} <NL>

Example OUTPUT XXX;":MACHINE1:TTRIGGER:TPOSITION?"

TTRigger (TTRace) Subsystem
TPOSition

12–23

12–24

13

TWAVeform Subsystem

Introduction

The TWAVeform subsystem contains the commands available for the
Timing Waveforms menu in the HP 16554A/HP 16555A/HP 16555D
logic analyzer module. These commands are:

• ACCumulate

• ACQuisition

• CENTer

• CLRPattern

• CLRStat

• DELay

• INSert

• MINus

• MLENgth

• MMODe

• OCONdition

• OPATtern

• OSEarch

• OTIMe

• OVERlay

• PLUS

• RANGe

• REMove

• RUNTil

• SPERiod

• TAVerage

• TMAXimum

• TMINimum

• TPOSition

• VRUNs

• XCONdition

• XOTime

• XPATtern

• XSEarch

• XTIMe

13–2

Figure 13-1

TWAVeform Subsystem Syntax Diagram

TWAVeform Subsystem

13–3

Figure 13-1 (continued)

TWAVeform Subsystem Syntax Diagram (continued)

TWAVeform Subsystem

13–4

Figure 13-1 (continued)

TWAVeform Subsystem Syntax Diagram (continued)

TWAVeform Subsystem

13–5

Table 13-1 TWAVeform Parameter Values

Parameter Value

delay_value real number between -2500 s and +2500 s

module_spec {1|2|3|4|5|6|7|8|9|10}

bit_id integer from 0 to 31

waveform string containing <acquisition_spec>{1|2}

acquisition_spec {A|B|C|D|E|F|G|H|I|J} (slot where acquisition card is
located)

label_name string of up to 6 alphanumeric characters

label_pattern "{#B{0|1|X}...|
#Q{0|1|2|3|4|5|6|7|X}...|
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F|X}...|
{0|1|2|3|4|5|6|7|8|9}...}"

occurrence integer

time_value real number

time_range real number between 10 ns and 10 ks

run_until_spec {OFF|LT,<value>|GT,<value>|INRange,<value>,
<value>|OUTRange,<value>,<value>}

GT greater than

LT less than

value real number

time_val real number

sample_period real number from 4 ns (HP 16554A) or 2 ns (HP 16555A/D) to 8 ms

marker_type {X | O | XO | TRIGger}

memory_length {4096 | 8192 | 16384 | 32768 | 65536 |
131072 | 262144 |
516096 | 524288 | 1040384 (HP 16554A)
524288 | 1040384 | 1048576 | 2088960
(HP 16555A)
524288 | 1048576 | 2080768 | 4177920
(HP 16555D)}

TWAVeform Subsystem

13–6

TWAVeform

Selector :MACHine{1|2}:TWAVeform

The TWAVeform selector is used as part of a compound header to access the
settings found in the Timing Waveforms menu. It always follows the
MACHine selector because it selects a branch below the MACHine level in the
command tree.

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:DELAY 100E−9"

ACCumulate

Command :MACHine{1|2}:TWAVeform:ACCumulate <setting>

The ACCumulate command allows you to control whether the waveform
display gets erased between each individual run or whether subsequent
waveforms are allowed to be displayed over the previous ones.

<setting> {0|OFF} or {1|ON}

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:ACCUMULATE ON"

TWAVeform Subsystem
TWAVeform

13–7

Query :MACHine{1|2}:TWAVeform:ACCumulate?

The ACCumulate query returns the current setting. The query always shows
the setting as the characters, "0" (off) or "1" (on).

Returned Format [:MACHine{1|2}:TWAVeform:ACCumulate] {0|1}<NL>

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:ACCUMULATE?"

ACQuisition

Command :MACHine{1|2}:TWAVeform:ACQuisition
{AUTOmatic|MANual}

The ACQuisition command allows you to specify the acquisition mode for the
timing analyzer. The acquisition modes are automatic and manual.

Query MACHine{1|2}:TWAVeform:ACQuisition?

The ACQuisition query returns the current acquisition mode.
Returned Format [MACHine{1|2}:TWAVeform:ACQuisition] {AUTOmatic|MANual}<NL>

Example OUTPUT XXX;":MACHINE2:TWAVEFORM:ACQUISITION?"

TWAVeform Subsystem
ACQuisition

13–8

CENTer

Command :MACHine{1|2}:TWAVeform:CENTer <marker_type>

The CENTer command allows you to center the waveform display about the
specified markers.

<marker_type> {X|O|XO|TRIGger}

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:CENTER X"

CLRPattern

Command :MACHine{1|2}:TWAVeform:CLRPattern {X|O|ALL}

The CLRPattern command allows you to clear the patterns in the selected
Specify Patterns menu.

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:CLRPATTERN ALL"

CLRStat

Command :MACHine{1|2}:TWAVeform:CLRStat

The CLRStat command allows you to clear the waveform statistics without
having to stop and restart the acquisition.

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:CLRSTAT"

TWAVeform Subsystem
CENTer

13–9

DELay

Command :MACHine{1|2}:TWAVeform:DELay <delay_value>

The DELay command specifies the amount of time between the timing
trigger and the horizontal center of the the timing waveform display. The
allowable values for delay are −2500 s to +2500 s.

<delay_value> real number between −2500 s and +2500 s

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:DELAY 100E−6"

Query :MACHine{1|2}:TWAVeform:DELay?

The DELay query returns the current time offset (delay) value from the
trigger.

Returned Format [:MACHine{1|2}:TWAVeform:DELay] <time_value><NL>

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:DELAY?"

TWAVeform Subsystem
DELay

13–10

INSert

Command :MACHine{1|2}:TWAVeform:INSert [<module_spec>,]
<label_name>[,{<bit_id>|OVERlay|ALL}]

The INSert command inserts waveforms in the timing waveform display. The
waveforms are added from top to bottom up to 96 waveforms. Once 96
waveforms are present, each time you insert another waveform, it replaces
the last waveform.

Time-correlated waveforms from an oscilloscope or another logic analyzer
module can also be inserted in the logic analyzer’s timing waveforms display.
Oscilloscope waveforms occupy the same display space as three logic
analyzer waveforms. When inserting waveforms from an oscilloscope or
another logic analyzer module, the optional module specifier must be used.
1 through 10 corresponds to modules A through J. If you do not specify the
module, the selected module is assumed.

The second parameter specifies the label name that will be inserted. The
optional third parameter specifies the label bit number, overlay, or all. If a
number is specified, only the waveform for that bit number is added to the
screen.

If you specify OVERlay, all the bits of the label are displayed as a composite
overlaid waveform. If you specify ALL, all the bits are displayed sequentially.
If you do not specify the third parameter, ALL is assumed.

<module_spec> {1|2|3|4|5|6|7|8|9|10}

<label_name> string of up to 6 alphanumeric characters

<bit_id> integer from 0 to 31

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:INSERT 3, ’WAVE’,9"

TWAVeform Subsystem
INSert

13–11

Inserting Oscilloscope Waveforms

Command :MACHine{1|2}:TWAVeform:INSert <module_spec>,
<label_name>

This inserts a waveform from an oscilloscope to the timing waveforms display.

<module_spec> {1|2|3|4|5|6|7|8|9|10} slot in which the oscilloscope master card is
installed

<label_name> string of one alpha and one numeric character

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:INSERT 3, ’C1’"

MLENgth

Command :MACHine{1|2}:TWAVeform:MLENgth <memory_length>

The MLENgth command allows you to specify the analyzer memory depth.
Valid memory depths range from 4096 samples through the maximum system
memory depth minus 8192 samples (HP 16554A/HP 16555A) or the
maximum system memory depth minus 16384 (HP 16555D). Memory depth
is affected by acquisition mode. If the <memory_depth> value sent with the
command is not a legal value, the closest legal setting will be used.

<memory_length> {4096 | 8192 | 16384 | 32768 | 65536 | 131072 | 262144
| 516096 | 524288 | 1040384 (HP 16554A)
| 524288 | 1040384 | 1048576 | 2088960 (HP 16555A)
| 524288 | 1048576 | 2080768 | 2088960 | 4177920
(HP 16555D)}

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:MLENGTH 262144"

TWAVeform Subsystem
MLENgth

13–12

Query :MACHine{1|2}:TWAVeform:MLENgth?

The MLENgth query returns the current analyzer memory depth selection.
Returned Format [:MACHine{1|2}:TWAVeform:MLENgth] <memory_length><NL>

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:MLENGTH?"

MINus

Command :MACHine{1|2}:TWAVeform:MINus
<module_spec>,<waveform>,<waveform>

The MINus command inserts time-correlated A−B (A minus B) oscilloscope
waveforms on the display. The first parameter specifies where the
oscilloscope master card resides, where 1 through 10 refers to slots A
through J. The next two parameters specify which waveforms will be
subtracted from each other.

MINus is only available for oscilloscope waveforms.

<module_spec> {1|2|3|4|5|6|7|8|9|10}

<waveform> string containing <acquisition_spec>{1|2}

<acquisition_
spec>

{A|B|C|D|E|F|G|H|I|J} (slot where acquisition card is located)

Example OUTPUT XXX; ":MACHINE1:TWAVEFORM:MINUS 1,’A1’,’A2’"

TWAVeform Subsystem
MINus

13–13

MMODe

Command :MACHine{1|2}:TWAVeform:MMODe
{OFF|PATTern|TIME|MSTats}

The MMODe (Marker Mode) command selects the mode controlling marker
movement and the display of the marker readouts. When PATTern is
selected, the markers will be placed on patterns. When TIME is selected, the
markers move on time. In MSTats, the markers are placed on patterns, but
the readouts will be time statistics.

Example OUTPUT XXX; ":MACHINE1:TWAVEFORM:MMODE TIME"

Query :MACHine{1|2}:TWAVeform:MMODe?

The MMODe query returns the current marker mode.
Returned Format [:MACHine{1|2}:TWAVeform:MMODe] <marker_mode><NL>

<marker_mode> {OFF|PATTern|TIME|MSTats}

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:MMODE?"

TWAVeform Subsystem
MMODe

13–14

OCONdition

Command :MACHine{1|2}:TWAVeform:OCONdition
{ENTering|EXITing}

The OCONdition command specifies where the O marker is placed. The
O marker can be placed on the entry or exit point of the OPATtern when in
the PATTern marker mode.

Example OUTPUT XXX; ":MACHINE1:TWAVEFORM:OCONDITION ENTERING"

Query :MACHine{1|2}:TWAVeform:OCONdition?

The OCONdition query returns the current setting.
Returned Format [:MACHine{1|2}:TWAVeform:OCONdition] {ENTering|EXITing}<NL>

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:OCONDITION?"

TWAVeform Subsystem
OCONdition

13–15

OPATtern

Command :MACHine{1|2}:TWAVeform:OPATtern <label_name>,
<label_pattern>

The OPATtern command allows you to construct a pattern recognizer term
for the O marker which is then used with the OSEarch criteria and
OCONdition when moving the marker on patterns. Since this command deals
with only one label at a time, a complete specification could require several
invocations.

When the value of a pattern is expressed in binary, it represents the bit
values for the label inside the pattern recognizer term. In whatever base is
used, the value must be between 0 and 232 − 1, since a label may not have
more than 32 bits. Because the <label_pattern> parameter may contain
don’t cares, it is handled as a string of characters rather than a number.

<label_name> string of up to 6 alphanumeric characters

<label_pattern> "{#B{0|1|X} . . . |
#Q{0|1|2|3|4|5|6|7|X} . . . |
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F|X} . . . |
{0|1|2|3|4|5|6|7|8|9} . . . }"

Example OUTPUT XXX; ":MACHINE1:TWAVEFORM:OPATTERN ’A’,’511’"

Query :MACHine{1|2}:TWAVeform:OPATtern? <label_name>

The OPATtern query, in pattern marker mode, returns the pattern
specification for a given label name. In the time marker mode, the query
returns the pattern under the O marker for a given label. If the O marker is
not placed on valid data, don’t cares (X) are returned.

Returned Format [:MACHine{1|2}:TWAVeform:OPATtern]
<label_name>,<label_pattern><NL>

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:OPATTERN? ’A’"

TWAVeform Subsystem
OPATtern

13–16

OSEarch

Command :MACHine{1|2}:TWAVeform:OSEarch <occurrence>,
<origin>

The OSEarch command defines the search criteria for the O marker which is
then used with the associated OPATtern specification and the OCONdition
when moving markers on patterns. The origin parameter tells the marker to
begin a search from the start of the acquisition, the trigger, or the X marker.
The actual occurrence the marker searches for is determined by the
occurrence parameter of the OSEArch specification, relative to the origin.
An occurrence of 0 places a marker on the selected origin. With a negative
occurrence, the marker searches before the origin. With a positive
occurrence, the marker searches after the origin.

<origin> {STARt|TRIGger|XMARker}

<occurrence> integer from −1040384 to +1040384 (HP 16554A) or from −2088960 to
+2088960 (HP 16555A) or from –4177920 to +4177920 (HP 16555D)

Example OUTPUT XXX; ":MACHINE1:TWAVEFORM:OSEARCH +10,TRIGGER"

Query :MACHine{1|2}:TWAVeform:OSEarch?

The OSEarch query returns the search criteria for the O marker.
Returned Format [:MACHine{1|2}:TWAVeform:OSEarch] <occurrence>,<origin><NL>

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:OSEARCH?"

TWAVeform Subsystem
OSEarch

13–17

OTIMe

Command :MACHine{1|2}:TWAVeform:OTIMe <time_value>

The OTIMe command positions the O marker in time when the marker mode
is TIME. If data is not valid, the command performs no action.

<time_value> real number −2.5 ks to +2.5 ks

Example OUTPUT XXX; ":MACHINE1:TWAVEFORM:OTIME 30.0E −6"

Query :MACHine{1|2}:TWAVeform:OTIMe?

The OTIMe query returns the O marker position in time. If data is not valid,
the query returns 9.9E37.

Returned Format [:MACHine{1|2}:TWAVeform:OTIMe] <time_value><NL>

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:OTIME?"

OVERlay

Command :MACHine{1|2}:TWAVeform:OVERlay <module_number>,
<label>,<label>[,<label>]...

The OVERlay command overlays two or more oscilloscope waveforms and
adds the resultant waveform to the current waveforms display. The first
parameter of the command specifies which slot contains the oscilloscope
master card. The next parameters are the labels of the waveforms that are to
be overlaid.

The OVERlay command only works on oscilloscopes. To overlay analyzer
waveforms, use the INSert command with OVERlay option.

TWAVeform Subsystem
OTIMe

13–18

<module_spec> {1|2|3|4|5|6|7|8|9|10}

<waveform> string containing <acquisition_spec>{1|2}

<acquisition_
spec>

{A|B|C|D|E|F|G|H|I|J} (slot where acquisition card is located)

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:OVERLAY 3, ’C1’,’C2’"

PLUS

Command :MACHine{1|2}:TWAVeform:PLUS
<module_spec>, <waveform>, <waveform>

The PLUS command inserts time-correlated A+B oscilloscope waveforms on
the screen. The first parameter specifies the slot where the oscilloscope
module resides. 1 through 10 refers to slots A through J. The next two
parameters specify which waveforms will be added to each other.

PLUS is only available for oscilloscope waveforms.

<module_spec> {1|2|3|4|5|6|7|8|9|10}

<waveform> string containing <acquisition_spec>{1|2}

<acquisition_
spec>

{A|B|C|D|E|F|G|H|I|J} (slot where acquisition card is located)

Example OUTPUT XXX; ":MACHINE1:TWAVEFORM:PLUS 1,’A1’,’A2’"

TWAVeform Subsystem
PLUS

13–19

RANGe

Command :MACHine{1|2}:TWAVeform:RANGe <time_value>

The RANGe command specifies the full-screen time in the timing waveform
menu. It is equivalent to ten times the sec/Div setting on the display. The
allowable values for RANGe are from 10 ns to 10 ks.

<time_range> real number between 10 ns and 10 ks

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:RANGE 100E−9"

Query :MACHine{1|2}:TWAVeform:RANGe?

The RANGe query returns the current full-screen time.
Returned Format [:MACHine{1|2}:TWAVeform:RANGe] <time_value><NL>

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:RANGE?"

REMove

Command :MACHine{1|2}:TWAVeform:REMove

The REMove command deletes all waveforms from the display.

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:REMOVE"

TWAVeform Subsystem
RANGe

13–20

RUNTil

Command :MACHine{1|2}:TWAVeform:RUNTil <run_until_spec>

The RUNTil (run until) command defines stop criteria based on the time
between the X and O markers when the trace mode is in repetitive. When
OFF is selected, the analyzer will run until either the STOP touch screen field
is touched, or, the STOP command is sent. Run until time between X and O
marker options are:

• Less Than (LT) a specified time value.

• Greater Than (GT) a specified time value.

• In range (INRange) between two time values.

• Out of range (OUTRange) between two time values.

End points for INRange and OUTRange should be at least 2 ns apart since
this is the minimum time at which data is sampled.

This command affects the timing analyzer only, and has no relation to the
RUNTil commands in the SLISt and COMPare subsystems.

<run_until_
spec>

{OFF | LT,<value> | GT,<value> | INRange,<value>,
<value>| OUTRange,<value>,<value>}

<value> real number

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:RUNTIL GT, 800.0E −6"
OUTPUT XXX;":MACHINE1:TWAVEFORM:RUNTIL INRANGE, 4.5, 5.5"

Query :MACHine{1|2}:TWAVeform:RUNTil?

The RUNTil query returns the current stop criteria.
Returned Format [:MACHine{1|2}:TWAVeform:RUNTil] <run_until_spec><NL>

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:RUNTIL?"

TWAVeform Subsystem
RUNTil

13–21

SPERiod

Command :MACHine{1|2}:TWAVeform:SPERiod <sample_period>

The SPERiod command allows you to set the sample period of the timing
analyzer.

<sample_period> real number from 4 ns (HP 16554A) or 2 ns (HP 16555A/D) to 8 ms

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:SPERIOD 50E−9"

Query :MACHine{1|2}:TWAVeform:SPERiod?

The SPERiod query returns the current sample period.
Returned Format [:MACHine{1|2}:TWAVeform:SPERiod] <sample_period><NL>

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:SPERIOD?"

TWAVeform Subsystem
SPERiod

13–22

TAVerage

Query :MACHine{1|2}:TWAVeform:TAVerage?

The TAVerage query returns the value of the average time between the
X and O markers. If there is no valid data, the query returns 9.9E37.

Returned Format [:MACHine{1|2}:TWAVeform:TAVerage] <time_value><NL>

<time_value> real number

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:TAVERAGE?"

TMAXimum

Query :MACHine{1|2}:TWAVeform:TMAXimum?

The TMAXimum query returns the value of the maximum time between the X
and O markers. If there is no valid data, the query returns 9.9E37.

Returned Format [:MACHine{1|2}:TWAVeform:TMAXimum] <time_value><NL>

<time_value> real number

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:TMAXIMUM?"

TWAVeform Subsystem
TAVerage

13–23

TMINimum

Query :MACHine{1|2}:TWAVeform:TMINimum?

The TMINimum query returns the value of the minimum time between the X
and O markers. If there is no valid data, the query returns 9.9E37.

