- TROUBLESHOOTER

AUKE

A COLLECTION OF ARTICLES FOR MICRO-SYSTEM TROUBLESHOOITER USERS

1985

1720A INSTRUMENT CONTROL.LER

SERIAL
PORT 2

SERIAL
PORT 1

e

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

| G WA Uy S WSy U A NG A W O U O U VA ) T
S T R A A B e A N N N s W
ThiLLLLLLLLLLLLLLLLL X
W 0 W S U Uy Ry VA ) ) VU U0 WOy Ui N Wy Oy
! | W ey W Wy Wy S UG VR VR PR O U VY T Uy U 5
LA

IR

SCANNER

1]

e
N

UNIT UNDER TEST ]

iICCLIP
[

Figure 1.

J INTERFACE POD

A scanner for multipoint proloing

by Ed Ferguson

Part 2

Part 1 of this article appeared on cover
of 1984 TROUBLESHOOTER Annual.

In Volume 2, Issue 1 of the TROUBLE-
SHOOTER (reprinted in the 1984
ANNUAL edition), | wrote an article that
described a scanner circuit to muitiplex
up to 24 inputs to the 9010A’s probe. The
scanner was controlled from the 9010A’s
RS-232 interface to select a given input
from an IC clip or board edge connector,

and routed the high, low, or tristate lev-

els from the selected input to the 9010A
probe. A sample 9010A program showed a
method to automatically probe and com-
pare the signature at each pin of an IC.

In the second part of this article | have
expanded upon this system to show that
with the addition of a personal computer
you can now “learn’’ as well as test a
UUT, one IC at atime. By using a good
UUT, the computer can store the data
gathered from each IC and record this
data for later comparison with faulty UUTs.

Any computer with two serial ports and
afloppy disk can be used. Serial port1,
connected to the 9010A, selects the stim-
ulus program and reads the resulting
probe data. Serial port 2 connects to the
scanner and just selects the probe’s input.
The floppy disk stores the probe data
gathered at each pin of each IC. The sys-
tem shown in fig. 1. uses a Fluke 1720A
Instrument Controller with a menu driven
program written in BASIC. The software:

(continued next page)




]
Scanner...

(continued from cover)

1. Learns the signature, count, or level
history at each pin of an IC.

2. TestsagivenIC.

3. Displays.a list of failed IC’s and their
pin numbers.

Basic Program

The computer’s program contains a
disk array to store the data for each IC.
The array contains the IC number, the
number of pins, the 9010A stimuius pro-
gram number and the probe data for
each pin.

When “‘learning’’ a good UUT, the com-
puter will prompt the operator to clip onto
an IC and enter its number. The program
then looks in the array for the IC pin count
and the stimulus program number. It
begins a loop at line 500 which ranges
from 11to the total number of pins. Lines =
510-530 convert the IC pin number to the
hex data required by the scanner. The
pin numbers are shifted at line 520, as
required, so a single 16 pin 1C clip will
work with all ICs having 16 pins or less.

Next, the program triggers the 9010A
to execute the proper stimulus program.
The 9010A reads the probe and sends the
probe data to the computer. The computer
then strips the signature from the probe
data and stores the IC number, pin
number, and signature in the array. This
process is repeated until the pins on all
ICs are learned. The program takes sev-
eral probe readings at each pin to insure

- that the signatures are repeatabie. If they
are not, a count or level may be stored
instead.

The troubleshooting philosophy is to
first test the UUT kernal (BUS, ROM,
RAM) using the 9010A alone. To test the
UUT beyond the kernal, the “learn’’ steps
are repeated except that the actual sig-
natures are now compared to those stored
on disk, and any discrepancies are dis-
played. You may wish to design the pro-
gram so that the operator enters-the IC
number to test, or allow the program to
guide the operator by adding the neces-
sary logic.

9010A Program Description
The following-description is for the

9010A. If using a 9020A, it will be remotely '

programmed by the computer simplifying
the interface used. The 3010A main pro-
gram (Program 0) inputs the desired stim-
ulus program number (1-3) from the
computer, executes it and can be
expanded, if needed, to handle more
stimulus programs.

0:

9010A Main Program (Program 0)

LABEL 0

AUX

IFREG 1 = 1GOTO1
IFREG1 = 2GOTO 2
IFREG1 = 3GOTO 3
GOTO O

LABEL 1
EXECUTE PROGRAM 1
GOT0 0

LABEL 2
EXECUTE PROGRAM 2
GOT00

LABEL 3
EXECUTE PROGRAM 3
GOTO0

Iloop until a valid stimulus program
I number (1-3) is received from
I computer.port 1.

I did not receive a valid program number

I-stimulus. program for IC 1

! stimulus program for IC 2

! stimulus program for.IC 3

and

A stimulus program:

« exercises the circuit under test;
« sends the probe data to the computer;

+ must be written on the 9010A for each
circuit under test before learning
the UUT.

Program 1is a sample of a stimulus program.

9010A‘Stimulus Program For IC1 (Program 1)

SYNC DATA | syncronize probe

READ PROBE I clear probe data

RAMP @ 2001 I'stimulus for IC under test

READ PROBE ! read probe data

DPY-$0 ! display probe data on 9010A
AUX-$0 I send probe data to computer port 1

10
20
30
40

500
510
520
530
540

550

.

Space does not permit a full listing
of BASIC program, however the routine:
below shows the steps to close the scan-
ner switch, select the 9010A stimulus
program, and input the probe data.

I PN - is number of IC pins

I"SW s scanner switch 1-24

! ST - is 9010A stimulus program 1-3
! PD$ . is'9010A probe data

FORL ="1TOPN
LETSW.= L

IF L> PN/2 THEN LET SW
PRINT #3, CHRS (31 + SW)
PRINT #2, CHR$ (ST);

INPUT #1, PD$

! begih loop

= L+2*8-PNI2)
I'close scanner switch (port 2)
I setect 9010A stimulus program
I{port 1)
Vinput probe-data from 9010A
Hport 1)

S




... .
Compiler gets programs working sooner

by Lee Molho

The 9010A Language Compiler lets
you write test programs that are easy to
read. Abundant evidence shows that pro-
grams which are easy to read are easier to
understand, easier to debug, and easier to
change later on, compared with hard-to-
read programs. Here’s an example:

“PROBELEVEL” is a subroutine that is
going to take care of details of reading
logic levels with the 9010A probe. All a
calling program will need to do is tell
PROBELEVEL the level it expects to find,
EXECUTE PROGRAM PROBELEVEL,

Marcus Information Systems, Santa Monica, California

and look for a “‘true” or ‘‘false’’ response.
Because the 9010A Language Compiler
lets us name registers, let’s call the level
that is wanted “WANTLEVEL”, the true-
or-false response “VALIDITY”, and
assign registers to them. Since those reg-
isters are used to pass values between
programs, we must use two of the global
registers by writing declarations in the
main program like, “ASSIGN REG8 TO
WANTLEVEL” and “ASSIGN REG9 TO
VALIDITY.”

What we've just done is to specify our

Program Probelevel

DECLARATIONS
ASSIGN REGO TO PROBEVAL
ASSIGN REGT TO ANSWER

SYNC FREE—RUN
DPY — +, CONT WHEN READY
STOP

BEGINPROBE:
READ PROBE

READ PROBE
VALIDITY =0

GOTO . RETURNFALSE

GOTLOW:

GOTO RETURNFALSE
GOTHIGH:

GOTO RETURNFALSE
GOTFLOAT:

GOTO RETURNFALSE

RETURNTRUE:
VALIDITY =1

RETURNFALSE:

IF PROBEVAL = 4000000 GOTO GOTLOW
IF PROBEVAL = 1000000 GOTO GOTHIGH
IF PROBEVAL = 2000000 GOTO GOTFLOAT
DPY—PROBE LEVEL UNSTEADY. RETRY?1

IFANSWER =1 GOTO BEGINPROBE

[F WANTLEVEL = 0 GOTO RETURNTRUE

IF WANTLEVEL =1 GOTO RETURNTRUE

IF WANTLEVEL = 99 GOTO RETURNTRUE

IENTER WITH “PROBE U#—#"" IN DISPLAY, WANTLEVEL =0, 1, or 99 (99 = FLOAT).

I RETURNS 0 (=FALSE) OR 1(=TRUE) IN VALIDITY.

I'TESTS FOR AND EXPECTS LEVELS, NOT PULSES.

I WANTLEVEL AND VALIDITY ARE GLOBAL REGISTERS DECLARED IN MAIN PROGRAM.

I LOCAL ONLY

I END DECLARATIONS; START OF PROGRAM

I INITIALIZE PROBE MODE.
| CONCATENATES WITH U#—#.

! DO TWICE. SEE 9010

| PROGRAMMING

! MANUAL P. 513,

I SET VALIDITY FALSE, PROVE
I TRUE.