Returned Format [:MACHine{1|2}:TWAVeform:TMINimum] <time_value><NL>

<time_value> real number

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:TMINIMUM?"

TPOSition

Command MACHine{1|2}:TWAVeform:TPOSition
{STARt |CENTer | END | DELay, <time_val> |
POSTstore, <percent>}

The TPOSition command allows you to control where the trigger point is
placed in the acquisition. The trigger point can be placed at the start, center,
end, at a percentage of post store, or at a value specified by delay. The post
store option is the same as the User Defined option when setting the trigger
point from the front panel.

The TPOSition command is only available when the acquisition mode is set to
manual.

<time_val> real number that varies by sample period

<percent> integer from 1 to 100

Example OUTPUT XXX;":MACHINE2:TWAVEFORM:TPOSITION CENTER"

TWAVeform Subsystem
TMINimum

13–24

Query MACHine{1|2}:TWAVeform:TPOSition?

The TPOSition query returns the current trigger setting.
Returned Format [MACHine{1|2}:TWAVeform:TPOSition] {STARt|CENTer|END|DELay,

<time_val>| POSTstore,<percent>}<NL>

Example OUTPUT XXX;":MACHINE2:TWAVEFORM:TPOSition?"

VRUNs

Query :MACHine{1|2}:TWAVeform:VRUNs?

The VRUNs query returns the number of valid runs and total number of runs
made. Valid runs are those where the pattern search for both the X and O
markers was successful resulting in valid time measurements.

Returned Format [:MACHine{1|2}:TWAVeform:VRUNs] <valid_runs>,<total_runs><NL>

<valid_runs> zero or positive integer

<total_runs> zero or positive integer

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:VRUNS?"

TWAVeform Subsystem
VRUNs

13–25

XCONdition

Command :MACHine{1|2}:TWAVeform:XCONdition
{ENTering | EXITing}

The XCONdition command specifies where the X marker is placed. The X
marker can be placed on the entry or exit point of the XPATtern when in the
PATTern marker mode.

Example OUTPUT XXX; ":MACHINE1:TWAVEFORM:XCONDITION ENTERING"

Query :MACHine{1|2}:TWAVeform:XCONdition?

The XCONdition query returns the current setting.
Returned Format [:MACHine{1|2}:TWAVeform:XCONdition] {ENTering|EXITing}<NL>

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:XCONDITION?"

XOTime

Query :MACHine{1|2}:TWAVeform:XOTime?

The XOTime query returns the time from the X marker to the O marker. If
data is not valid, the query returns 9.9E37.

Returned Format [:MACHine{1|2}:TWAVeform:XOTime] <time_value><NL>

<time_value> real number

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:XOTIME?"

TWAVeform Subsystem
XCONdition

13–26

XPATtern

Command :MACHine{1|2}:TWAVeform:XPATtern
<label_name>,<label_pattern>

The XPATtern command allows you to construct a pattern for the X marker
which is then used with the XSEarch criteria and XCONdition when moving
the marker on patterns. Since this command deals with only one label at a
time, a complete specification could require several iterations.

When the value of a pattern is expressed in binary, it represents the bit
values for the label inside the pattern. In whatever base is used, the value
must be between 0 and 232 − 1, since a label may not have more than 32 bits.
Because the <label_pattern> parameter may contain don’t cares, it is
handled as a string of characters rather than a number.

<label_name> string of up to 6 alphanumeric characters

<label_pattern> "{#B{0|1|X} . . . |
#Q{0|1|2|3|4|5|6|7|X} . . . |
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F|X} . . . |
{0|1|2|3|4|5|6|7|8|9} . . . }"

Example OUTPUT XXX; ":MACHINE1:TWAVEFORM:XPATTERN ’A’,’511’"

Query :MACHine{1|2}:TWAVeform:XPATtern? <label_name>

The XPATtern query, in pattern marker mode, returns the pattern
specification for a given label name. In the time marker mode, the query
returns the pattern under the X marker for a given label. If the X marker is
not placed on valid data, don’t cares (X) are returned.

Returned Format [:MACHine{1|2}:TWAVeform:XPATtern]
<label_name>,<label_pattern><NL>

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:XPATTERN? ’A’"

TWAVeform Subsystem
XPATtern

13–27

XSEarch

Command :MACHine{1|2}:TWAVeform:XSEarch
<occurrence>,<origin>

The XSEarch command defines the search criteria for the X marker. The
criteria are then used with the associated XPATtern specification and the
XCONdition when moving markers on patterns. The origin parameter tells
the marker to begin a search from the trigger or start. The occurrence
parameter determines which occurrence of the XPATtern recognizer
specification, relative to the origin, the marker actually searches for. An
occurrence of 0 places a marker on the origin.

<origin> {TRIGger|STARt}

<occurrence> integer from from −1040384 to +1040384 (HP 16554A) or from –2088960 to
+2088960(HP 16555A) or from –4177920 to +4177920(HP 16555D)

Example OUTPUT XXX; ":MACHINE1:TWAVEFORM:XSEARCH,+10,TRIGGER"

Query :MACHine{1|2}:TWAVeform:XSEarch?
<occurrence>, <origin>

The XSEarch query returns the search criteria for the X marker.
Returned Format [:MACHine{1|2}:TWAVeform:XSEarch] <occurrence>,<origin><NL>

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:XSEARCH?"

TWAVeform Subsystem
XSEarch

13–28

XTIMe

Command :MACHine{1|2}:TWAVeform:XTIMe <time_value>

The XTIMe command positions the X marker in time when the marker mode
is time. If data is not valid, the command performs no action.

<time_value> real number from −2.5 ks to +2.5 ks

Example OUTPUT XXX; ":MACHINE1:TWAVEFORM:XTIME 40.0E −6"

Query :MACHine{1|2}:TWAVeform:XTIMe?

The XTIMe query returns the X marker position in time. If data is not valid,
the query returns 9.9E37.

Returned Format [:MACHine{1|2}:TWAVeform:XTIMe] <time_value><NL>

Example OUTPUT XXX;":MACHINE1:TWAVEFORM:XTIME?"

TWAVeform Subsystem
XTIMe

13–29

13–30

14

TLISt Subsystem

Introduction

The TLISt subsystem contains the commands available for the Timing
Listing menu in the HP 16554A/HP 16555A/HP 16555D logic analyzer
modules and is the same as the SLISt subsystem (except for the
OCONdition and XCONdition commands). The TLISt subsystem
commands are:

• COLumn

• CLRPattern

• DATA

• LINE

• MMODe

• OCONdition

• OPATtern

• OSEarch

• OSTate

• OTAG

• REMove

• RUNTil

• TAVerage

• TMAXimum

• TMINimum

• VRUNs

• XCONdition

• XOTag

• XOTime

• XPATtern

• XSEarch

• XSTate

• XTAG

14–2

Figure 14-1

TLISt Subsystem Syntax Diagram

TLISt Subsystem

14–3

Figure 14-1 (continued)

TLISt Subsystem Syntax Diagram (continued)

TLISt Subsystem

14–4

Figure 14-1 (continued)

TLISt Subsystem Syntax Diagram (continued)

TLISt Subsystem

14–5

Table 14-1 TLISt Parameter Values

Parameter Value

mod_num {1|2|3|4|5|6|7|8|9|10}

mach_num {1|2}

col_num integer from 1 to 61

line_number integer between ±1040384 (HP 16554A), or ±2088960
(HP 16555A) or ±4177920 (HP 16555D)

label_name a string of up to 6 alphanumeric characters

base {BINary|HEXadecimal|OCTal|DECimal|TWOS
|ASCii|SYMBol} for labels or
{ABSolute|RELative} for tags

line_num_mid_screen integer between ±1040384 (HP 16554A), or ±2088960
(HP 16555A) or ±4177920 (HP 16555D)

label_pattern "{#B{0|1|X}...|
#Q{0|1|2|3|4|5|6|7|X}...|
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F|X}...|
{0|1|2|3|4|5|6|7|8|9}...}"

occurrence integer between ±1040384 (HP 16554A), or ±2088960
(HP 16555A) or ±4177920 (HP 16555D)

time_value real number

run_until_spec {OFF|LT,<value>|GT,<value>|INRange,
<value>,<value>|OUTRange<value>,<value>}

value real number

TLISt Subsystem

14–6

TLISt

Selector :MACHine{1|2}:TLISt

The TLISt selector is used as part of a compound header to access those
settings normally found in the Timing Listing menu. It always follows the
MACHine selector because it selects a branch directly below the MACHine
level in the command tree.

Example OUTPUT XXX;":MACHINE1:TLIST:LINE 256"

COLumn

Command :MACHine{1|2}:TLISt:COLumn <col_num>
[,<module_num>,MACHine{1|2}],<label_name>,<base>

The COLumn command configures the timing analyzer listing by assigning a
label name and base to one of the 61 vertical columns in the menu. A column
number of 1 refers to the leftmost column. When a label is assigned to a
column it replaces the original label in that column.

To insert time values, use the label name "TAGS". When the label name is
"TAGS," the next parameter must specify RELative or ABSolute.

A label for tags must be assigned in order to use ABSolute or RELative time
tagging.

<col_num> integer from 1 to 61

<module_num> {1|2|3|4|5|6|7|8|9|10}

<label_name> a string of up to 6 alphanumeric characters

<base> {BINary|HEXadecimal|OCTal|DECimal|TWOS|ASCii|SYMBol} for
labels or
{ABSolute|RELative} for time

TLISt Subsystem
TLISt

14–7

Example OUTPUT XXX;":MACHINE1:TLIST:COLUMN 4,2,’A’,HEX"

Query :MACHine{1|2}:TLISt:COLumn? <col_num>

The COLumn query returns the column number, data source, label name, and
base for the specified column.

Returned Format [:MACHine{1|2}:TLISt:COLumn]
<col_num>,<module_num>,MACHine{1|2},<label_name>,<base><NL>

Example OUTPUT XXX;":MACHINE1:TLIST:COLUMN? 4"

CLRPattern

Command :MACHine{1|2}:TLISt:CLRPattern {X|O|ALL}

The CLRPattern command allows you to clear the patterns for the selected
markers in the Specify Patterns menu.

Example OUTPUT XXX;":MACHINE1:TLIST:CLRPATTERN O"

TLISt Subsystem
CLRPattern

14–8

DATA

Query :MACHine{1|2}:TLISt:DATA? <line_number>,
<label_name>

The DATA query returns the value at a specified line number for a given
label. The base will be the same as the one shown in the Listing display.

Returned Format [:MACHine{1|2}:TLISt:DATA] <line_number>,<label_name>,
<pattern_string><NL>

<line_number> integer from –1040384 to +1040384 (HP 16554A) or from –2088960 to
+2088960 (HP 16555A) or from –4177920 to +4177920 (HP 16555D)

<label_name> string of up to 6 alphanumeric characters

<pattern_
string>

"{#B{0|1|X} . . . |
#Q{0|1|2|3|4|5|6|7|X} . . . |
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F|X} . . . |
{0|1|2|3|4|5|6|7|8|9} . . . }"

Example OUTPUT XXX;":MACHINE1:TLIST:DATA? 512, ’RAS’"

LINE

Command :MACHine{1|2}:TLISt:LINE <line_num_mid_screen>

The LINE command scrolls the timing analyzer listing vertically. The
command specifies the state line number relative to the trigger. The analyzer
then highlights the specified line at the center of the screen.

<line_num_mid_
screen>

integer from –1040384 to +1040384 (HP 16554A) or from –2088960 to
+2088960 (HP 16555A) or from –4177920 to +4177920 (HP 16555D)

Example OUTPUT XXX;":MACHINE1:TLIST:LINE 0"

TLISt Subsystem
DATA

14–9

Query :MACHine{1|2}:TLISt:LINE?

The LINE query returns the line number for the state currently in the data
roll box at the center of the screen.

Returned Format [:MACHine{1|2}:TLISt:LINE] <line_num_mid_screen><NL>

Example OUTPUT XXX;":MACHINE1:TLIST:LINE?"

MMODe

Command :MACHine{1|2}:TLISt:MMODe <marker_mode>

The MMODe command (Marker Mode) selects the mode controlling the
marker movement and the display of marker readouts. When PATTern is
selected, the markers will be placed on patterns. When TIME is selected the
markers move on time between stored states. When MSTats is selected the
markers are placed on patterns, but the readouts will be time statistics.

<marker_mode> {OFF|PATTern|TIME|MSTats}

Example OUTPUT XXX;":MACHINE1:TLIST:MMODE TIME"

Query :MACHine{1|2}:TLISt:MMODe?

The MMODe query returns the current marker mode selected.
Returned Format [:MACHine{1|2}:TLISt:MMODe] <marker_mode><NL>

Example OUTPUT XXX;":MACHINE1:TLIST:MMODE?"

TLISt Subsystem
MMODe

14–10

OCONdition

Command :MACHine{1|2}:TLISt:OCONdition {ENTering|EXITing}

The OCONdition command specifies where the O marker is placed. The
O marker can be placed on the entry or exit point of the OPATtern when in
the PATTern marker mode.

Example OUTPUT XXX; ":MACHINE1:TLIST:OCONDITION ENTERING"

Query :MACHine{1|2}:TLISt:OCONdition?

The OCONdition query returns the current setting.
Returned Format [:MACHine{1|2}:TLISt:OCONdition] {ENTering|EXITing}<NL>

Example OUTPUT XXX;":MACHINE1:TLIST:OCONDITION?"

TLISt Subsystem
OCONdition

14–11

OPATtern

Command :MACHine{1|2}:TLISt:OPATtern <label_name>,
<label_pattern>

The OPATtern command allows you to construct a pattern for the O marker
which is then used with the OSEarch criteria when moving the marker on
patterns. Since this command deals with only one label at a time, a complete
specification could require several iterations.

When the value of a pattern is expressed in binary, it represents the bit
values for the label inside the pattern recognizer term. In whatever base is
used, the value must be between 0 and 232 − 1, since a label may not have
more than 32 bits. Because the <label_pattern> parameter may contain
don’t cares, it is handled as a string of characters rather than a number.

<label_name> string of up to 6 alphanumeric characters

<label_pattern> "{#B{0|1|X} . . . |
#Q{0|1|2|3|4|5|6|7|X} . . . |
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F|X} . . . |
{0|1|2|3|4|5|6|7|8|9} . . . }"

Example OUTPUT XXX;":MACHINE1:TLIST:OPATTERN ’DATA’,’255’ "
OUTPUT XXX;":MACHINE1:TLIST:OPATTERN ’ABC’,’#BXXXX1101’ "

Query :MACHine{1|2}:TLISt:OPATtern? <label_name>

The OPATtern query returns the pattern specification for a given label name.
Returned Format [:MACHine{1|2}:TLISt:OPATtern] <label_name>,

<label_pattern><NL>

Example OUTPUT XXX;":MACHINE1:TLIST:OPATTERN? ’A’"

TLISt Subsystem
OPATtern

14–12

OSEarch

Command :MACHine{1|2}:TLISt:OSEarch <occurrence>,<origin>

The OSEarch command defines the search criteria for the O marker, which is
then used with associated OPATtern recognizer specification when moving
the markers on patterns. The origin parameter tells the marker to begin a
search from the trigger, the start of data, or the X marker. The actual
occurrence the marker searches for is determined by the occurrence
parameter, relative to the origin. An occurrence of 0 places the marker on
the selected origin. With a negative occurrence, the marker searches before
the origin. With a positive occurrence, the marker searches after the origin.

<occurrence> integer from –1040384 to +1040384 (HP 16554A) or from –2088960 to
+2088960 (HP 16555A) or from –4177920 to +4177920 (HP 16555D)

<origin> {TRIGger|STARt|XMARker}

Example OUTPUT XXX;":MACHINE1:TLIST:OSEARCH +10,TRIGGER"

Query :MACHine{1|2}:TLISt:OSEarch?

The OSEarch query returns the search criteria for the O marker.
Returned Format [:MACHine{1|2}:TLISt:OSEarch] <occurrence>,<origin><NL>

Example OUTPUT XXX;":MACHINE1:TLIST:OSEARCH?"

TLISt Subsystem
OSEarch

14–13

OSTate

Query :MACHine{1|2}:TLISt:OSTate?

The OSTate query returns the line number in the listing where the O marker
resides. If data is not valid, the query returns 2147483647.

Returned Format [:MACHine{1|2}:TLISt:OSTate] <state_num><NL>

<state_num> 2147483647 or integer from –1040384 to +1040384 (HP 16554A) or from
–2088960 to +2088960 (HP 16555A) or from –4177920 to +4177920
(HP 16555D)

Example OUTPUT XXX;":MACHINE1:TLIST:OSTATE?"

OTAG

Command :MACHine{1|2}:TLISt:OTAG <time_value>

The OTAG command specifies the tag value on which the O marker should be
placed. The tag value is always time for the timing analyzer. If the data is
not valid tagged data, no action is performed.

<time_value> real number

Example :OUTPUT XXX;":MACHINE1:TLIST:OTAG 40.0E −6"

TLISt Subsystem
OSTate

14–14

Query :MACHine{1|2}:TLISt:OTAG?

The OTAG query returns the O marker position in time regardless of whether
the marker was positioned in time or through a pattern search. If data is not
valid, the query returns 9.9E37.

Returned Format [:MACHine{1|2}:TLISt:OTAG] <time_value><NL>

Example OUTPUT XXX;":MACHINE1:TLIST:OTAG?"

REMove

Command :MACHine{1|2}:TLISt:REMove

The REMove command removes all labels, except the leftmost label, from the
listing menu.

Example OUTPUT XXX;":MACHINE1:TLIST:REMOVE"

TLISt Subsystem
REMove

14–15

RUNTil

Command :MACHine{1|2}:TLISt:RUNTil <run_until_spec>

The RUNTil (run until) command allows you to define a stop condition when
the run mode is repetitive. Specifying OFF causes the analyzer to make runs
until either the display’s STOP field is touched or the STOP command is
issued.

There are four conditions based on the time between the X and O markers.
These four conditions are as follows:

• The difference is less than (LT) some value.

• The difference is greater than (GT) some value.

• The difference is inside some range (INRange).

• The difference is outside some range (OUTRange).

End points for INRange and OUTRange should be at least 2 ns apart since
this is the minimum time between samples.

<run_until_
spec>

{OFF|LT,<value>|GT,<value>|INRange,<value>,<value>
|OUTRange,<value>,<value>}

<value> real number from −9E9 to +9E9

Example OUTPUT XXX;":MACHINE1:TLIST:RUNTIL GT,800.0E −6"

Query :MACHine{1|2}:TLISt:RUNTil?

The RUNTil query returns the current stop criteria.
Returned Format [:MACHine{1|2}:TLISt:RUNTil] <run_until_spec><NL>

Example OUTPUT XXX;":MACHINE1:TLIST:RUNTIL?"

TLISt Subsystem
RUNTil

14–16

TAVerage

Query :MACHine{1|2}:TLISt:TAVerage?

The TAVerage query returns the value of the average time between the X
and O markers. If the number of valid runs is zero, the query returns 9.9E37.
Valid runs are those where the pattern search for both the X and O markers
was successful, resulting in valid time measurements.

Returned Format [:MACHine{1|2}:TLISt:TAVerage] <time_value><NL>

<time_value> real number

Example OUTPUT XXX;":MACHINE1:TLIST:TAVERAGE?"

TMAXimum

Query :MACHine{1|2}:TLISt:TMAXimum?

The TMAXimum query returns the value of the maximum time between the X
and O markers. If data is not valid, the query returns 9.9E37.

Returned Format [:MACHine{1|2}:TLISt:TMAXimum] <time_value><NL>

<time_value> real number

Example OUTPUT XXX;":MACHINE1:TLIST:TMAXIMUM?"

TLISt Subsystem
TAVerage

14–17

TMINimum

Query :MACHine{1|2}:TLISt:TMINimum?

The TMINimum query returns the value of the minimum time between the X
and O markers. If data is not valid, the query returns 9.9E37.

Returned Format [:MACHine{1|2}:TLISt:TMINimum] <time_value><NL>

<time_value> real number

Example OUTPUT XXX;":MACHINE1:TLIST:TMINIMUM?"

VRUNs

Query :MACHine{1|2}:TLISt:VRUNs?

The VRUNs query returns the number of valid runs and total number of runs
made. Valid runs are those where the pattern search for both the X and
O markers was successful resulting in valid time measurements.

Returned Format [:MACHine{1|2}:TLISt:VRUNs] <valid_runs>,<total_runs><NL>

<valid_runs> zero or positive integer

<total_runs> zero or positive integer

Example OUTPUT XXX;":MACHINE1:TLIST:VRUNS?"

TLISt Subsystem
TMINimum

14–18

XCONdition

Command :MACHine{1|2}:TLISt:XCONdition {ENTering|EXITing}

The XCONdition command specifies where the X marker is placed. The
X marker can be placed on the entry or exit point of the XPATtern when in
the PATTern marker mode.

Example OUTPUT XXX; ":MACHINE1:TLIST:XCONDITION ENTERING"

Query :MACHine{1|2}:TLISt:XCONdition?

The XCONdition query returns the current setting.
Returned Format [:MACHine{1|2}:TLISt:XCONdition] {ENTering|EXITing}<NL>

Example OUTPUT XXX;":MACHINE1:TLIST:XCONDITION?"

XOTag

Query :MACHine{1|2}:TLISt:XOTag?

The XOTag query returns the time from the X to the O marker. If there is no
data the query returns 9.9E37.

Returned Format [:MACHine{1|2}:TLISt:XOTag] <XO_time><NL>

<XO_time> real number

Example OUTPUT XXX;":MACHINE1:TLIST:XOTAG?"

TLISt Subsystem
XCONdition

14–19

XOTime

Query :MACHine{1|2}:TLISt:XOTime?

The XOTime query returns the time from the X to O markers. If there is no
data the query returns 9.9E37.

Returned Format [:MACHine{1|2}:TLISt:XOTime] <XO_time><NL>

<XO_time> real number

Example OUTPUT XXX;":MACHINE1:TLIST:XOTIME?"

XPATtern

Command :MACHine{1|2}:TLISt:XPATtern <label_name>,
<label_pattern>

The XPATtern command allows you to construct a pattern for the X marker
which is then used with the XSEarch criteria when moving the marker on
patterns. Since this command deals with only one label at a time, a complete
specification could require several iterations.

When the value of a pattern is expressed in binary, it represents the bit
values for the label inside the pattern recognizer term. In whatever base is
used, the value must be between 0 and 232 − 1, since a label may not have
more than 32 bits. Because the <label_pattern> parameter may contain
don’t cares, it is handled as a string of characters rather than a number.

<label_name> string of up to 6 alphanumeric characters

<label_pattern> "{#B{0|1|X} . . . |
#Q{0|1|2|3|4|5|6|7|X} . . . |
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F|X} . . . |
{0|1|2|3|4|5|6|7|8|9} . . . }"

TLISt Subsystem
XOTime

14–20

Example OUTPUT XXX;":MACHINE1:TLIST:XPATTERN ’DATA’,’255’ "
OUTPUT XXX;":MACHINE1:TLIST:XPATTERN ’ABC’,’#BXXXX1101’ "

Query :MACHine{1|2}:TLISt:XPATtern? <label_name>

The XPATtern query returns the pattern specification for a given label name.
Returned Format [:MACHine{1|2}:TLISt:XPATtern] <label_name>,

<label_pattern><NL>

Example OUTPUT XXX;":MACHINE1:TLIST:XPATTERN? ’A’"

XSEarch

Command :MACHine{1|2}:TLISt:XSEarch <occurrence>,<origin>

The XSEarch command defines the search criteria for the X marker, which is
then used with the associated XPATtern specification when moving the
markers on patterns. The origin parameter tells the marker to begin a search
from the trigger or the start of data. The occurrence parameter determines
which occurrence of the X pattern, relative to the origin, the marker actually
searches for. An occurrence of 0 places a marker on the selected origin.

<occurrence> integer from –1040384 to +1040384 (HP 16554A) or from –2088960 to
+2088960 (HP 16555A) or from –4177920 to +4177920 (HP 16555D)

<origin> {TRIGger|STARt}

Example OUTPUT XXX;":MACHINE1:TLIST:XSEARCH +10,TRIGGER"

TLISt Subsystem
XSEarch

14–21

Query :MACHine{1|2}:TLISt:XSEarch?

The XSEarch query returns the search criteria for the X marker.
Returned Format [:MACHine{1|2}:TLISt:XSEarch] <occurrence>,<origin><NL>

Example OUTPUT XXX;":MACHINE1:TLIST:XSEARCH?"

XSTate

Query :MACHine{1|2}:TLISt:XSTate?

The XSTate query returns the line number in the listing where the X marker
resides. If data is not valid, the query returns 2147483647.

Returned Format [:MACHine{1|2}:TLISt:XSTate] <state_num><NL>

<state_num> 2147483647 or integer from –1040384 to +1040384 (HP 16554A) or from
–2088960 to +2088960 (HP 16555A) or from –4177920 to +4177920
(HP 16555D).

Example OUTPUT XXX;":MACHINE1:TLIST:XSTATE?"

TLISt Subsystem
XSTate

14–22

XTAG

Command :MACHine{1|2}:TLISt:XTAG <time_value>

The XTAG command specifies the tag value on which the X marker should be
placed. The tag value is always time for the timing analyzer. If the data is
not valid tagged data, no action is performed.

<time_value> real number

Example OUTPUT XXX;":MACHINE1:TLIST:XTAG 40.0E −6"

Query :MACHine{1|2}:TLISt:XTAG?

The XTAG query returns the X marker position in time regardless of whether
the marker was positioned in time or through a pattern search. If data is not
valid tagged data, the query returns 9.9E37.

Returned Format [:MACHine{1|2}:TLISt:XTAG] <time_value><NL>

Example OUTPUT XXX;":MACHINE1:TLIST:XTAG?"

TLISt Subsystem
XTAG

14–23

14–24

15

SYMBol Subsystem

Introduction

The SYMBol subsystem contains the commands that allow you to
define symbols on the controller and download them to the
HP 16554A/HP 16555A/HP 16555D logic analyzer modules. The
commands in this subsystem are:

• BASE

• PATTern

• RANGe

• REMove

• WIDTh

15–2

SYMBol Subsystem Syntax Diagram

Figure 15-1

SYMBol Subsystem

15–3

Table 15-1 SYMBol Parameter Values

Parameter Value

label_name string of up to 6 alphanumeric characters

symbol_name string of up to 16 alphanumeric characters

pattern_value "{#B{0|1|X}...|
#Q{0|1|2|3|4|5|6|7|X}...|
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F|X}...|
{0|1|2|3|4|5|6|7|8|9}...}"

start_value
stop_value

"{#B{0|1}...|
#Q{0|1|2|3|4|5|6|7}...|
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F}...|
{0|1|2|3|4|5|6|7|8|9}...}"

width_value integer from 1 to 16

SYMBol Subsystem

15–4

SYMBol

Selector :MACHine{1|2}:SYMBol

The SYMBol selector is used as a part of a compound header to access the
commands used to create symbols. It always follows the MACHine selector
because it selects a branch directly below the MACHine level in the command
tree.

Example OUTPUT XXX;":MACHINE1:SYMBOL:BASE ’DATA’, BINARY"

BASE

Command :MACHine{1|2}:SYMBol:BASE <label_name>,
<base_value>

The BASE command sets the base in which symbols for the specified label
will be displayed in the symbol menu. It also specifies the base in which the
symbol offsets are displayed when symbols are used.

BINary is not available for labels with more than 20 bits assigned. In this case
the base will default to HEXadecimal.

<label_name> string of up to 6 alphanumeric characters

<base_value> {BINary | HEXadecimal | OCTal | DECimal | ASCii}

Example OUTPUT XXX;":MACHINE1:SYMBOL:BASE ’DATA’,HEXADECIMAL"

SYMBol Subsystem
SYMBol

15–5

PATTern

Command :MACHine{1|2}:SYMBol:PATTern <label_name>,
<symbol_name>,<pattern_value>

The PATTern command allows you to create a pattern symbol for the
specified label.

Because don’t cares (X) are allowed in the pattern value, it must always be
expressed as a string. The values may be in binary (#B), octal (#Q),
hexadecimal (#H), or decimal (default). Don’t cares cannot be used in a
decimal number.

<label_name> string of up to 6 alphanumeric characters

<symbol_name> string of up to 16 alphanumeric characters

<pattern_value> "{#B{0|1|X} . . . |
#Q{0|1|2|3|4|5|6|7|X} . . . |
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F|X} . . . |
{0|1|2|3|4|5|6|7|8|9} . . . }"

Example OUTPUT XXX;":MACHINE1:SYMBOL:PATTERN ’STAT’,
’MEM_RD’,’#H01XX’"

SYMBol Subsystem
PATTern

15–6

RANGe

Command :MACHine{1|2}:SYMBol:RANGe <label_name>,
<symbol_name>,<start_value>,<stop_value>

The RANGe command allows you to create a range symbol containing a start
value and a stop value for the specified label. The values may be in binary
(#B), octal (#Q), hexadecimal (#H) or decimal (default). You can not use
don’t cares in any base.

<label_name> string of up to 6 alphanumeric characters

<symbol_name> string of up to 16 alphanumeric characters

<start_value>
<stop_value>

"{#B{0|1} . . . |
#Q{0|1|2|3|4|5|6|7} . . . |
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F} . . . |
{0|1|2|3|4|5|6|7|8|9} . . . }"

Example OUTPUT XXX;":MACHINE1:SYMBOL:RANGE ’STAT’,
’IO_ACC’,’0’,’#H000F’"

SYMBol Subsystem
RANGe

15–7

REMove

Command :MACHine{1|2}:SYMBol:REMove

The REMove command deletes all symbols from a specified machine.

Example OUTPUT XXX;":MACHINE1:SYMBOL:REMOVE"

WIDTh

Command :MACHine{1|2}:SYMBol:WIDTh <label_name>,
<width_value>

The WIDTh command specifies the width (number of characters) in which
the symbol names will be displayed when symbols are used.

The WIDTh command does not affect the displayed length of the symbol
offset value.

<label_name> string of up to 6 alphanumeric characters

<width_value> integer from 1 to 16

Example OUTPUT XXX;":MACHINE1:SYMBOL:WIDTH ’DATA’,9 "

SYMBol Subsystem
REMove

15–8

16

SPA Subsystem

Introduction

This chapter provides you with information for programming the
System Performance Analysis (SPA) features on the HP 16554A/
HP 16555A/HP 16555D logic analyzer modules.

SPA commands have subsystems, indicated by the outdented items in
the list. Indented commands must be prefaced with the outdented
command above it unless MODE was previously used to set the mode.
The SPA commands are:

• OVERView • TINTerval

• BUCKet • AUTorange

• HIGH • QUALifier

• LABel • TINTerval

• LOW • TSTatistic

• MLENgth • MODE

• OMARker

• OVSTatistic

• XMARker

• HISTogram

• HISTatistic

• LABel

• OTHer

• QUALifier

• RANGe

• TTYPe

16–2

Figure 16-1

SPA Subsystem Syntax Diagram

SPA Subsystem

16–3

Figure 16-1 (continued)

SPA Subsystem Syntax Diagram (continued)

SPA Subsystem

16–4

Figure 16-1 (continued)

SPA Subsystem Syntax Diagram (continued)

SPA Subsystem

16–5

Table 16-1 SPA Subsystem Parameter Values

Parameter Value

bucket_num 0 to (number of valid buckets - 1)

high_patt <pattern>

label_name a string of up to 6 alphanumeric characters

low_patt <pattern>

memory {4096 | 8192 | 16384 | 32768 | 65536 |
131072 | 262144 |
516096 (HP 16554A)
524288 | 1040384 (HP 16555A)
524288 | 1048576 | 2080768 (HP 16555D) }

o_patt <pattern>

x_patt <pattern>

range_num an integer from 0 to 10

range_name a string of up to 16 alphanumeric characters

min_time real number

max_time real number

start_pattern <pattern>

end_pattern <pattern>

interval_num an integer from 0 to 7

pattern "{#B{0|1}...|
#Q{0|1|2|3|4|5|6|7}...|
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F}...|
{0|1|2|3|4|5|6|7|8|9}...}"

SPA Subsystem

16–6

MODE

Command :SPA{1|2}:MODE {OVERView|HISTogram|TINTerval}

The MODE command selects which menu to display: State Overview, State
Histogram, or Time Interval. A query returns the current menu mode.

Example OUTPUT XXX;":SPA1:MODE OVERView"
OUTPUT XXX;":SPA2:MODE HISTogram"
OUTPUT XXX;":SPA1:MODE TINTerval"

Query :SPA{1|2}:MODE?

Returned Format [:SPA{1|2}:MODE] {OVERView|HISTogram|TINTerval}<NL>

Example 10 DIM String$[100]
20 OUTPUT XXX;":SELECT 1"
30 OUTPUT XXX;":SPA1:MODE?"
40 ENTER XXX;String$
50 PRINT String$
60 END

SPA Subsystem
MODE

16–7

OVERView:BUCKet

Query :SPA{1|2}:OVERView:BUCKet?
{SIZE|NUMBer|<bucket_num>}

The OVERView:BUCKet query returns data relating to the State Overview
measurement. You specify SIZE for width of each bucket, NUMBer for
number of buckets, or <bucket_num> for the number of hits in the specified
bucket number

Returned Format [:SPA{1|2}:OVERView:BUCKet] {SIZE|NUMBer|<bucket_num>},
<number><NL>

<bucket_num> 0 to (number of valid buckets – 1)

<number> integer number

Example 10 DIM String$[100]
20 OUTPUT XXX;":SELECT 1"
30 OUTPUT XXX;":SPA2:OVERView:BUCKet? 23"
40 ENTER XXX;String$
50 PRINT String$
60 END

SPA Subsystem
OVERView:BUCKet

16–8

OVERView:HIGH

Command :SPA{1|2}:OVERView:HIGH <high_pattern>

The OVERView:HIGH command sets the upper boundary of the State
Overview measurement. A query returns the current setting of the upper
boundary.

Setting the upper boundary defaults the data accumulators, statistic
counters, and the number of buckets and their size.

<high_pattern> "{#B{0|1}...|
#Q{0|1|2|3|4|5|6|7}...|
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F}.. .|
{0|1|2|3|4|5|6|7|8|9}...}"

Example OUTPUT XXX;":SPA1:OVERView:HIGH ’23394’"
OUTPUT XXX;":SPA2:OVERView:HIGH ’#Q4371’"

Query :SPA{1|2}:OVERView:HIGH?

Returned Format [:SPA{1|2}:OVERView:HIGH] <high_pattern><NL>

Example 10 DIM String$[100]
20 OUTPUT XXX;":SELECT 1"
30 OUTPUT XXX;":SPA1:OVERView:HIGH?"
40 ENTER XXX;String$
50 PRINT String$
60 END

SPA Subsystem
OVERView:HIGH

16–9

OVERView:LABel

Command :SPA{1|2}:OVERView:LABel <label_name>

The OVERView:LABel command selects a new label for collecting the SPA
measurements. A query returns the name of the currently selected label.

Selecting a new label defaults the State Overview data accumulators, statistic
counters, and the number of buckets and their size.

<label_name> string of up to 6 alphanumeric characters

Example OUTPUT XXX;":SPA2:OVERView:LABel ’A’"

Query :SPA{1|2}:OVERView:LABel?

Returned Format: [:SPA{1|2}:OVERView:LABel] <label_name><NL>

Example 10 DIM String$[100]
20 OUTPUT XXX;":SELECT 1"
30 OUTPUT XXX;":SPA2:OVERView:LABel?"
40 ENTER XXX;String$
50 PRINT String$
60 END

SPA Subsystem
OVERView:LABel

16–10

OVERView:LOW

Command :SPA{1|2}:OVERView:LOW <low_pattern>

The OVERView:LOW command sets the lower boundary of the State
Overview measurement. A query returns the current setting of the lower
boundary.

Setting the lower boundary defaults the data accumulators, statistic counters,
and the number of buckets and their size.

<low_pattern> "{#B{0|1}...|
#Q{0|1|2|3|4|5|6|7}...|
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F}...|
{0|1|2|3|4|5|6|7|8|9}...}"

Example OUTPUT XXX;":SPA2:OVERView:LOW ’23394’"
OUTPUT XXX;":SPA1:OVERView:LOW ’#Q4371’"

Query :SPA{1|2}:OVERView:LOW?

Returned Format [:SPA{1|2}:OVERView:LOW] <low_pattern><NL>

Example 10 DIM String$[100]
20 OUTPUT XXX;":SELECT 1"
30 OUTPUT XXX;":SPA1:OVERView:LOW?"
40 ENTER XXX;String$
50 PRINT String$
60 END

SPA Subsystem
OVERView:LOW

16–11

OVERView:MLENgth

Command :SPA{1|2}:OVERView:MLENgth <memory_length>

The MLENgth command specifies the memory depth. Valid memory depths
range from 4096 states (or samples) through the maximum system memory
depth minus 8192 states (HP 16554A/HP 16555A) or minus 16384 states
(HP 16555D). Memory depth is affected by acquisition mode. If the
<memory_depth> value sent with the command is not a legal value, the
closest legal setting will be used.

<memory_length> {4096 | 8192 | 16384 | 32768 | 65536 | 131072 | 262144
| 516096 (HP 16554A)
| 524288 | 1040384 (HP 16555A)
| 524288 | 1048576 | 2080768 (HP 16555D)}

Example OUTPUT XXX;":SPA1:OVERVIEW:MLENGTH 262144"

Query :SPA{1|2}:OVERView:MLENgth?

The MLENgth query returns the current analyzer memory depth selection.
Returned Format [:SPA{1|2}:OVERView:MLENgth] <memory_length><NL>

Example OUTPUT XXX;":SPA1:OVERVIEW:MLENGTH?"

SPA Subsystem
OVERView:MLENgth

16–12

OVERView:OMARker

Command :SPA{1|2}:OVERView:OMARker <o_pattern>

The OVERView:OMARker command sends the O marker to the lower
boundary of the bucket where the specified pattern is located. A request to
place the marker outside the defined boundary forces the marker to the
appropriate end bucket. A query returns the pattern associated with the
lower end of the bucket where the marker is placed.