! THESE VALUES REQUIRE

I THAT THE

! PROBED NODE BE A

! STABLE LEVEL

I MAYBE NOT READY IF NOT
I STABLE:

I ENTER = RETRY,

I CLEAR = EXIT.

I ELSE,

! IF HE'S READY, [T'S
! BAD.

I ELSE,

! ELSE,

L ELSE,

I {T'S FALSE ALREADY.

program by defining its input and output.
Now, take a look at the listing of a working
version of PROBELEVEL.

At the beginning, a comment tells what
the program does. Meaningful names
are chosen for labels and registers. Step
by step, comments explain what is going
on and what we think the program is
doing. We put those in when the pro-
gram is fresh in our mind; later, they will
explain the program when a problem
shows up.

Even though it is short, PROBELEVEL
contains a muitilevel branching structure.
If your program didn’t seem to work quite
right, which would you rather debug—the
Language Compiler version, or the 9010A
keyboard Program 9.

Program 9

SYNC FREE-RUN-

DPY — +; CONT WHEN READY
SToP

LABEL 0

READ PROBE

READ PROBE

REGD = 0

IFREGO = 4000000 GOTO 1
IF REGO = 1000000 GOTO 2
IFREGO = 2000000 GOTO 3
DPY-PROBE LEVEL UNSTABLE. RETRY?1
IFREG1 = 1GOTO0

GOTO 4

LABEL1

IFREGC = 0GOTO 5

GOTO 4

LABEL 2

IFREGC = 1GOTOS

GOTO 4

LABEL 3

IFREGC = 99 GOTO 5
GOTO 4

LABELS

REGD =1

LABEL 4




Signetics 8X300 pod adapter

by Kirk E. Schuetz

Since Fluke does not offer an interface
pod for a Signetics 8X300 microprocessor
(+P) based system, it was necessary to
build an adapter to allow an existing inter-
face pod to communicate with a unit under
test (UUT). The Z80 pod was chosen for its
availability and for its 5 MHz maximum
clock rate, its unmultiplexed address and
data lines, and its single 5 volt supply. This

Kentron international , Topeka, Kansas 66619

that allows the 9000 Series Micro-System
Troubleshooter to test and troubleshoot

a printed circuit board controlled by

a 8X300 uP.

A 50-pin header is needed to plug into
the 8X300 socket. If a 50-pin header is
unavailable, a suitable 50-pin configuration
can be constructed by cutting up dual in-
line package headers and glueing them to

article describes an interface pod adapter a fiberglass vector board.
iIC Type VCC|GND
280
Pod U1 74L.504 14 7
1, U2  74LS74 14 7
> U3 | 74L8244 | 20 | 10
RN1]899-1-R180 | — | 14
[2 15 8X300
+5 0 Socket
BUSHG N 3 MC
D o A UL
-G ML ]
Xt T
5 DCS WC @ T,
POR @
{LSB) V7 £
34
35
l‘ 36
y 3
39
SE] =
a & - GND
B G 730 G <3
"1761 "[.Th _ITN
hd 8' - (LSB)
u3 6
4
Pt
7 r Y
5 1
3
21314
R 33333331
14
180 .~ 4

Figure 1. Signetics 8X300 to Z80 Pod Adapter

The 8X300 typically uses clock rates
over 5 MHz which makes it necessary to
divide the UUT clock to below 5 MHz. As
the schematic (Figure 1) indicates, a D-type
flip-flop, U2, is used to divide the UUT
clock (X1) in half. This provides a satisfac-
tory clock rate to run the pod and a proper
rate for the MCLK signal normally coming
out of the 8X300.

The 8X300 has three busses: the
instruction bus (I0-115), the address bus
(A0-A12), and the interface vector bus (IVO-
IV7). The instruction bus does not feed
back to the Z80 pod, so these lines have to
be probed for signatures. The address and
interface vector lines for the 8X300 are
defined differently than the address and
data lines of the Z80. They are connected
as follows:

Address Data
Z80 8X300 Z80 8X300
LSB A0 A12 Do v7
MSB = A15 A0 D7 IVO

The 280 WR output is inverted to provide
the write command (WC) output, and the
Z80 A15 output is used for the select com-
mand (SC) output. The Z80 A14 output is
inverted to-provide the left bank (LB) out-
put. The unused Z80 A13 output, if needed,
could be inverted to provide the right bank
(RB) output.

The automatic refresh function of the
Z80 puts unwanted signals on address
lines AD-A7. This causes unstable UUT sig-
natures. This problem is corrected by the
tri-state buffer, U3. The buffer outputs are
disabled during RFSH, causing the buffer
outputs to go to the high impedance state.
The effects of the high impedance outputs
are minimized by the 180 ohm puli-down
resistors of RN1.