<o_pattern> "{#B{0|1}...|
#Q{0|1|2|3|4|5|6|7}...|
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F}...|
{0|1|2|3|4|5|6|7|8|9}...}"

Example OUTPUT XXX;":SPA2:OVERView:OMARker ’#H3C31’"

Query :SPA{1|2}:OVERView:OMARker?

Returned Format [:SPA{1|2}:OVERView:OMARker] <o_pattern><NL>

Example 10 DIM String$[100]
20 OUTPUT XXX;":SELECT 1"
30 OUTPUT XXX;":SPA1:OVERView:OMARker?"
40 ENTER XXX;String$
50 PRINT String$
60 END

SPA Subsystem
OVERView:OMARker

16–13

OVERView:OVSTatistic

Query :SPA{1|2}:OVERView:OVSTatistic?
{XHITs|OHITs|TOTal}

The OVERView:OVSTatistic query returns the number of hits associated with
the requested statistic or returns the number of hits in the specified bucket.
XHITs requests the number of hits in the bucket where the X marker is
located. OHITs requests the number of hits in the bucket where the
O marker is located. TOTal requests the total number of hits.

Returned Format [:SPA{1|2}:OVERView:OVSTatistic] {XHITs|OHITs|TOTal},
<number_hits><NL>

<number_hits> integer number

Example 10 DIM String$[100]
20 OUTPUT XXX;":SELECT 1"
30 OUTPUT XXX;":SPA2:OVERView:OVSTatistic? OHITs"
40 ENTER XXX;String$
50 PRINT String$
60 END

SPA Subsystem
OVERView:OVSTatistic

16–14

OVERView:XMARker

Command :SPA{1|2}:OVERView:XMARker <x_pattern>

The OVERView:XMARker command sends the X marker to the lower
boundary of the bucket where the specified pattern is located. A request to
place the marker outside the defined boundary forces the marker to the
appropriate end bucket. A query returns the pattern associated with the
lower end of the bucket where the marker is placed.

<x_pattern> "{#B{0|1}...|
#Q{0|1|2|3|4|5|6|7}...|
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F}...|
{0|1|2|3|4|5|6|7|8|9}...}"

Example OUTPUT XXX;":SPA2:OVERView:XMARker ’#H3C31’"

Query :SPA{1|2}:OVERView:XMARker?

Returned Format [:SPA{1|2}:OVERView:XMARker] <x_pattern><NL>

Example 10 DIM String$[100]
20 OUTPUT XXX;":SELECT 1"
30 OUTPUT XXX;":SPA2:OVERView:XMARker?"
40 ENTER XXX;String$
50 PRINT String$
60 END

SPA Subsystem
OVERView:XMARker

16–15

HISTogram:HSTatistic

Query :SPA{1|2}:HISTogram:HSTatistic?
{TOTal|OTHer|<range_number>}

The HISTogram:HSTatistic query returns the total number of samples or
returns the number of samples in the specified range. Specify TOTal for the
total number of samples, OTHer for the number of hits in "other" range, or
<range_number> for the number of hits in that range.

Depending on whether the "other" range is on or off, the statistic TOTal
includes or excludes the number of hits in the "other" range.

Returned Format [:SPA{1|2}:HISTogram:HSTatistic] {TOTal|OTHer|
<range_number>},<number_hits><NL>

<range_number> 0 to 10

<number_hits> integer number

Example 10 DIM String$[100]
20 OUTPUT XXX;":SELECT 1"
30 OUTPUT XXX;":SPA1:HISTogram:HSTatistic? 7"
40 ENTER XXX;String$
50 PRINT String$
60 END

SPA Subsystem
HISTogram:HSTatistic

16–16

HISTogram:LABel

Command :SPA{1|2}:HISTogram:LABel <label_name>

The HISTogram:LABel command selects a new label for collecting SPA
measurements. A query returns the name of the currently selected label.

Selecting a new label defaults the State Histogram range names, bucket sizes,
and hit accumulators.

<label_name> string of up to 6 alphanumeric characters

Example OUTPUT XXX;":SPA2:HISTogram:LABel ’A’"

Query :SPA{1|2}:HISTogram:LABel?

Returned Format [:SPA{1|2}:HISTogram:LABel] <label_name><NL>

Example 10 DIM String$[100]
20 OUTPUT XXX;":SELECT 1"
30 OUTPUT XXX;":SPA2:HISTogram:LABel?"
40 ENTER XXX;String$
50 PRINT String$
60 END

SPA Subsystem
HISTogram:LABel

16–17

HISTogram:OTHer

Command :SPA{1|2}:HISTogram:OTHer {INCLuded|EXCLuded}

The HISTogram:OTHer command selects including or excluding the "other"
histogram bucket. A query returns data indicating whether the "other"
bucket is currently included or excluded.

Example OUTPUT XXX;":SPA2:HISTogram:OTHer INCLuded"
OUTPUT XXX;":SPA1:HISTogram:OTHer EXCLuded"

Query :SPA{1|2}:HISTogram:OTHer?

Returned Format [:SPA{1|2}:HISTogram:OTHer] {INCLuded|EXCLuded}<NL>

Example 10 DIM String$[100]
20 OUTPUT XXX;":SELECT 1"
30 OUTPUT XXX;":SPA2:HISTogram:OTHer?"
40 ENTER XXX;String$
50 PRINT String$
60 END

SPA Subsystem
HISTogram:OTHer

16–18

HISTogram:QUALifier

Command :SPA{1|2}:HISTogram:QUALifier <label_name>,
<pattern>

The HISTogram:QUALifier command sets the pattern associated with the
specified label. The pattern is a condition for triggering and storing the
measurement. A query of a label returns the current pattern setting for that
label.

<label_name> string of up to 6 alphanumeric characters

<pattern> "{#B{0|1}...|
#Q{0|1|2|3|4|5|6|7}...|
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F}...|
{0|1|2|3|4|5|6|7|8|9}...}"

Example OUTPUT XXX;":SPA2:HISTogram:QUALifier ’A’,’255’"

Query :SPA{1|2}:HISTogram:QUALifier? <label_name>

Returned Format [:SPA{1|2}:HISTogram:QUALifier] <label_name>,<pattern><NL>

Example 10 DIM String$[100]
20 OUTPUT XXX;":SELECT 1"
30 OUTPUT XXX;":SPA1:HISTogram:QUALifier? ’A’"
40 ENTER XXX;String$
50 PRINT String$
60 END

SPA Subsystem
HISTogram:QUALifier

16–19

HISTogram:RANGe

Command :SPA{1|2}:HISTogram:RANGe {OFF | <range_num>,
<range_name>,<low_patt>,<high_patt>}

The HISTogram:RANGe command turns off all ranges or defines the range
name, low boundary, and high boundary of the specified range. Defining a
specified range turns on that range. For the specified range, a query returns
the name, low boundary, high boundary, and whether the range is on or off.

<range_num> 0 to 10

<range_name> string of up to 16 alphanumeric characters

<low_patt>
<high_patt>

"{#B{0|1}...|
#Q{0|1|2|3|4|5|6|7}...|
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F}...|
{0|1|2|3|4|5|6|7|8|9}...}"

Example OUTPUT XXX;":SPA1:HISTogram:RANGe OFF"
OUTPUT XXX;":SPA2:HISTogram:RANGe 5,’A’,’255’,’512’"
OUTPUT XXX;":SPA1:HISTogram:RANGe 8,’DATA’,’#B0100110’,’#H9F’"

Query :SPA{1|2}:HISTogram:RANGe? <range_num>

Returned Format [:SPA{1|2}:HISTogram:RANGe] <range_number>,<range_name>,
<low_pattern>,<high_pattern>,<range_onoff><NL>

<range_onoff> {ON|OFF}

Example 10 DIM String$[100]
20 OUTPUT XXX;":SELECT 1"
30 OUTPUT XXX;":SPA1:HISTogram:RANGe? 4"
40 ENTER XXX;String$
50 PRINT String$
60 END

SPA Subsystem
HISTogram:RANGe

16–20

HISTogram:TTYPe

Command :SPA{1|2}:HISTogram:TTYPe {ALL|QUALified}

The HISTogram:TTYPe command sets the trigger to trigger on anystate or on
qualified state. A query returns the current trace type setting.

Example OUTPUT XXX;":SPA2:HISTogram:TTYPe ALL"

Query :SPA{1|2}:HISTogram:TTYPe?

Returned Format [:SPA{1|2}:HISTogram:TTYPe] {ALL|QUALified}<NL>

Example 10 DIM String$[100]
20 OUTPUT XXX;":SELECT 1"
30 OUTPUT XXX;":SPA1:HISTogram:TTYPe?"
40 ENTER XXX;String$
50 PRINT String$
60 END

SPA Subsystem
HISTogram:TTYPe

16–21

TINTerval:AUTorange

Command :SPA{1|2}:TINTerval:AUTorange
{LOGarithmic|LINear},<min_time>,<max_time>

The TINTerval:AUTorange command automatically sets the Time Interval
ranges in a logarithmic or linear distribution over the specified range of time.
When the AUTorange command is executed, the data accumulators and
statistic counters are reset.

<min_time> real number

<max_time> real number

Example

OUTPUT XXX;":SPA2:TINTerval:AUTorange LINear,4.0E-3,55.6E+2"
OUTPUT XXX;":SPA1:TINTerval:AUTorange LOGarithmic,3.3E+1,8.6E+2"

SPA Subsystem
TINTerval:AUTorange

16–22

TINTerval:QUALifier

Command :SPA{1|2}:TINTerval:QUALifier <label_name>,
<start_pattern>,<end_pattern>

The TINTerval:QUALifier command defines the start and stop patterns for a
specified label. The start and stop patterns determine the time windows for
collecting data. A query returns the currently defined start and stop patterns
for a given label.

<label_name> string of up to 6 alphanumeric characters

<start_pattern> "{#B{0|1}...|
#Q{0|1|2|3|4|5|6|7}...|
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F}...|
{0|1|2|3|4|5|6|7|8|9}...}"

<end_pattern> "{#B{0|1}...|
#Q{0|1|2|3|4|5|6|7}...|
#H{0|1|2|3|4|5|6|7|8|9|A|B|C|D|E|F}...|
{0|1|2|3|4|5|6|7|8|9}...}"

Example OUTPUT XXX;":SPA1:TINTerval:QUALifier ’A’,’#Q231’,’#Q455’"
OUTPUT XXX;":SPA2:TINTerval:QUALifier ’DATA’,’#H3A’,’255’"

Query :SPA{1|2}:TINTerval:QUALifier? <label_name>

Returned Format [:SPA{1|2}:TINTerval:QUALifier] <label_name>,
<start_pattern>,<end_pattern><NL>

Example 10 DIM String$[100]
20 OUTPUT XXX;":SELECT 1"
30 OUTPUT XXX;":SPA1:TINTerval:QUALifier? ’A’"
40 ENTER XXX;String$
50 PRINT String$
60 END

SPA Subsystem
TINTerval:QUALifier

16–23

TINTerval:TINTerval

Command :SPA{1|2}:TINTerval:TINTerval
<interval_number>,<min_time>,<max_time>

The TINTerval:TINTerval command specifies the minimum and maximum
time limits for the given interval. A query returns these limits for a specified
interval.

<interval_
number>

0 to 7

<min_time> real number

<max_time> real number

Example OUTPUT XXX;":SPA2:TINTerval:TINTerval 4,1.0E-3,47.0E5"
OUTPUT XXX;":SPA1:TINTerval:TINTerval 3,6.8E-7,4.90E2"

Query :SPA{1|2}:TINTerval:TINTerval? <interval_number>

Returned Format [:SPA{1|2}:TINTerval:TINTerval] <interval_number>,<min_time>,
<max_time><NL>

Example 10 DIM String$[100]
20 OUTPUT XXX;":SELECT 1"
30 OUTPUT XXX;":SPA2:TINTerval:TINTerval? 6"
40 ENTER XXX;String$
50 PRINT String$
60 END

SPA Subsystem
TINTerval:TINTerval

16–24

TINTerval:TSTatistic

Query :SPA{1|2}:TINTerval:TSTatistic? {TMINimum|
TMAXimum|TAVerage|TOTal|TTOTal|<interval_number>}

The TINTerval:TSTatistic query returns either the time or the number of
samples associated with the requested statistic. The statistics you can
request are:

• TMINimum - overall minimum interval time

• TMAXimum - overall maximum interval time

• TAVerage - overall average interval time

• TOTal - total number of samples

• TTOTal - overall total time of all interval samples

• <interval_number> - number of hits in given interval

If TMINimum, TMAXaximum, TAVErage, or TTOTal are not currently valid,
the real value 9.9E37 is returned.

Returned Format [:SPA{1|2}:TINTerval:TSTatistic] { { {TMINimum | TMAXimum |
TAVerage | TTOTal } <time_number>} | { {TOTal |
<interval_number>}, <number_hits>} }<NL>

<interval_
number>

0 to 7

<number_hits> integer number

<time_number> real number

Example 10 DIM String$[100]
20 OUTPUT XXX;":SELECT 1"
30 OUTPUT XXX;":SPA1:TINTerval:TSTatistic? 3"
40 ENTER XXX;String$
50 PRINT String$
60 END

SPA Subsystem
TINTerval:TSTatistic

16–25

16–26

17

DATA and SETup Commands

Introduction

The DATA and SETup commands are SYSTem commands that allow
you to send and receive block data between the HP 16554A,
HP 16555A, or HP 16555D and a controller. Use the DATA instruction
to transfer acquired timing and state data, and the SETup instruction
to transfer instrument configuration data. This is useful for:

• Re-loading to the logic analyzer

• Processing data later

• Processing data in the controller

This chapter explains how to use these commands.

The format and length of block data depends on the instruction being
used, the configuration of the instrument, and the amount of acquired
data. The length of the data block can be as big as 20 Mbytes
(HP 16554A), 40 Mbytes (HP 16555A), or 80 Mbytes (HP 16555D) in
a three-card configuration.

The SYSTem:DATA section describes each part of the block data as it
appears when used by the DATA instruction when DBLock is set to
UNPacked. The beginning byte number, the length in bytes, and a
short description is given for each part of the block data. This is
intended to be used primarily for processing of data in the controller.

This description is for data downloaded in UNPacked format. Data sent to a
controller with the DBLock mode set to PACKed can be reloaded into the
analyzer. It is highly configuration dependent, and so is not documented for
post-processing. Data sent to a controller with the DBLock mode set to
UNPacked cannot be reloaded into the analyzer.

17–2

Data Format

To understand the format of the data within the block data, there are four
important things to keep in mind.

• Data is sent to the controller in binary form.

• Each byte, as described in this chapter, contains 8 bits.

• The first bit of each byte is the MSB (most significant bit).

• Byte descriptions are printed in binary, decimal, or ASCII depending on
how the data is described.

Example The first ten bytes that describe the section name contain a total of 80 bits as
follows:

Binary 0100 0100 0100 0001 0101 0100 0100 0001 0010 0000...0010 0000

Decimal 68 65 84 65 32 32 32 32 32 32

ASCII DATA space space space space space space

Byte 10Byte 1

MSB LSB

DATA and SETup Commands
Data Format

17–3

SYSTem:DATA

Command :SYSTem:DATA <block data>

The SYSTem:DATA command transmits the acquisition memory data from
the controller to the HP 16554A/HP 16555A/HP 16555D logic analyzers.

The block data consists of a variable number of bytes containing information
captured by the acquisition chips. Since no parameter checking is
performed, out-of-range values could cause instrument lockup; therefore,
care should be taken when transferring the data string into the HP 16554A/
HP 16555A/HP 16555D.

The <block data> parameter can be broken down into a <block length
specifier> and a variable number of <section> s.

The <block length specifier> always takes the form #8DDDDDDDD. Each
D represents a digit (ASCII characters "0" through "9"). The value of the eight
digits represents the total length of the block (all sections). For example, if
the total length of the block is 14522 bytes, the block length specifier would
be "#800014522 ".

Each <section> consists of a <section header> and <section data> .
The <section data> format varies for each section and may be any length.
For the DATA instruction, there is only one <section> , which is composed
of a data preamble followed by the acquisition data. This section has a
variable number of bytes depending on configuration and amount of acquired
data.

Example OUTPUT XXX;":SYSTEM:DATA" <block data>

Do not load UNPacked data into the instrument; it may cause the HP 16500 to
lock up. If this happens, cycle power. Only data saved in PACKed mode can be
reloaded back into a logic analyzer.

DATA and SETup Commands
SYSTem:DATA

17–4

<block data> <block length specifier><section>...

<block length
specifier

#8<length>

<length> the total length of all sections in byte format (must be represented with 8
digits)

<section> <section header><section data>

<section
header>

16 bytes, described on the following page

<section data> format depends on the type of data

The total length of a section is 16 (for the section header) plus the length of the
section data. So when calculating the value for <length> , don’t forget to
include the length of the section headers.

Query :SYSTem:DATA?

The SYSTem:DATA query sends block data to the controller. The data sent
by the SYSTem:DATA query reflect the configuration of the machines when
the last run was performed. Any changes made since then through either
front-panel operations or programming commands do not affect the stored
configuration. The format of the block data depends on the current setting of
the DBLock parameter.

Returned Format [:SYSTem:DATA] <block data><NL>

See Also The DBLock command description in chapter 2, "Module Level Commands."

DATA and SETup Commands
SYSTem:DATA

17–5

Section Header Description

Because block data may contain multiple sections, this description numbers
bytes beginning at the section header. The initial 10 bytes of the block length
specifier and any other sections are not included in the numbering.

The section header uses bytes 1 through 16 (this manual begins counting at
1; there is no byte 0). The 16 bytes of the section header are as follows:

Byte Position

1 10 bytes - Section name ("DATA space space space space space
space" in ASCII for the DATA instruction).

11 1 byte - Reserved

12 1 byte - Module ID (34 decimal for the HP 16554A and HP 16555A/D master
boards, and 35 for expander boards)

13 4 bytes - Length of block in bytes that when converted to decimal, specifies
the number of bytes contained in the data block.

Section Data

For the SYSTem:DATA query when DBLock mode is UNPacked, the
<section data> parameter consists of two parts: the data preamble and the
acquisition data. These are described in the following two sections.

When DBLock mode is set to PACKed, the format is highly configuration
dependent. Because of the complexity and because it may be changed
without notice, it is not described here.

Use UNPacked format for data you wish to post-process, and PACKed data
for measurements you may want to load back into the analyzer module later.

DATA and SETup Commands
Section Header Description

17–6

Data Preamble Description

The UNPacked block data is organized as 574 bytes of preamble information,
followed by a variable number of bytes of data. The preamble gives
information for each analyzer describing the amount and type of data
captured, where the trace point occurred in the data, which pods are
assigned to which analyzer, and other information.

The preamble (bytes 17 through 590) consists of the following 574 bytes:

Byte Position

17 4 bytes - Instrument ID (always 16500 decimal for both the HP 16554A and
HP 16555A)

21 4 bytes - Revision Code

25 4 bytes - number of acquisition chips used in last acquisition

29 4 bytes - Analyzer ID (0 for HP 16554A, 1 for the HP 16555A/D)

The values stored in the preamble represent the captured data currently
stored in this structure and not the current analyzer configuration. For
example, the mode of the data (bytes 33 and 103) may be STATE with
tagging, while the current setup of the analyzer is TIMING.

The next 70 bytes are for Analyzer 1 Data Information.

33 4 bytes - Machine data mode, one of the following decimal values:
−1 = off
0 = 70 MHz (HP 16554A) or 100 MHz (HP 16555A/D) State data, no tags
1 = 70 MHz (HP 16554A) or 100 MHz (HP 16555A/D) State data with tags
2 = 70 MHz (HP 16554A) or 100 MHz (HP 16555A/D) State data with tags
3 = Fast State data, no tags (HP 16555A/D)
4 = Fast State data with tags (HP 16555A/D)
5 = Fast State data with tags (HP 16555A/D)
10 = conventional timing data on all channels
13 = conventional timing data on half channels

State data includes data acquired by State Compare and SPA machine types.
There is no change in the data format.

DATA and SETup Commands
Data Preamble Description

17–7

Byte Position

37 4 bytes - List of pods in this analyzer, where a binary 1 indicates that the
corresponding pod is assigned to this analyzer

bit 31 bit 30 bit 29 bit 28 bit 27 bit 26 bit 25 bit 24

unused unused unused unused unused unused unused unused

bit 23 bit 22 bit 21 bit 20 bit 19 bit 18 bit 17 bit 16

unused unused clkpd1 unused unused unused unused unused

bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8

unused unused unused Pod 12 Pod 11 Pod 10 Pod 9 Pod 8

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

Pod 7 Pod 6 Pod 5 Pod 4 Pod 3 Pod 2 Pod 1 unused

Example xxxx xxxx xx1x xxxx xxx0 0000 0001 111x indicates that data
pods 1 through 4 and clock pod 1 are assigned to this analyzer (x = unused).

41 4 bytes - Master chip for this analyzer.

45 4 bytes - Maximum hardware memory depth available for this analyzer.

49 4 bytes - Unused.

53 8 bytes - Sample period in picoseconds (timing only).

Example The following 64 bits represent a sample period of 8,000 picoseconds
(8 nanoseconds):

00000000 00000000 00000000 00000000 00000000 00000000 00011111 01000000

DATA and SETup Commands
Data Preamble Description

17–8

Byte Position

61 4 bytes - Tag type for state mode in one of the following decimal values:
0 = off
1 = time tags
2 = state tags

65 8 bytes - Trigger offset. The time offset (in picoseconds) from when this
analyzer is triggered and when this analyzer provides an output trigger to the
IMB or port out. The value for one analyzer is always zero and the value for
the other analyzer is the time between the triggers of the two analyzers.

73 30 bytes - Unused

103 70 bytes - The next 70 bytes are for Analyzer 2 Data Information. They are
organized in the same manner as Analyzer 1 above, but they occupy bytes
103 through 172.

173 88 bytes - Number of valid rows of data (starting at byte 591) for each pod.

Bytes 173 through 212 Unused

Bytes 213 through 216 contain the number of valid rows of data for
pod 4 of the highest card slot expansion card in a three-card module.

Bytes 217 through 220 contain the number of valid rows of data for
pod 3 of the highest cardslot expansion card in a three-card module.

Bytes 221 through 224 contain the number of valid rows of data for
pod 2 of the highest cardslot expansion card in a three-card module.

Bytes 225 through 228 contain the number of valid rows of data for
pod 1 of the highest cardslot expansion card in a three-card module.

Bytes 229 through 232 contain the number of valid rows of data for
pod 4 of either the expansion card in a two-card module, or a middle
cardslot expansion card in a three-card module.

Bytes 233 through 236 contain the number of valid rows of data for
pod 3 of either the expansion card in a two-card module, or a middle
cardslot expansion card in a three-card module.

Bytes 237 through 240 contain the number of valid rows of data for
pod 2 of either the expansion card in a two-card module, or a middle
cardslot expansion card in a three-card module.

DATA and SETup Commands
Data Preamble Description

17–9

Byte Position Bytes 241 through 244 contain the number of valid rows of data for
pod 1 of either the expansion card in a two-card module, or a middle
cardslot expansion card in a three-card module.

Bytes 245 through 248 contain the number of valid rows of data for
pod 4 of the master card.

Bytes 249 through 252 contain the number of valid rows of data for
pod 3 of the master card.

Bytes 253 through 256 contain the number of valid rows of data for
pod 2 of the master card.

Bytes 257 through 260 contain the number of valid rows of data for
pod 1 of the master card.

261 88 bytes - The trigger point location for each pod, organized in the same way
as the data rows (bytes 173 – 260). These rows start at 0, which represents
the first sample stored for a pod. Bytes 345 through 348 contain the trigger
location for pod 1.

Example If bytes 341 and 344 contain the value 101008, the data in row 101008 for
that pod is the trigger. There are 101008 rows of pre-trigger data.

349 234 bytes - Unused

583 2 bytes - Real Time Clock (RTC) year at time of acquisition. Year value is
equal to the year minus 1990.

585 2 bytes - RTC month (1 = January . . . 12 = December) at time of acquisition.

586 1 byte - RTC day of the month at time of acquisition.

587 1 byte - RTC day of the week at time of acquisition.

588 1 byte - RTC hour (0 through 23) at time of acquisition.

589 1 byte - RTC minutes at time of acquisition.

590 1 byte - RTC seconds at time of acquisition.

DATA and SETup Commands
Data Preamble Description

17–10

Acquisition Data Description

The acquisition data section consists of a variable number of bytes depending
on the number of cards in the configuration, the acquisition mode, and the
state tag setting. The data is grouped in rows of bytes with one sample from
each pod in a single row. The width of the row is based on the number of
cards in the system. Each card has four pods with two bytes of data per pod.

The clock pod data (four bytes) is always first in the data row. The first two
bytes of the clock pod data are unused. The total number of bytes in a data
row for the various card count configurations is:

Cards Clock Pod Bytes Data Bytes Total Bytes Per Row
1 4 bytes 8 bytes 12 bytes
2 4 bytes 16 bytes 20 bytes
3 4 bytes 24 bytes 28 bytes
The sequence of pod data within a row is the same as shown above for the
number of valid rows per pod. The number of valid rows per pod can be
determined by examining bytes 253 through 256 for pod pair 3/4 of the
master card and bytes 257 through 260 for pod pair 1/2 of the master card.
The number of valid rows for other pod pairs is contained in bytes 213
through 252.

A one-card configuration has the following data arrangement (per row):

<clk pod 1> <pod 4> <pod 3> <pod 2> <pod 1>

A two-card configuration has the following data arrangement (per row):

 <-----expansion card ------><-------master card-------->

<clk 1><pod 4><pod 3><pod 2><pod 1><pod 4><pod 3><pod 2><pod 1>

A three-card configuration has the following data arrangement per row:

 <- high expander -><-lower expander -><---master card--->

<clk 1><pod 4>. . .<pod 1><pod 4>. . .<pod 1><pod 4>. . .<pod 1>

If the data block is unloaded without first using the DBLock command to specify
UNPacked data, this data block description does not apply.

Unused pods always have data, however it is invalid and should be ignored.

DATA and SETup Commands
Acquisition Data Description

17–11

The depth of the data array is equal to the pod with the greatest number of
rows of valid data. If a pod has fewer rows of valid data than the data array,
unused rows will contain invalid data that should be ignored.

The clock pod contains data mapped according to the clock designator and
the board (see below). Unused clock lines should be ignored.

 exp2 exp1 mstr
Clock Pod 1 < xxxx MLKJ MLKJ MLKJ >

Where x = not used, mstr = master card, exp# = expander card number.

Byte Position

591 2 bytes - Not used (clock pod 2).

593 1 byte - MSB of clock pod 1.

594 1 byte - LSB of clock pod 1.

595 1 byte - MSB of data pod 4, board x.

596 1 byte - LSB of data pod 4, board x.

597 1 byte - MSB of data pod 3, board x.

598 1 byte - LSB of data pod 3, board x.

599 1 byte - MSB of data pod 2, board x.

600 1 byte - LSB of data pod 2, board x.

601 1 byte - MSB of data pod 1, board x.

602 1 byte - LSB of data pod 1, board x.

.

.

Byte n where n = 591 + (bytes per row × maximum number of valid rows) - 1

DATA and SETup Commands
Acquisition Data Description

17–12

Example A three-card configuration with 516096 valid rows

First data byte = byte 591

Last data byte = 14,451,278 [591 + (28 × 516096) - 1]

Time Tag Data Description

If tags are enabled for one or both analyzers, the tag data follows the
acquisition data. The first byte of the tag data is determined as follows:

 591 + (bytes per row × maximum number of valid rows)

Each row of the tag data array consists of one (single analyzer with state
tags) or two (both analyzers with state tags) eight-byte tag values per row.
When both analyzers have state tags enabled, the first tag value in a row
belongs to Machine 1 and the second tag value belongs to Machine 2.

If the tag value is a time tag, the number is an integer representing time in
picoseconds. If the tag value is a state tag, the number is an integer state
count.

The total size of the tag array is 8 or 16 bytes per row times the greatest
number of valid rows.

SYSTem:SETup

Command :SYStem:SETup <block data>

The SYStem:SETup command configures the logic analyzer module as
defined by the block data sent by the controller. It is not affected by DBLock.

There are three data sections which are always returned. The strings which
are included in the section header are:

"CONFIG "
"DISPLAY1 "
"BIG_ATTRIB"

DATA and SETup Commands
Time Tag Data Description

17–13

Additionally, the following sections may also be included, depending on what
is available:

"SYMBOLS A "
"SYMBOLS B "
"INVASM A "
"INVASM B "

<block data> <block length specifier><section>...

<block length
specifier

#8<length>

<length> the total length of all sections in byte format (must be represented with 8
digits)

<section> <section header><section data>

<section
header>

16 bytes in the following format:
10 bytes for the section name
1 byte reserved
1 byte for the module ID code (34 for the HP 16554A and HP 16555A/D

 logic analyzer)
4 bytes for the length of the section data in bytes

<section data> format depends on the type of data. The total length of a section is 16 (for
the section header) plus the length of the section data. So when calculating
the value for <length> , don’t forget to include the length of the section
headers. The format of the setup block is not affected by the DBLock
command setting.

Example OUTPUT XXX;"SETUP" <block data>

Query :SYStem:SETup?

The SYStem:SETup query returns a block of data that contains the current
configuration to the controller.

Returned Format [:SYStem:SETup] <block data><NL>

DATA and SETup Commands
SYSTem:SETup

17–14

Part 3

18 Programming Examples

Programming Examples

18

Programming Examples

Introduction

This chapter contains short, usable, and tested programs that cover
the most asked for examples. The examples are written in HP BASIC
6.0.

• Making a timing analyzer measurement

• Making a state analyzer measurement

• Making a state compare analyzer measurement

• Transferring logic analyzer configuration between the logic analyzer
and the controller

• Checking for measurement completion

• Sending queries to the logic analyzer

18–2

Making a Timing Analyzer Measurement

This program sets up the logic analyzer to make a simple timing analyzer
measurement. This example can be used with E2422-60004 Logic Analyzer
Training board to acquire and display the output of the ripple counter. It can
also be modified to make any timing analyzer measurement.

10 ! ****************** TIMING ANALYZER EXAMPLE ******************
20 ! for the HP 16554A/HP 16555A/HP 16555D Logic Analyzer
30 !
40 ! **
50 ! Select the module slot in which the HP 16554A/HP 16555A/D is installed.
60 ! In this example, it is in slot B of the mainframe.
70 !
80 OUTPUT 707;":SELECT 2"
90 !
100 ! **
110 ! Name Machine 1 "TIMING," configure Machine 1 as a timing analyzer,
120 ! and assign pod 1 to Machine 1.
130 !
140 OUTPUT 707;":MACH1:NAME ’TIMING’"
150 OUTPUT 707;":MACH1:TYPE TIMING"
160 OUTPUT 707;":MACH1:ASSIGN 1"
170 !
180 ! **
190 ! Make a label "COUNT," give the label a positive polarity, and
200 ! assign the lower 8 bits.
210 !
220 OUTPUT 707;":MACHINE1:TFORMAT:REMOVE ALL"
230 OUTPUT 707;":MACH1:TFORMAT:LABEL ’COUNT’,POS,0,0,#B0000000011111111"
240 !
250 ! **
260 ! Specify FF hex for resource term A, which is the default
270 ! trigger term for the timing analyzer.
280 !
290 OUTPUT 707;":MACH1:TTRACE:TERM A, ’COUNT’, ’#HFF’"
300 !
310 ! ***
320 ! Remove any previously inserted labels, insert the "COUNT"
330 ! label, change the seconds-per-division to 100 ns, and display the
340 ! waveform menu.
350 !

Programming Examples
Making a Timing Analyzer Measurement

18–3

360 OUTPUT 707;":MACH1:TWAVEFORM:REMOVE"
370 OUTPUT 707;":MACH1:TWAVEFORM:INSERT ’COUNT’, ALL"
380 OUTPUT 707;":MACH1:TWAVEFORM:RANGE 1E-6"
390 OUTPUT 707;":MENU 2,5"
400 !
410 ! **
420 ! Run the timing analyzer in single mode.
430 !
440 OUTPUT 707;":RMODE SINGLE"
450 OUTPUT 707;":START"
460 !
470 ! **
480 ! Set the marker mode (MMODE) to time so that patterns are available
490 ! for marker measurements. Place the X-marker on 03 hex and the O-
500 ! marker on 07 hex. Then tell the timing analyzer to find the first
510 ! occurrence of 03h after the trigger and the first occurrence of 07h
520 ! after the X-marker is found.
530 !
540 OUTPUT 707;":MACHINE1:TWAVEFORM:MMODE PATTERN"
550 !
560 OUTPUT 707;":MACHINE1:TWAVEFORM:XPATTERN ’COUNT’,’#H03’"
570 OUTPUT 707;":MACHINE1:TWAVEFORM:OPATTERN ’COUNT’,’#H07’"
580 !
590 OUTPUT 707;":MACHINE1:TWAVEFORM:XCONDITION ENTERING"
600 OUTPUT 707;":MACHINE1:TWAVEFORM:OCONDITION ENTERING"
610 !
620 OUTPUT 707;":MACHINE1:TWAVEFORM:XSEARCH +1, TRIGGER"
625 WAIT 2
630 OUTPUT 707;":MACHINE1:TWAVEFORM:OSEARCH +1, XMARKER"
635 WAIT 2
640 !
650 ! ***
660 ! Turn the longform and headers on, dimension a string for the query
670 ! data, send the XOTIME query and print the string containing the
680 ! XOTIME query data.
690 !
700 OUTPUT 707;":SYSTEM:LONGFORM ON"
710 OUTPUT 707;":SYSTEM:HEADER ON"
720 !
730 DIM Mtime$[100]
740 OUTPUT 707;":MACHINE1:TWAVEFORM:XOTIME?"
750 ENTER 707;Mtime$
760 PRINT Mtime$
770 END

Programming Examples
Making a Timing Analyzer Measurement

18–4

Making a State Analyzer Measurement

This state analyzer program selects the HP 16554A/HP 16555A/HP 16555D
module, displays the configuration menu, defines a state machine, displays
the state trigger menu, sets a state trigger for multilevel triggering. This
program then starts a single acquisition measurement while checking for
measurement completion.

This program is written so that you can run it with the HP E2433-60004 Logic
Analyzer Training Board. This example is the same as the "Multilevel State
Triggering" example in chapter 9 of the HP E2433 Logic Analyzer Training

Kit.

10 ! ******************** STATE ANALYZER EXAMPLE *************************
20 ! for the HP 16554A/HP 16555A/HP 16555D Logic Analyzer
30 !
40 ! ************* SELECT THE HP 16554/HP 16555 MODULE *******************
50 ! Select slot in which the HP 16554A/HP 16555A/HP 16555D is installed.
60 ! In this example, it is in slot B of the mainframe.
70 !
80 OUTPUT 707;":SELECT 2"
90 !
100 ! ******************** CONFIGURE THE STATE ANALYZER **********************
110 ! Name Machine 1 "STATE," configure Machine 1 as a state analyzer, assign
120 ! pod 1 to Machine 1, and display System Configuration menu of the
130 ! HP 16554A/HP 16555A/HP 16555D.
140 !
150 OUTPUT 707;":MACHINE1:NAME ’STATE’"
160 OUTPUT 707;":MACHINE1:TYPE STATE"
170 OUTPUT 707;":MACHINE1:ASSIGN 1"
180 OUTPUT 707;":MENU 2,0"
190 !
200 ! ******************* SETUP THE FORMAT SPECIFICATION *********************
210 ! Make a label "SCOUNT," give the label a positive polarity, and
220 ! assign the lower 8 bits.
230 !
240 OUTPUT 707;":MACHINE1:SFORMAT:REMOVE ALL"
250 OUTPUT 707;":MACHINE1:SFORMAT:LABEL ’SCOUNT’, POS, 0,0,255"
260 !

Programming Examples
Making a State Analyzer Measurement

18–5

270 ! ******************* SETUP THE TRIGGER SPECIFICATION ********************
280 ! The trigger specification will use five sequence levels with the trigger
290 ! level on level four. Resource terms A through E, and RANGE1 will be
300 ! used to store only desired counts from the 8-bit ripple counter.
310 !
320 ! Display the state trigger menu.
330 !
340 OUTPUT 707;":MENU 2,3"
350 !
360 ! Create a 5-level trigger specification with the trigger on the
370 ! fourth level.
380 !
390 OUTPUT 707;":MACHINE1:STRIGGER:SEQUENCE 5,4"
400 !
410 ! Define pattern terms A, B, C, D, and E to be 11, 22, 33, 44 and 59
420 ! decimal respectively.
430 !
440 OUTPUT 707;":MACHINE1:STRIGGER:TERM A,’SCOUNT’,’11’"
450 OUTPUT 707;":MACHINE1:STRIGGER:TERM B,’SCOUNT’,’22’"
460 OUTPUT 707;":MACHINE1:STRIGGER:TERM C,’SCOUNT’,’33’"
470 OUTPUT 707;":MACHINE1:STRIGGER:TERM D,’SCOUNT’,’44’"
480 OUTPUT 707;":MACHINE1:STRIGGER:TERM E,’SCOUNT’,’59’"
490 !
500 ! Define a Range having a lower limit of 50 and an upper limit of 58.
510 !
520 OUTPUT 707;":MACHINE1:STRIGGER:RANGE1 ’SCOUNT’,’50’,’58’"
530 !
540 ! ***************** CONFIGURE SEQUENCE LEVEL 1 ***************************
550 ! Store NOSTATE in level 1 and Then find resource term "A" once.
560 !
570 OUTPUT 707;":MACHINE1:STRIGGER:STORE1 ’NOSTATE’"
580 OUTPUT 707;":MACHINE1:STRIGGER:FIND1 ’A’,1"
590 !
600 ! ***************** CONFIGURE SEQUENCE LEVEL 2 ***************************
610 ! Store RANGE1 in level 2 and Then find resource term "E" once.
620 !
630 OUTPUT 707;":MACHINE1:STRIGGER:STORE2 ’IN_RANGE1’"
640 OUTPUT 707;":MACHINE1:STRIGGER:FIND2 ’E’,1"
650 !
660 ! ***************** CONFIGURE SEQUENCE LEVEL 3 ***************************
670 ! Store NOSTATE in level 3 and Then find term "B" once.
680 !
690 OUTPUT 707;":MACHINE1:STRIGGER:STORE3 ’NOSTATE’"
700 OUTPUT 707;":MACHINE1:STRIGGER:FIND3 ’B’,1"
710 !