The adapter worked well to test and
troubleshoot all or most of the circuits on
the UUT. This is just another example of
the versatility of the Fluke 9000 Micro-Sys-
tem Troubleshooter.

25 1
50-pir; Header
or
O 8X300 Q <
Socket 3

—y

Holes for 1"’ stand-offs

Ut U2

us)

\'.\ 40-pin socket {.‘.‘/
' forpod -

Figure 2.

4

D



Taking measurements with the
Async option in a programming

mode
[

The new Asynchronous Signature
Probe Option from Fluke comes complete
with all the software to operate the option
in the immediate mode. But the operator
has the added capability to customize
their own routines using the programs pro-
vided with the Async option as sub-
routines for a larger customer designed
testing package. ‘

The cassette tape provided with the
Async option contains the Merge tape pro-
gram (Program O Side B)that allows the
operator to selectively pull programs from
a master tape and merge them with new
programs under development. Using this
program the operator can select those
programs from the Async option software
that will best fit their needs for testing.

Several programs are supplied on the
cassette included with the Asynchronous
Signature Probe Option. Below is a listing
of all the programs; an explanation of
each program can be found in section
three of the operators manual.

Program Program
Number = Name
Side A
0 Initialize
1 Interactive Operation
2 Service Gate Keys
3 Service Setup Key
4 Display Gate
5 Start Setup
6 Stop Setup
7 Clock Setup
8 Enable Setup
9 Stop Count Setup
11 Event Setup
12 Setup Hardware
13 Arm Gate
14 Get Signature
15 Get Events
16 Get Waveform
17 Read Data and Status
18 Send Op Code
19 Display Waveform
20 Append Signature

Programs 0-9 and program 11 are user
interface programs used by the option
when it is operating in the interactive
mode. Their primary function is to load the
initiatization register (Reg 8) with the
proper setup values for the polarity of the
control signals, source of the control
signals, count limit for the stop counter,
and mode of the events counter.

Programs 12-20 are library programs
used by the option, independently of one
another and the user interface programs.
These programs will become a part of the
troubleshooting sequence when gathering
signatures, event counts or waveforms.

1. Initialize Register 8

The first step in incorporating the
Asynchronous Signature Probe Option
into a guided troubleshooting routine is to
load the initialization register. If the
programmer knows which setup values he
wants they can be loaded into the
initialization register by using the bit
assignment as documented in Table 3-3 of
the operators manual. Bits 3 thru 29 of
register 8 are used for initializing the
setup commands.

Another way to determine the desired
value in the initialization register is to
Execute Program O of the operating
programs provided with the Async Option.
Then enter the Set-up mode and manually
set the desired values for START, STOP,
CLOCK, etc. After all the set-up values
have been entered, stop Program 0 and
look at the contents of Register 8. It will
contain the intialization value that
represents the setup values you just
selected.

2. Execute 12

The operator then sets up the hardware
of the module, based on the value in the
initialization register, by executing
Program12.

3. Execute 13

Next, Program 13 is executed, which
arms the gate, preparing the module for
actually taking signatures. This program
resets all the registers within the module
and then arms it to receive control signals
(START, STOP, and CLOCK).

The first three steps, initializing Reg 8,
Executing Program 12, and Executing
Program 13 will be standard for any
programmming done with the
Asynchronous Signature Probe Option.
The steps that follow will depend on the
type of stimulus used and the desired
parameters that are to be measured.

4. Stimulate Circuit

The next step is to provide some
stimulus to the circuit. This can be in the
form of a subroutine generated from the
9000A mainframe such as the WALK or

RAMP function. Or the operator can write
aprogram to provide the stimulus to the
circuit under test. If the program uses an
operator generated stimulus then the
program can proceed to Step 5 because
we know the stimulus has been
completed.

However, if a UUT generated stimulus,
such as the refresh signals in a DMA
circuit, is used then the program must
wait until the specified measurement
window (as determined by the set ups)
has occurred. This can be accomplished
by using Program 17 which gets Data and
Status information. This program loads
status bits into register B that indicates
when certain events have occurred. Bits
4, 5, and 6 indicated the occurrence of a
CLOCK, START, and STOP respectfully. A
loop should be written into the program
following Program 13 that monitors the
status, looking for the CLOCK, START,
and STOP as determined by the setup
commands. Following the execution of
Program 17,-when register B contains a 70
(bits 4, 5, and 6 set high) the stimulus is
complete.