Programming Examples
Making a State Analyzer Measurement

18–6

720 ! ***************** CONFIGURE SEQUENCE LEVEL 4 ***************************
730 ! Store a combination of resource terms (C or D or RANGE1) in level 4 and
740 ! Then Trigger on resource term "E."
750 !
760 OUTPUT 707;":MACHINE1:STRIGGER:STORE4 ’(C OR D OR IN_RANGE1)’"
770 !
780 ! ************************ NOTE ***********************
790 ! The FIND command selects the trigger in the
800 ! sequence level specified as the trigger level.
810 ! ***
820 !
830 OUTPUT 707;":MACHINE1:STRIGGER:FIND4 ’E’,1"
840 !
850 ! ***************** CONFIGURE SEQUENCE LEVEL 5 ***************************
860 ! Store anystate on level 5
870 !
880 OUTPUT 707;":MACHINE1:STRIGGER:STORE5 ’ANYSTATE’"
890 !
900 ! ***************** START ACQUISITION ************************************
910 ! Place the logic analyzer in single acquisition mode, then determine when
920 ! the acquisition is complete.
930 !
940 OUTPUT 707;":RMODE SINGLE"
950 !OUTPUT 707;"*CLS"
960 OUTPUT 707;":START"
970 !
980 ! ****************** CHECK FOR MEASUREMENT COMPLETE **********************
990 ! Enable the MESR register and query the register for a measurement
1000 ! complete condition.
1010 !
1020 OUTPUT 707;":SYSTEM:HEADER OFF"
1030 OUTPUT 707;":SYSTEM:LONGFORM OFF"
1040 !
1050 Status=0
1060 OUTPUT 707;":MESE2 1"
1070 OUTPUT 707;":MESR2?"
1080 ENTER 707;Status
1090 !
1100 ! Print the MESR register status.
1110 !
1120 CLEAR SCREEN
1130 PRINT "Measurement complete status is ";Status AND 1
1140 PRINT "0 = not complete, 1 = complete"
1150 ! Repeat the MESR query until measurement is complete.
1160 WAIT 1

Programming Examples
Making a State Analyzer Measurement

18–7

1170 IF (Status AND 1)=1 THEN GOTO 1190
1180 GOTO 1070
1190 PRINT TABXY(30,15);"Measurement is complete"
1200 !
1210 ! ************************ VIEW THE RESULTS *****************************
1220 ! Display the State Listing and select a line number in the listing that
1230 ! allows you to see the beginning of the listing on the logic analyer
1240 ! display.
1250 !
1260 OUTPUT 707;":MACHINE1:SLIST:COLUMN 1, ’SCOUNT’, DECIMAL"
1270 OUTPUT 707;":MENU 2,7"
1280 OUTPUT 707;":MACHINE1:SLIST:LINE -16"
1290 !
1300 END

Programming Examples
Making a State Analyzer Measurement

18–8

Making a State Compare Analyzer Measurement

This program example acquires a state listing, copies the listing to the
compare listing, acquires another state listing, and compares both listings to
find differences.

This program is written so that you can run it with the HP E2433-60004 Logic
Analyzer Training Board. This example is the same as the "State Compare"
example in chapter 3 of the HP E2433 Logic Analyzer Training Kit.

10 ! *********** STATE COMPARE EXAMPLE ********************************
20 ! for the HP 16554A/HP 16555A/HP 16555D Logic Analyzer
30 !
40 !
50 !******* SELECT THE HP 16554A/HP 16555A/HP 16555D MODULE ***********
60 ! Select the slot in which the module is installed.
70 ! In this example, it is in slot B of the mainframe.
80 !
90 OUTPUT 707;":SELECT 2"
100 !
110 !************** CONFIGURE THE STATE ANALYZER ***********************
120 ! Name Machine 1 "STATE," configure Machine 1 as a compare state
130 ! analyzer, and assign pod 1 to Machine 1.
140 !
150 OUTPUT 707;":MACHINE1:NAME ’STATE’"
160 OUTPUT 707;":MACHINE1:TYPE COMPARE"
170 OUTPUT 707;":MACHINE1:ASSIGN 1"
180 !
190 ! **
200 ! Remove all labels previously set up, make a label "SCOUNT," specify
210 ! positive logic, and assign the lower 8 bits of pod 1 to the label.
220 !
230 OUTPUT 707;":MACHINE1:SFORMAT:REMOVE ALL"
240 OUTPUT 707;":MACHINE1:SFORMAT:LABEL ’SCOUNT’, POS, 0,0,255"
250 !
260 ! **
270 ! Make the "J" clock the Master clock and specify the falling edge.
280 !
290 OUTPUT 707;":MACHINE1:SFORMAT:MASTER J, FALLING"
300 !

Programming Examples
Making a State Compare Analyzer Measurement

18–9

310 ! **
320 ! Specify two sequence levels, the trigger sequence level, specify
330 ! FF hex for the "a" term which will be the trigger term, and store
340 ! no states until the trigger is found.
350 !
360 OUTPUT 707;":MACHINE1:STRIGGER:SEQUENCE 2,1"
370 OUTPUT 707;":MACHINE1:STRIGGER:TERM A,’SCOUNT’,’#HFF’"
380 OUTPUT 707;":MACHINE1:STRIGGER:STORE1 ’NOSTATE’"
390 OUTPUT 707;":MENU 2,3"
400 !
410 ! **
420 ! Change the displayed menu to the state listing and start the state
430 ! analyzer in repetitive mode.
440 !
450 OUTPUT 707;":MENU 2,7"
460 OUTPUT 707;":RMODE REPETITIVE"
470 OUTPUT 707;":START"
480 !
490 ! **
500 ! The logic analyzer is now running in the repetitive mode
510 ! and will remain in repetitive until the STOP command is sent.
520 !
530 PRINT "The logic analyzer is now running in the repetitive mode"
540 PRINT "and will remain in repetitive until the STOP command is sent."
550 PRINT
560 PRINT "Press CONTINUE"
570 PAUSE
580 !
590 !***
600 ! Stop the acquisition and copy the acquired data to the compare reference
610 ! listing.
620 !
630 OUTPUT 707;":STOP"
640 OUTPUT 707;":MENU 2,10"
650 OUTPUT 707;":MACHINE1:COMPARE:MENU REFERENCE"
660 OUTPUT 707;":MACHINE1:COMPARE:COPY"
670 !
680 ! The logic analyzer acquistion is now stopped, the Compare menu
690 ! is displayed, and the data is now in the compare reference
700 ! listing.
710 !

Programming Examples
Making a State Compare Analyzer Measurement

18–10

720 !***
730 ! Display line 4090 of the compare listing and start the analyzer
740 ! in a repetitive mode.
750 !
760 OUTPUT 707;":MACHINE1:COMPARE:LINE 4090"
770 OUTPUT 707;":START"
780 !
790 ! Line 4090 of the listing is now displayed at center screen.
810 ! In this example, the states are stable. However, in some
820 ! cases, the end points of the listing may vary thus causing
830 ! a false failure in compare. To eliminate this problem, a
840 ! partial compare can be specified to provide predictable end
850 ! points of the data.
860 !
870 PRINT "Press CONTINUE to send the STOP command."
880 PAUSE
890 OUTPUT 707;":STOP"
900 !
910 !**
920 ! The end points of the compare can be fixed to prevent false failures.
930 ! In addition, you can use partial compare to compare only sections
940 ! of the state listing you are interested in comparing.
950 !
960 OUTPUT 707;":MACHINE1:COMPARE:RANGE PARTIAL, 0, 508"
970 !
980 ! The compare range is now from line 0 to +508
990 !
1000 !**
1010 ! Change the Glitch jumper settings on the training board so that the
1020 ! data changes, reacquire the data and compare which states are different.
1030 PRINT "Change the glitch jumper settings on the training board so that "
1040 PRINT "the data changes, reacquire the data and compare which states are "
1041 PRINT "different."
1050 !
1060 PRINT "Press CONTINUE when you have finished changing the jumper."
1070 !
1080 PAUSE
1090 !

Programming Examples
Making a State Compare Analyzer Measurement

18–11

1100 !**
1110 ! Start the logic analyzer to acquire new data and then stop it to compare
1120 ! the data. When the acquistion is stopped, the Compare Listing Menu will
1130 ! be displayed.
1140 !
1150 OUTPUT 707;":START"
1155 WAIT 2
1160 OUTPUT 707;":STOP"
1170 OUTPUT 707;":MENU 2,10"
1180 !
1190 !**
1200 ! Dimension strings in which the compare find query (COMPARE:FIND?)
1210 ! enters the line numbers and error numbers.
1220 !
1230 DIM Line$[20]
1240 DIM Error$[4]
1250 DIM Comma$[1]
1260 !
1270 ! ***
1280 ! Display the Difference listing.
1290 !
1300 OUTPUT 707;":MACHINE1:COMPARE:MENU DIFFERENCE"
1310 !
1320 ! **
1330 ! Loop to query all 508 possible errors.
1340 !
1350 FOR Error=1 TO 508
1360 !
1370 ! Read the compare differences
1380 !
1390 OUTPUT 707;":MACHINE1:COMPARE:FIND? " & VAL$(Error)
1400 !
1410 ! **
1420 ! Format the Error$ string data for display on the controller screen.
1430 !
1440 IF Error>99 THEN GOTO 1580
1450 IF Error>9 THEN GOTO 1550
1460 !
1470 ENTER 707 USING "#,1A";Error$
1480 ENTER 707 USING "#,1A";Comma$
1490 ENTER 707 USING "K";Line$
1500 Error_return=IVAL(Error$,10)
1510 IF Error_return=0 THEN GOTO 1820
1520 !
1530 GOTO 1610

Programming Examples
Making a State Compare Analyzer Measurement

18–12

1540 !
1550 ENTER 707 USING "#,2A";Error$
1555 ENTER 707 USING "#,1A";Comma$
1560 ENTER 707 USING "K";Line$
1570 GOTO 1610
1580 !
1590 ENTER 707 USING "#,3A";Error$
1595 ENTER 707 USING "#,1A";Comma$
1600 ENTER 707 USING "K";Line$
1610 !
1620 ! **
1630 ! Test for the last error. The error number of the last error is the same
1640 ! as the error number of the first number after the last error.
1650 !
1660 Error_line=IVAL(Line$,10)
1670 IF Error_line=Error_line2 THEN GOTO 1780
1680 Error_line2=Error_line
1690 !
1700 ! **
1710 ! Print the error numbers and the corresponding line numbers on the
1720 ! controller screen.
1730 !
1740 PRINT "Error number ",Error," is on line number ",Error_line
1750 !
1760 NEXT Error
1770 !
1780 PRINT
1790 PRINT
1800 PRINT "Last error found"
1810 GOTO 1850
1820 PRINT "No errors found"
1830 !
1840 !
1850 END

Programming Examples
Making a State Compare Analyzer Measurement

18–13

Transferring the Logic Analyzer Configuration

This program uses the SYSTem:SETup query to transfer the configuration of
the logic analyzer to your controller. This program also uses the
SYSTem:SETup command to transfer a logic analyzer configuration from the
controller back to the logic analyzer. The configuration data will set up the
logic analyzer according to the data. It is useful for getting configurations for
setting up the logic analyzer by the controller. The SYSTem:SETup
command differs from the SYSTem:DATA command because it only transfers
the configuration and not acquired data.

10 ! ****************** SETUP COMMAND AND QUERY EXAMPLE ********************
20 ! for the HP 16554A/HP 16555A/HP 16555D
30 !
40 ! ********************* CREATE TRANSFER BUFFER *************************
50 ! Create a buffer large enough for the block data. See "Sending Queries
51 ! to the Logic Analyzer" for how to calculate buffer size for data. This
52 ! buffer is only big enough for setup information.
53 !
60 ASSIGN @Buff TO BUFFER [320000]
70 !
80 ! **************** INITIALIZE HPIB DEFAULT ADDRESS *********************
90 !
100 REAL Address
110 Address=707
120 ASSIGN @Comm TO Address
130 !
140 CLEAR SCREEN
150 !
160 ! ************* INTITIALIZE VARIABLE FOR NUMBER OF BYTES *****************
170 ! The variable "Numbytes" contains the number of bytes in the buffer.
180 !
190 REAL Numbytes
200 Numbytes=0
210 !
220 ! ************** RE-INITIALIZE TRANSFER BUFFER POINTERS ******************
230 !
240 CONTROL @Buff,3;1
250 CONTROL @Buff,4;0
260 !

Programming Examples
Transferring the Logic Analyzer Configuration

18–14

270 ! *********************** SEND THE SETUP QUERY **************************
280 OUTPUT 707;":SYSTEM:HEADER ON"
290 OUTPUT 707;":SYSTEM:LONGFORM ON"
300 OUTPUT @Comm;":SELECT 2"
310 OUTPUT @Comm;":SYSTEM:SETUP?"
320 !
330 ! ******************** ENTER THE BLOCK SETUP HEADER *********************
340 ! Enter the block setup header in the proper format.
350 !
360 ENTER @Comm USING "#,B";Byte
370 PRINT CHR$(Byte);
380 WHILE Byte<>35
390 ENTER @Comm USING "#,B";Byte
400 PRINT CHR$(Byte);
410 END WHILE
420 ENTER @Comm USING "#,B";Byte
430 PRINT CHR$(Byte);
440 Byte=Byte-48
450 IF Byte=1 THEN ENTER @Comm USING "#,D";Numbytes
460 IF Byte=2 THEN ENTER @Comm USING "#,DD";Numbytes
470 IF Byte=3 THEN ENTER @Comm USING "#,DDD";Numbytes
480 IF Byte=4 THEN ENTER @Comm USING "#,DDDD";Numbytes
490 IF Byte=5 THEN ENTER @Comm USING "#,DDDDD";Numbytes
500 IF Byte=6 THEN ENTER @Comm USING "#,DDDDDD";Numbytes
510 IF Byte=7 THEN ENTER @Comm USING "#,DDDDDDD";Numbytes
520 IF Byte=8 THEN ENTER @Comm USING "#,DDDDDDDD";Numbytes
530 PRINT Numbytes
540 !
550 ! ******************** TRANSER THE SETUP ********************************
560 ! Transfer the setup from the logic analyzer to the buffer.
570 !
580 TRANSFER @Comm TO @Buff;COUNT Numbytes,WAIT
600 !
610 ENTER @Comm USING "-K";Length$
620 PRINT "LENGTH of Length string is";LEN(Length$)
630 !
640 PRINT "**** GOT THE SETUP **** Press Continue when ready"
650 PAUSE

Programming Examples
Transferring the Logic Analyzer Configuration

18–15

660 ! ********************* SEND THE SETUP **********************************
670 ! Make sure buffer is not empty.
680 !
690 IF Numbytes=0 THEN
700 PRINT "BUFFER IS EMPTY"
710 GOTO 1170
720 END IF
730 !
740 ! ********************* SEND THE SETUP COMMAND **************************
750 ! Send the Setup command
760 !
770 OUTPUT @Comm USING "#,15A";":SYSTEM:SETUP #"
780 PRINT "SYSTEM:SETUP command has been sent. Press Continue to send setup"
790 PAUSE
800 !
810 ! ********************* SEND THE BLOCK SETUP ****************************
820 ! Send the block setup header to the module in the proper
821 ! format.
830 !
840 Byte=LEN(VAL$(Numbytes))
850 OUTPUT @Comm USING "#,B";(Byte+48)
860 IF Byte=1 THEN OUTPUT @Comm USING "#,A";VAL$(Numbytes)
870 IF Byte=2 THEN OUTPUT @Comm USING "#,AA";VAL$(Numbytes)
880 IF Byte=3 THEN OUTPUT @Comm USING "#,AAA";VAL$(Numbytes)
890 IF Byte=4 THEN OUTPUT @Comm USING "#,AAAA";VAL$(Numbytes)
900 IF Byte=5 THEN OUTPUT @Comm USING "#,AAAAA";VAL$(Numbytes)
910 IF Byte=6 THEN OUTPUT @Comm USING "#,AAAAAA";VAL$(Numbytes)
920 IF Byte=7 THEN OUTPUT @Comm USING "#,AAAAAAA";VAL$(Numbytes)
930 IF Byte=8 THEN OUTPUT @Comm USING "#,AAAAAAAA";VAL$(Numbytes)
940 !
950 ! *********************** SAVE BUFFER POINTERS *************************
960 ! Save the transfer buffer pointer so it can be restored after the
970 ! transfer.
980 !
990 STATUS @Buff,5;Streg
1000 !
1010 ! ************ TRANSFER SETUP TO THE MODULE ****************
1020 ! Transfer the setup from the buffer to the HP 16554A/HP 16555A/HP 16555D.
1030 !
1040 TRANSFER @Buff TO @Comm;COUNT Numbytes,WAIT
1050 !

Programming Examples
Transferring the Logic Analyzer Configuration

18–16

1060 ! ********************** RESTORE BUFFER POINTERS ***********************
1070 ! Restore the transfer buffer pointer
1080 !
1090 CONTROL @Buff,5;Streg
1100 !
1110 ! ******************** SEND TERMINATING LINE FEED **********************
1120 ! Send the terminating linefeed to properly terminate the setup string.
1130 !
1140 OUTPUT @Comm;""
1150 !
1160 PRINT "**** SENT THE SETUP **** Program complete."
1170 END

Programming Examples
Transferring the Logic Analyzer Configuration

18–17

Checking for Measurement Completion

This program can be appended to or inserted into another program when you
need to know when a measurement is complete. If it is at the end of a
program it will tell you when measurement is complete. If you insert it into a
program, it will halt the program until the current measurement is complete.
In this example, the module installed in slot B is being checked for
measurement complete.

This program is also in the state analyzer example program in "Making a State
Analyzer Measurement" on page 18-5. It is included in the state analyzer
example program to show how it can be used in a program to halt the
program until measurement is complete.

420 ! ****************** CHECK FOR MEASUREMENT COMPLETE **********************
430 ! Enable the MESR register and query the register for a measurement
440 ! complete condition.
450 !
460 OUTPUT 707;":SYSTEM:HEADER OFF"
470 OUTPUT 707;":SYSTEM:LONGFORM OFF"
480 !
490 Status=0
500 OUTPUT 707;":MESE2 1" ! Enables register for slot B
510 OUTPUT 707;":MESR2?" ! Queries register for slot B
520 ENTER 707;Status
530 !
540 ! Print the MESR register status.
550 !
560 CLEAR SCREEN
570 PRINT "Measurement complete status is ";Status AND 1
580 PRINT "0 = not complete, 1 = complete"
590 ! Repeat the MESR query until measurement is complete.
600 WAIT 1
610 IF (Status AND 1)=1 THEN GOTO 630
620 GOTO 510
630 PRINT TABXY(30,15);"Measurement is complete"
640 !
650 END

Programming Examples
Checking for Measurement Completion

18–18

Sending Queries to the Logic Analyzer

This program example contains the steps required to send a query to the
logic analyzer. Sending the query alone only puts the requested information
in an output buffer of the logic analyzer. You must follow the query with an
ENTER statement to transfer the query response to the controller. When the
query response is sent to the logic analyzer, the query is properly terminated
in the logic analyzer. If you send the query but fail to send an ENTER
statement, the logic analyzer will display the error message "Query
Interrupted" when it receives the next command from the controller, and the
query response is lost.

10 ! ****************** DATA COMMAND AND QUERY EXAMPLE ********************
20 ! for the HP 16554A/HP 16555A/HP 16555D
30 !
40 ! ********************* CREATE TRANSFER BUFFER *************************
50 !
51 ! NOTE WELL! The data from the 16554A may be up to 19Mbytes long!
52 ! NOTE WELL! The data from the 16555A may be up to 38Mbytes long!
53 ! NOTE WELL! The data from the 16555D may be up to 76Mbytes long!
54 ! You may estimate the size of the buffer needed using the following
55 ! formula.
56 !
57 ! LET Cards = Number of 16554/16555 cards in your module.
58 ! LET Samples = Memory Length (see Acquisition Control in Trigger Menu)
59 ! LET BufferSize = (12 * Samples * Boards) + 1000
60 !
61 ! For example, a 1 board system with a full memory length of 1040384
62 ! requires (12 * 1040384) + 1000 = 12,485,608 bytes.
63 !
64 ! You may have to enlarge the workspace of your Basic environment
65 ! to accomodate this buffer.
66 ASSIGN @Buff TO BUFFER [3700000]
70 !
80 ! **************** INITIALIZE HPIB DEFAULT ADDRESS *********************
90 !
100 REAL Address
110 Address=707
120 ASSIGN @Comm TO Address
130 !
140 CLEAR SCREEN

Programming Examples
Sending Queries to the Logic Analyzer

18–19

150 !
160 ! ************* INTITIALIZE VARIABLE FOR NUMBER OF BYTES *****************
170 ! The variable "Numbytes" contains the number of bytes in the buffer.
180 !
190 REAL Numbytes
200 Numbytes=0
210 !
220 ! ************** RE-INITIALIZE TRANSFER BUFFER POINTERS ******************
230 !
240 CONTROL @Buff,3;1
250 CONTROL @Buff,4;0
260 !
270 ! *********************** SEND THE DATA QUERY **************************
280 OUTPUT 707;":SYSTEM:HEADER ON"
290 OUTPUT 707;":SYSTEM:LONGFORM ON"
300 OUTPUT @Comm;"SELECT 2"
310 OUTPUT @Comm;":SYSTEM:DATA?"
320 !
330 ! ******************** ENTER THE BLOCK DATA HEADER *********************
340 ! Enter the block data header in the proper format.
350 !
360 ENTER @Comm USING "#,B";Byte
370 PRINT CHR$(Byte);
380 WHILE Byte<>35
390 ENTER @Comm USING "#,B";Byte
400 PRINT CHR$(Byte);
410 END WHILE
420 ENTER @Comm USING "#,B";Byte
430 PRINT CHR$(Byte);
440 Byte=Byte-48
450 IF Byte=1 THEN ENTER @Comm USING "#,D";Numbytes
460 IF Byte=2 THEN ENTER @Comm USING "#,DD";Numbytes
470 IF Byte=3 THEN ENTER @Comm USING "#,DDD";Numbytes
480 IF Byte=4 THEN ENTER @Comm USING "#,DDDD";Numbytes
490 IF Byte=5 THEN ENTER @Comm USING "#,DDDDD";Numbytes
500 IF Byte=6 THEN ENTER @Comm USING "#,DDDDDD";Numbytes
510 IF Byte=7 THEN ENTER @Comm USING "#,DDDDDDD";Numbytes
520 IF Byte=8 THEN ENTER @Comm USING "#,DDDDDDDD";Numbytes
530 Str1$=DVAL$(Numbytes,10)
531 ! DVAL$ returns an 11 character string
532 PRINT Str1$[12-Byte]
540 !

Programming Examples
Sending Queries to the Logic Analyzer

18–20

550 ! ******************** TRANSER THE DATA ********************************
560 ! Transfer the data from the logic analyzer to the buffer.
570 !
580 TRANSFER @Comm TO @Buff;COUNT Numbytes,WAIT
600 !
610 ENTER @Comm USING "-K";Length$
620 PRINT "LENGTH of Length string is ";Byte
630 !
640 PRINT "**** GOT THE DATA **** Press continue."
650 PAUSE
660 ! ********************* SEND THE DATA **********************************
670 ! Make sure buffer is not empty.
680 !
690 IF Numbytes=0 THEN
700 PRINT "BUFFER IS EMPTY"
710 GOTO 1170
720 END IF
730 !
740 ! ********************* SEND THE DATA COMMAND **************************
750 ! Send the Setup command
760 !
770 OUTPUT @Comm USING "#,14A";":SYSTEM:DATA #"
780 PRINT "SYSTEM:DATA command has been sent. Press continue."
790 PAUSE
800 !
810 ! ********************* SEND THE BLOCK DATA ****************************
820 ! Send the block data header to the HP 16554A/HP 16555A in the proper
821 ! format.
830 !
850 OUTPUT @Comm USING "#,A";"8"
860 Str1$=DVAL$(Numbytes,10)
870 Byte=1
920 PRINT USING "AAAAAAAA";Str1$[4]
930 OUTPUT @Comm USING "#,AAAAAAAA";Str1$[4]
940 !
950 ! *********************** SAVE BUFFER POINTERS *************************
960 ! Save the transfer buffer pointer so it can be restored after the
970 ! transfer.
980 !
990 STATUS @Buff,5;Streg
1000 !

Programming Examples
Sending Queries to the Logic Analyzer

18–21

1010 ! ************* TRANSFER DATA TO THE HP 16554A/HP 16555 ****************
1020 ! Transfer the data from the buffer to the HP 16554A/HP 16555A.
1030 !
1040 TRANSFER @Buff TO @Comm;COUNT Numbytes,WAIT
1050 !
1060 ! ********************** RESTORE BUFFER POINTERS ***********************
1070 ! Restore the transfer buffer pointer
1080 !
1090 CONTROL @Buff,5;Streg
1100 !
1110 ! ******************** SEND TERMINATING LINE FEED **********************
1120 ! Send the terminating linefeed to properly terminate the data string.
1130 !
1140 OUTPUT @Comm;""
1150 !
1160 PRINT "**** SENT THE DATA **** Program complete."
1170 END

Programming Examples
Sending Queries to the Logic Analyzer

18–22

Index

A

A+B, 4–11, 13–19
A,B, 13–18
A-B, 13–13
ACCumulate command/query, 8–5, 9–4,

13–7
ACQMode command/query, 11–5
ACQuisition command/query, 6–8, 8–5,

12–9, 13–8
acquisition size, 8–8, 12–16, 13–12
analyzer 1 data information, 17–7
analyzer 2 data information, 17–9
ARM command/query, 3–5
ARMLine selector, 2–5
ASSign command/query, 3–6
AUTorange command, 16–22
average time, 13–23, 14–17, 16–25

B

BASE command, 15–5
block data, 17–4
block length specifier, 17–4, , 17–5, 17–14
BRANch command/query, 6–9 to 6–10,

12–9 to 12–11
BUCKet query, 16–8

C

CARDcage query, 1–5
CENTer command, 8–6, 9–5, 13–9
chart display, 9–2
Chart menu, 9–2
CLEar command, 6–11, 10–5, 12–12
clock, 5–9
CLOCk command/query, 5–6
CLRPattern command, 7–8, 8–6, 13–9,

14–8
CLRStat command, 8–7, 13–9
CMASk command/query, 10–5
COLumn command/query, 7–7, 14–7
command

ACCumulate, 8–5, 9–4, 13–7
ACQMode, 11–5
ACQuisition, 6–8, 12–9, 13–8
ARM, 3–5
ARMLine, 2–5
ASSign, 3–6
AUTorange, 16–22
BASE, 15–5
BRANch, 6–9, 12–9

CENTer, 8–6, 9–5, 13–9
CLEar, 6–11, 10–5
CLOCk, 5–6
CLRPattern, 7–8, 8–6, 13–9, 14–8
CLRStat, 8–7, 13–9
CMASk, 10–5
COLumn, 7–7, 14–7
COMPare, 10–4
COPY, 10–6
DATA, 10–6, 17–4
DBLock, 2–5
DELay, 4–5, 8–7, 13–10
EDGE, 12–13
FIND, 6–12, 12–14
HAXis, 9–5
HIGH, 16–9
HISTogram:LABel, 16–17
HISTogram:OTHer, 16–18
HISTogram:QUALifier, 16–19
HISTogram:RANGe, 16–20
HISTogram:TTYPe, 16–21
INSert, 4–6, 8–8, 13–11
LABel, 5–7, 11–6, 16–10, 16–17
LEVelarm, 3–7
LINE, 4–7, 7–9, 10–9, 14–9
LOW, 16–11
MACHine, 2–6, 3–4
MASTer, 5–9
MENU, 1–6, 10–9
MESE, 1–13
MINus, 4–8, 13–13
MLENgth, 6–13, 8–8, 12–16, 13–12, 16–12
MMODe, 7–10, 13–14, 14–10
MODE, 5–10
Module Level, 2–2
MOPQual, 5–11
MQUal, 5–12
NAME, 3–8
OCONdition, 13–15, 14–11
OMARker, 16–13
OPATtern, 7–11, 13–16, 14–12
OSEarch, 7–12, 13–17, 14–13
OTAG, 7–14, 14–14
OTHer, 16–18
OTIMe, 4–9, 13–18
OVERlay, 4–10, 7–15, 13–18
OVERView:HIGH, 16–9
OVERView:LABel, 16–10
OVERView:LOW, 16–11

OVERview:MLENgth, 16–12
OVERView:OMARker, 16–13
OVERView:XMARker, 16–15
PATTern, 15–6
PLUS, 4–11, 13–19
PRINt, 1–7
QUALifier, 16–19, 16–23
RANGe, 4–12, 6–14, 8–9, 10–10, 12–17,

13–20, 15–7, 16–20
REMove, 4–12, 5–13, 7–15, 8–10, 11–7,

13–20, 14–15, 15–8
REName, 3–8
RESource, 3–9
RMODe, 1–7
RUNTil, 7–16, 10–11, 13–21, 14–16
SCHart, 9–4
SELect, 1–3, 1–6
SEQuence, 6–15, 12–18
SET, 10–12
SETup, 17–13
SFORmat, 5–6
SLAVe, 5–15
SLISt, 7–7
SOPQual, 5–16
SPA, 2–7
SPERiod, 12–19, 13–22
SQUal, 5–17
STARt, 1–6
STOP, 1–7
STORe, 6–16
SWAVeform, 8–4
SYMBol, 15–5
SYSTem:DATA, 17–2, 17–4
SYSTem:PRINt, 1–7
SYStem:SETup, 17–2, 17–13
TAKenbranch, 6–18, 8–10
TCONtrol, 6–19, 12–20
TERM, 6–20, 12–21
TFORmat, 11–4
THReshold, 5–18, 11–8
TIMER, 6–21, 12–22
TINTerval:AUTorange, 16–22
TINTerval:QUALifier, 16–23
TINTerval:TINTerval, 16–24
TLISt, 14–7
TPOSition, 6–22, 8–11, 12–23, 13–24
TTYPe, 16–21
TYPE, 3–10
VAXis, 9–6

Index–1

WIDTh, 15–8
WLISt, 2–7, 4–4
XCONdition, 13–26, 14–19
XMARker, 16–15
XPATtern, 7–20, 13–27, 14–20
XSEarch, 7–21, 13–28, 14–21
XTAG, 7–22, 14–23
XTIMe, 4–14, 13–29

command set organization, 1–8 to 1–11
compare full, 10–10
compare partial, 10–10
COMPare selector, 10–4
COMPare subsystem, 10–1, 10–3 to 10–12
complex expression, 12–10
complex qualifier, 6–10, 12–11
configuration menu, 3–2
COPY command, 10–6
count states, 6–17
count time, 6–17

D

DATA, 17–4
State 17–11 to 17–12

DATA and SETup Commands, 17–1,
17–3 to 17–14

data block
analyzer 1 data, 17–7
analyzer 2 data, 17–9
data preamble, 17–7
section data, 17–6
section header, 17–6

DATA command/query, 10–6 to 10–7
data preamble, 17–7 to 17–10
DATA query, 7–9, 14–9
DBLock selector, 2–5
DELay command/query, 4–5, 8–7, 13–10
delete symbols, 15–8
demux clock, 5–6, 5–15
difference listing, 10–9
display, 8–6, 8–9, 9–5, 10–9, 13–10,

14–7, 14–9
deleting waveforms, 13–20

E

EDGE command/query, 12–13
else branch, 6–9
else on, 12–9
entering, 14–11
examples, 16–8

program, 1–4, 10–7, 10–10, 18-1 to 18-6
exiting, 14–11

F

FIND command/query, 6–12,
12–14 to 12–15

find error, 10–8
FIND query, 10–8
from Start/Trigger, 13–28, 14–21
from Start/Trigger/X marker, 13–17, 14–13
full channel mode, 11–5

H

half channel mode, 11–5
HAXis command/query, 9–5
HIGH command/query, 16–9
HISTogram:HSTatistic query, 16–16
HISTogram:LABel command/query, 16–17
HISTogram:OTHer command/query, 16–18
HISTogram:QUALifier command/query,

16–19
HISTogram:RANGe command/query, 16–20
HISTogram:TTYPe command/query, 16–21
HSTatistic query, 16–16

I

INSert command, 4–6, 8–8, 13–11
interleave, 7–15
INTermodule Subsystem, 1–7
internal clock, 12–19

L

label, 5–13
LABel command/query, 5–7 to 5–8, 11–6,

16–10, 16–17
LEVelarm command/query, 3–7
LINE command/query, 4–7, 7–9, 10–9, 14–9
listing menu, 7–2
LOW command/query, 16–11

M

MACHine selector, 2–6, 3–4
MACHine subsystem, 3–1, 3–3 to 3–11
markers, 4–2, 7–8, 7–10, 7–17, 13–21,

14–8, 14–10, 14–17 to 14–20, 16–14
Chart, 9–2
O, 4–9, 7–11 to 7–12, 13–15 to 13–16,

13–17, 14–11, 14–14, 16–13
occurrence, 7–14, 7–22
pattern, 8–6, 13–15, 14–12, 14–19
searching, 7–21
setting type, 13–14
statistics, 7–17 to 7–18, 8–7, 13–23 to

13–25
waveform, 8–2
X, 7–20, 7–22, 13–26 to 13–29, 14–20,

14–22 to 14–23, 16–15
X-O, 13–26

mask bits, 10–5
master clock, 5–6
MASTer command/query, 5–9
maximum time, 13–23, 14–17
measurement complete program example,

18–18
memory depth, 8–8, 12–16, 13–12
MENU, 1–6
MENU command, 10–9
MESE command/query, 1–13
MESR query, 1–15
minimum time, 13–24, 14–18
MINus command, 4–8, 13–13
mixed mode, 4–2
MLENgth command/query, 6–13, 8–8,

12–16, 13–12, 16–12
MMEMory Subsystem, 1–7
MMODe command/query, 7–10, 13–14,

14–10
MODE command/query, 5–10, 16–7
module level commands, 2–1, 2–3 to 2–7
module status reporting, 1–12
MOPQual command/query, 5–11
most significant bit, 17–3
MQUal command/query, 5–12

N

NAME command/query, 3–8
number of runs, 13–25, 14–18
number of samples, 16–25

Index

Index–2

O

OCONdition command/query, 13–15, 14–11
offset, 4–5
OMARker command/query, 16–13
OPATtern command/query, 7–11, 13–16,

14–12
OR’d trigger, 3–5
OSEarch command/query, 7–12, 13–17,

14–13
OSTate query, 4–9, 7–13, 14–14
OTAG command/query, 7–14, 14–14
OTHer command/query, 16–18
OTIMe command/query, 4–9, 13–18
OVERlay command/query, 4–10, 7–15

13–18
OVERView:BUCKet query, 16–8
OVERView:HIGH command/query, 16–9
OVERView:LABel command/query, 16–10
OVERView:LOW command/query, 16–11
OVERview:MLENgth command/query,

16–12
OVERView:OMARker command/query,

16–13
OVERView:OVSTatistic query, 16–14
OVERView:XMARker command/query,

16–15
OVSTatistic query, 16–14

P

PATTern command, 15–6
pattern markers, 7–8, 7–10 to 7–11, 8–6,

13–14, 13–26 to 13–27, 14–10 to 14–12
PLUS command, 4–11, 13–19
pod clock, 5–7
poststore, 8–11
preamble description, 17–7
prestore, 8–11
program examples

checking for measurement complete,
18–18

sending queries to the logic analyzer,
18–19

state analyzer, 18–5
state compare, 18–9
SYSTem:SETup command, 18–14
SYSTem:SETup query, 18–14
timing analyzer, 18–3

transferring configuration to analyzer,
18–14

transferring configuration to the
controller, 18–14

Q

QUALifier command/query, 16–19, 16–23
Query

ACCumulate, 8–5, 9–4, 13–8
ACQMode, 11–5
ACQuisition, 6–8, 12–9, 13–8
ARM, 3–5
ASSign, 3–6
BRANch, 6–10, 12–11
BUCKet, 16–8
CARDcage, 1–5
CLOCk, 5–7
CMASk, 10–5
COLumn, 7–8, 14–8
DATA, 7–9, 10–7, 14–9, 17–5
DELay, 4–5, 8–7, 13–10
EDGE, 12–14
ERRor, 1–7
FIND, 6–13, 10–8, 12–15
HAXis, 9–6
HIGH, 16–9
HISTogram:HSTatistic, 16–16
HISTogram:LABel, 16–17
HISTogram:OTHer, 16–18
HISTogram:QUALifier, 16–19
HISTogram:RANGe, 16–20
HISTogram:TTYPe, 16–21
HSTatistic, 16–16
LABel, 5–8, 11–7, 16–10, 16–17
LEVelarm, 3–7
LINE, 4–8, 7–10, 10–9, 14–10
LOW, 16–11
MASTer, 5–9
MENU, 1–6
MESE, 1–13
MESR, 1–15
MLENgth, 6–13, 8–9, 12–16, 13–13, 16–12
MMODe, 7–11, 13–14, 14–10
MODE, 5–10, 16–7
MOPQual, 5–11
MQUal, 5–12
NAME, 3–8
OCONdition, 13–15, 14–11

OMARker, 16–13
OPATtern, 7–12, 13–16, 14–12
OSEarch, 7–13, 13–17, 14–13
OSTate, 4–9, 7–13, 14–14
OTAG, 7–14, 14–15
OTHer, 16–18
OTIMe, 4–10, 13–18
OVERView:BUCKet, 16–8
OVERView:HIGH, 16–9
OVERView:LABel, 16–10
OVERView:LOW, 16–11
OVERview:MLENgth, 16–12
OVERView:OMARker, 16–13
OVERView:OVSTatistic, 16–14
OVERView:XMARker, 16–15
OVSTatistic, 16–14
PRINt, 1–7
QUALifier, 16–19, 16–23
RANGe, 4–12, 6–15, 8–9, 10–10, 12–17,

13–20, 16–20
REName, 3–9
RESource, 3–10
RMODe, 1–7
RUNTil, 7–16, 10–12, 13–21, 14–16
SEQuence, 6–15, 12–18
SETup, 17–14
SLAVe, 5–15
SOPQual, 5–16
SPERiod, 12–19, 13–22
SQUal, 5–17
STORe, 6–16
SYSTem:DATA, 17–5
SYSTem:ERRor, 1–7
SYSTem:PRINt, 1–7
SYStem:SETup, 17–14
TAG, 6–17
TAKenbranch, 6–18, 8–10
TAVerage, 7–17, 13–23, 14–17
TCONtrol, 6–19, 12–20
TERM, 6–21, 12–22
THReshold, 5–18, 11–8
TIMER, 6–21, 12–22
TINTerval:QUALifier, 16–23
TINTerval:TINTerval, 16–24
TINTerval:TSTatistic, 16–25
TMAXimum, 7–17, 13–23, 14–17
TMINimum, 7–18, 13–24, 14–18
TPOSition, 6–22, 8–11, 12–23, 13–25

Index

Index–3

TSTatistic, 16–25
TTYPe, 16–21
TYPE, 3–11
VAXis, 9–7
VRUNs, 7–18, 13–25, 14–18
XCONdition, 13–26, 14–19
XMARker, 16–15
XOTag, 7–19, 14–19
XOTime, 4–13, 7–19, 13–26, 14–20
XPATtern, 7–20, 13–27, 14–21
XSEarch, 7–21, 13–28, 14–22
XSTate, 4–13, 7–22, 14–22
XTAG, 7–23, 14–23
XTIMe, 4–14, 13–29

query program example, 18–19

R

 RANGe command/query, 4–12, 6–14, 8–9,
10–10, 12–17, 13–20, 15–7, 16–20

reference listing, 10–6, 10–9
REMove command, 4–12, 5–13, 7–15,

8–10, 11–7, 13–20, 14–15, 15–8
REName command/query, 3–8
RESource command/query, 3–9
RMODe, 1–7
RUNTil command/query, 7–16, 10–11,

13–21, 14–16

S

s/Div, 4–12
sample period, 13–22
sample rate, 12–19
SCHart selector, 9–4
SCHart subsystem, 9–1, 9–3 to 9–7
scroll listing, 14–9
search, 7–12, 7–21
searching, 14–13
sec/Div, 13–20
section data, 17–6
section data format, 17–4
section header, 17–6
SELect command, 1–3, 1–6
SEQuence command/query, 6–15, 12–18
SET command, 10–12
SETup, 17–13
SFORmat selector, 5–6
SFORmat subsystem, 5–1, 5–3 to 5–18
slave clock, 5–6

SLAVe command/query, 5–15
SLISt selector, 7–7
SLISt subsystem, 7–1, 7–3 to 7–23
SOPQual command/query, 5–16
SPA selector, 2–7
specify patterns, 13–9, 14–8, 14–12, 14–19
SPERiod command/query, 12–19, 13–22
SQUal command/query, 5–17
STARt, 1–6
state analyzer

program example, 18–5
state markers, 7–10
states/Div, 8–9
statistics, 7–10, 13–23 to 13–25, 16–14,

16–16, 16–22, 16–25
statistics markers, 7–18, 8–7, 13–14,

14–10, 14–17 to 14–18
STOP, 1–7
stop measurement, 7–16, 10–11, 13–21,

14–16
STORe command/query, 6–16
STRace selector, 6–8
STRigger selector, 6–8
STRigger/STRace subsystem, 6–1, 6–3 to

6–22
Subsystem

COMPare, 10–2
MACHine, 3–2
SCHart, 9–2
SFORmat, 5–1, 5–3 to 5–18
SLISt, 7–1, 7–3 to 7–23
STRigger/STRace, 6–1, 6–3 to 6–22
SWAVeform, 8–2
SYMBol, 15–1, 15–3 to 15–8
TFORmat, 11–1, 11–3 to 11–8
TLISt, 14–1, 14–3 to 14–23
TTRigger/TTRace, 12–1, 12–3 to 12–23
TWAVeform, 13–1, 13–3 to 13–29
WLISt, 4–1, 4–3 to 4–14

SWAVeform selector, 8–4
SWAVeform subsystem, 8–1, 8–3 to 8–11
SYMBol selector, 15–5
SYMBol subsystem, 15–1, 15–3 to 15–8
syntax diagram

COMPare Subsystem, 10–3
MACHine Subsystem, 3–3
SCHart Subsystem, 9–3
SFORmat Subsystem, 5–3

SLISt Subsystem, 7–3
STRigger Subsystem, 6–3 to 6–4
SWAVeform Subsystem, 8–3
SYMBol Subsystem, 15–3
TFORmat Subsystem, 11–3
TLISt Subsystem, 14–3
TTRigger Subsystem, 12–3
TWAVeform Subsystem, 13–3 to 13–4
WLISt Subsystem, 4–3

SYSTem:DATA, 17–4 to 17–5
SYSTem:ERRor, 1–7
SYSTem:PRINt, 1–7
SYStem:SETup, 17–13 to 17–14
SYSTem:SETup program example, 18–14

T

TAG command/query, 6–17
TAKenbranch command/query, 6–18, 8–10
TAVerage query, 7–17, 13–23, 14–17
TCONtrol command/query, 6–19, 12–20
TERM command/query, 6–20, 12–21
TFORmat selector, 11–4
TFORmat subsystem, 11–1, 11–3 to 11–8
THReshold command/query, 5–18, 11–8
time markers, 7–10, 13–14, 13–18, 13–26,

13–29, 14–10
time tag data description, 17–13
time tags, 14–7
timer, 6–19, 6–21, 12–20
TIMER command/query, 6–21, 12–22
timing analyzer

program example, 18–3
TINTerval:AUTorange command, 16–22
TINTerval:QUALifier command/query,

16–23
TINTerval:TINTerval command/query,

16–24
TINTerval:TSTatistic query, 16–25
TLISt selector, 14–7
TLISt subsystem, 14–1, 14–3 to 14–23
TMAXimum query, 7–17, 13–23, 14–17
TMINimum query, 7–18, 13–24, 14–18
TPOSition command/query, 6–22, 8–11,

12–23, 13–24
trace size, 8–8, 12–16
trigger, 8–11, 12–14

SPA, 16–21
trigger position, 13–24

Index

Index–4

TSTatistic query, 16–25
TTRace selector, 12–8
TTRigger selector, 12–8
TTRigger/TTRace subsystem, 12–1, 12–3

to 12–23
TTYPe command/query, 16–21
TWAVeform selector, 13–7
TWAVeform Subsystem, 13–1, 13–3 to

13–29
TYPE command/query, 3–10 to 3–11

V

VAXis command/query, 9–6 to 9–7
vertical scroll, 4–7
VRUNs query, 7–18, 13–25, 14–18

W

WIDTh command, 15–8
WLISt selector, 2–7, 4–4
WLISt subsystem, 4–1, 4–3 to 4–14

X

X entering, 14–19
X exiting, 14–19
XCONdition command/query, 13–26, 14–19
XMARker command/query, 16–15
XOTag query, 7–19, 14–19
XOTime query, 4–13, 7–19, 13–26, 14–20
XPATtern command/query, 7–20, 13–27,

14–20
XSEarch command/query, 7–21, 13–28,

14–21
XSTate query, 4–13, 7–22, 14–22
XTAG command/query, 7–22 to 7–23,

14–23
XTIMe command/query, 4–14, 13–29

Index

Index–5

Index–6

© Copyright Hewlett-
Packard Company 1987,
1990, 1993, 1994, 1997
All Rights Reserved.

Reproduction, adaptation, or
translation without prior
written permission is
prohibited, except as allowed
under the copyright laws.

Document Warranty

The information contained in
this document is subject to
change without notice.
Hewlett-Packard makes

no warranty of any kind

with regard to this

material, including, but

not limited to, the implied

warranties of

merchantability or fitness

for a particular purpose.

Hewlett-Packard shall not be
liable for errors contained
herein or for damages in
connection with the
furnishing, performance, or
use of this material.

Safety

This apparatus has been
designed and tested in
accordance with IEC
Publication 348, Safety
Requirements for Measuring
Apparatus, and has been
supplied in a safe condition.
This is a Safety Class I
instrument (provided with
terminal for protective
earthing). Before applying
power, verify that the correct
safety precautions are taken
(see the following warnings).
In addition, note the external
markings on the instrument
that are described under
"Safety Symbols."

Warning

• Before turning on the
instrument, you must connect
the protective earth terminal
of the instrument to the
protective conductor of the
(mains) power cord. The
mains plug shall only be
inserted in a socket outlet
provided with a protective
earth contact. You must not
negate the protective action
by using an extension cord
(power cable) without a
protective conductor
(grounding). Grounding one
conductor of a two-conductor
outlet is not sufficient
protection.

• Only fuses with the
required rated current,
voltage, and specified type
(normal blow, time delay,
etc.) should be used. Do not
use repaired fuses or
short-circuited fuseholders.
To do so could cause a shock
of fire hazard.

• Service instructions are for
trained service personnel. To
avoid dangerous electric
shock, do not perform any
service unless qualified to do
so. Do not attempt internal
service or adjustment unless
another person, capable of
rendering first aid and
resuscitation, is present.

• If you energize this
instrument by an auto
transformer (for voltage
reduction), make sure the
common terminal is
connected to the earth
terminal of the power source.

• Whenever it is likely that
the ground protection is
impaired, you must make the
instrument inoperative and
secure it against any
unintended operation.

• Do not operate the
instrument in the presence of
flammable gasses or fumes.
Operation of any electrical
instrument in such an
environment constitutes a
definite safety hazard.

• Do not install substitute
parts or perform any
unauthorized modification to
the instrument.

• Capacitors inside the
instrument may retain a
charge even if the instrument
is disconnected from its
source of supply.

• Use caution when exposing
or handling the CRT.
Handling or replacing the
CRT shall be done only by
qualified maintenance
personnel.

Safety Symbols

Instruction manual symbol:
the product is marked with
this symbol when it is
necessary for you to refer to
the instruction manual in
order to protect against
damage to the product.

Hazardous voltage symbol.

Earth terminal symbol: Used
to indicate a circuit common
connected to grounded
chassis.

W A R N I N G

The Warning sign denotes a
hazard. It calls attention to a
procedure, practice, or the
like, which, if not correctly
performed or adhered to,
could result in personal
injury. Do not proceed
beyond a Warning sign until
the indicated conditions are
fully understood and met.

C A U T I O N

The Caution sign denotes a
hazard. It calls attention to
an operating procedure,
practice, or the like, which, if
not correctly performed or
adhered to, could result in
damage to or destruction of
part or all of the product. Do
not proceed beyond a
Caution symbol until the
indicated conditions are fully
understood or met.

Hewlett-Packard
P.O. Box 2197
1900 Garden of the Gods Road
Colorado Springs, CO 80901

Product Warranty

This Hewlett-Packard
product has a warranty
against defects in material
and workmanship for a period
of one year from date of
shipment. During the
warranty period,
Hewlett-Packard Company
will, at its option, either
repair or replace products
that prove to be defective.
For warranty service or
repair, this product must be
returned to a service facility
designated by
Hewlett-Packard.
For products returned to
Hewlett-Packard for warranty
service, the Buyer shall
prepay shipping charges to
Hewlett-Packard and
Hewlett-Packard shall pay
shipping charges to return
the product to the Buyer.
However, the Buyer shall pay
all shipping charges, duties,
and taxes for products
returned to Hewlett-Packard
from another country.
Hewlett-Packard warrants
that its software and firmware
designated by
Hewlett-Packard for use with
an instrument will execute its
programming instructions
when properly installed on
that instrument.
Hewlett-Packard does not
warrant that the operation of
the instrument software, or
firmware will be
uninterrupted or error free.

Limitation of Warranty

The foregoing warranty shall
not apply to defects resulting
from improper or inadequate
maintenance by the Buyer,
Buyer-supplied software or
interfacing, unauthorized
modification or misuse,
operation outside of the
environmental specifications
for the product, or improper
site preparation or
maintenance.

No other warranty is

expressed or implied.

Hewlett-Packard

specifically disclaims the

implied warranties of

merchantability or fitness

for a particular purpose.

Exclusive Remedies

The remedies provided
herein are the buyer’s sole
and exclusive remedies.
Hewlett-Packard shall not be
liable for any direct, indirect,
special, incidental, or
consequential damages,
whether based on contract,
tort, or any other legal theory.

Assistance

Product maintenance
agreements and other
customer assistance
agreements are available for
Hewlett-Packard products.
For any assistance, contact
your nearest Hewlett-Packard
Sales Office.

Certification

Hewlett-Packard Company
certifies that this product met
its published specifications at
the time of shipment from the
factory. Hewlett-Packard
further certifies that its
calibration measurements are
traceable to the United States
National Institute of
Standards and Technology, to
the extent allowed by the
Institute’s calibration facility,
and to the calibration
facilities of other
International Standards
Organization members.

About this edition

This is the first edition of the
HP 16554A/HP 16555A/

HP 16555D Programmer’s

Guide.

Publication number
16555-97011
Printed in USA.
Edition dates are as follows:
First edition, January 1997

New editions are complete
revisions of the manual.
Update packages, which are
issued between editions,
contain additional and
replacement pages to be
merged into the manual by
you. The dates on the title
page change only when a new
edition is published.
A software or firmware code
may be printed before the
date. This code indicates the
version level of the software
or firmware of this product at
the time the manual or
update was issued. Many
product updates do not
require manual changes; and,
conversely, manual
corrections may be done
without accompanying
product changes. Therefore,
do not expect a one-to-one
correspondence between
product updates and manual
updates.

The following list of pages
gives the date of the current
edition and of any changed
pages to that edition.

All pages original edition

	In This Book
	Contents
	General Information
	Programming the HP 16554A/ HP 16555A/HP 16555D
	Selecting the Module
	Programming the Logic Analyzer
	Mainframe Commands
	Command Set Organization
	Module Status Reporting
	MESE<N>
	MESR<N>

	Module Level Commands
	ARMLine
	DBLock
	MACHine
	SPA
	WLISt

	Commands
	MACHine Subsystem
	MACHine
	ARM
	ASSign
	LEVelarm
	NAME
	REName
	RESource
	TYPE

	WLISt Subsystem
	WLISt
	DELay
	INSert
	LINE
	MINus
	OSTate
	OTIMe
	OVERlay
	PLUS
	RANGe
	REMove
	XOTime
	XSTate
	XTIMe

	SFORmat Subsystem
	SFORmat
	CLOCk
	LABel
	MASTer
	MODE
	MOPQual
	MQUal
	REMove
	SETHold
	SLAVe
	SOPQual
	SQUal
	THReshold

	STRigger (STRace) Subsystem
	Qualifier
	STRigger (STRace)
	ACQuisition
	BRANch
	CLEar
	FIND
	MLENgth
	RANGe
	SEQuence
	STORe
	TAG
	TAKenbranch
	TCONtrol
	TERM
	TIMER
	TPOSition

	SLISt Subsystem
	SLISt
	COLumn
	CLRPattern
	DATA
	LINE
	MMODe
	OPATtern
	OSEarch
	OSTate
	OTAG
	OVERlay
	REMove
	RUNTil
	TAVerage
	TMAXimum
	TMINimum
	VRUNs
	XOTag
	XOTime
	XPATtern
	XSEarch
	XSTate
	XTAG

	SWAVeform Subsystem
	SWAVeform
	ACCumulate
	ACQuisition
	CENTer
	CLRPattern
	CLRStat
	DELay
	INSert
	MLENgth
	RANGe
	REMove
	TAKenbranch
	TPOSition

	SCHart Subsystem
	SCHart
	ACCumulate
	CENTer
	HAXis
	VAXis

	COMPare Subsystem
	COMPare
	CLEar
	CMASk
	COPY
	DATA
	FIND
	LINE
	MENU
	RANGe
	RUNTil
	SET

	TFORmat Subsystem
	TFORmat
	ACQMode
	LABel
	REMove
	THReshold

	TTRigger (TTRace) Subsystem
	Qualifier
	TTRigger (TTRace)
	ACQuisition
	BRANch
	CLEar
	EDGE
	FIND
	MLENgth
	RANGe
	SEQuence
	SPERiod
	TCONtrol
	TERM
	TIMER
	TPOSition

	TWAVeform Subsystem
	TWAVeform
	ACCumulate
	ACQuisition
	CENTer
	CLRPattern
	CLRStat
	DELay
	INSert
	MLENgth
	MINus
	MMODe
	OCONdition
	OPATtern
	OSEarch
	OTIMe
	OVERlay
	PLUS
	RANGe
	REMove
	RUNTil
	SPERiod
	TAVerage
	TMAXimum
	TMINimum
	TPOSition
	VRUNs
	XCONdition
	XOTime
	XPATtern
	XSEarch
	XTIMe

	TLISt Subsystem
	TLISt
	COLumn
	CLRPattern
	DATA
	LINE
	MMODe
	OCONdition
	OPATtern
	OSEarch
	OSTate
	OTAG
	REMove
	RUNTil
	TAVerage
	TMAXimum
	TMINimum
	VRUNs
	XCONdition
	XOTag
	XOTime
	XPATtern
	XSEarch
	XSTate
	XTAG

	SYMBol Subsystem
	SYMBol
	BASE
	PATTern
	RANGe
	REMove
	WIDTh

	SPA Subsystem
	MODE
	OVERView:BUCKet
	OVERView:HIGH
	OVERView:LABel
	OVERView:LOW
	OVERView:MLENgth
	OVERView:OMARker
	OVERView:OVSTatistic
	OVERView:XMARker
	HISTogram:HSTatistic
	HISTogram:LABel
	HISTogram:OTHer
	HISTogram:QUALifier
	HISTogram:RANGe
	HISTogram:TTYPe
	TINTerval:AUTorange
	TINTerval:QUALifier
	TINTerval:TINTerval
	TINTerval:TSTatistic

	DATA and SETup Commands
	Data Format
	SYSTem:DATA
	Section Header Description
	Section Data
	Data Preamble Description
	Acquisition Data Description
	Time Tag Data Description
	SYSTem:SETup

	Programming Examples
	Programming Examples
	Making a Timing Analyzer Measurement
	Making a State Analyzer Measurement
	Making a State Compare Analyzer Measurement
	Transferring the Logic Analyzer Configuration
	Checking for Measurement Completion
	Sending Queries to the Logic Analyzer

	Index