5. Execute 14

Following the stimulus you would
execute the program that retrieves the
particular piece of data you are interested
in. To obtain the signature, Execute
program 14, which places the signature
data in register B. Your testing program
can now compare the measured signature
with the actual expected value or display
the measured value to the operator for
analysis.

6. Execute 15

To look at the event count, execute pro-
gram 15, which stores the event count in
register A. One stipulation is that program
14 must be executed before program 15 is
run. Signature data must be shifted out of
the register before the event count is
placed in a position to be retrieved.

7. Execute 16

Program 16 places waveform informa-
tion into registers A and B. Register A will
have a bit set high whenever a high is
measured and Register B will set a bit
high when ever a low is measured. If a
common bit is low in both registers, that
indicates a tristate condition at that
moment in time. This program must be
run after programs 14 and 15 to insure that
signature and event count data has been
shifted out of the register. This program
also overrides the data placed in registers
A and B in the previous programs so that
when you execute 16, you no longer have
access to signature and event count
information.

(continued next page)

5



Async measurements. ..

(continued)

8. Execute 19

With the proper levels stored in regis-
ters A-and B, you would then execute pro-
gram 19 to display the waveform to the
operator.

Another example of using the waveform
capture would be to see what level was
present at a particular instant in time.

Each bit in register A or B represents a
20 nanosecond window in the data path. If
you wish to see what level was present 180
nanoseconds prior to your reference or
STOP signal you would ook at bit 9 in the
register. Suppose the correct or expected
value was a logic high occurring 180
nanoseconds prior to your STOP signal.
To test for its presence you would execute
the following step after executing program
16: If Reg A and 100 > O then a high

occurred 180 nanoseconds before the
STOP signal.

The following is an example of a typical
application of the Async Option in a
Guided Fault Isolation type program test-
ing DMA circuitry.

This program can be easily modified to
fit your particular needs, whether you
want to measure signatures, counts, or
waveform information.-Operator induced
stimulus, such as programmed sub-
routines can be inserted prior to Label 1
and all the programming steps between
Label 1 and Label 2 could then be
eliminated.

The power of the Fluke 9000 Series
Micro-System Troubleshooter has always
been in its flexibility. The new

9000A-006, adds to that flexibility and
makes the Troubleshooter the most
powerful testing tool available. For more
information or a demonstration call your
local Fluke sales office.

Asynchronous Signature Probe Option, .~

Execute Program O
PROGRAM 90

Dpy- “‘Place Probe on U17 pin 22”
Stop

Reg 8 = 528

Exec 12

Exec 13

LabelA

Exec17

If Reg BAND 70 = 70 goto 2
GOTO1

Label 2

Exec 14

Reg1 = AF6C

If RegB = Reg1GOTO 4

Goto 3

Obtain the initialization values for reg. 8.

Prompts the operator to go to-a specific test
point.

Wiait for operator to place probe and then
press Continue

Set initialization values

Set up hardware according to values in ini-
tialization register
Arm Gate

Read Data and Status

Check to see if CLOCK, START, and STOP
have occured
If not return to Label 1 and check again

Stimulus has occurred at this point
Get signature

Set expected signature for test point U17 pin
22

Signature is good, go to next test point at
Label 4

Signature is bad, go to next test point at
Label 3

|
Using the |
Q010A
with @

Tektronix /D02

Martin Marietta Aerospace, :
Denver, Colorado

by E. Hegar

This article discusses the increased
diagnostic power that is available when
the 9010A is used in conjunction with the
Tektronic 7D02 logic analyzer. These rou-
tines were worked through on a 280 based
test tool.

Usually during debugging, little confi-
dence exists concerning the accuracy of
the design, the fabrication, the software
and the documentation of the tool. The
Tektronix 7D02 analyzer is extremely usefut
in tracing the flow of the program software,
but it is limited when very fast and mean-
ingful observations are needed, or when
setting breakpoints. On the other hand,
the 9010A has no timing measurement
capability.

Since the 9010A is connected in parallel  + °
with the 7D02 and the 9010A substitutes for )
the microprocessor in the UUT, an obvious
improvement would be to connect the logic
analyzer to the UUT via the processor
socket. Instead of installing a processor in
the logic analyzer pod, replace it with the
9010A pod. A quick examination of the sche-
matics for the 9000A-Z80 pod and the Tek
280 Pod for the 7D02 show that this will
cause no damage to either item.

Once you have made this interconnec-
tion, you wili be amazed at the increase in
the system’s power.

Now the 9010A will allow:

B immediate downloading of object

code into UUT RAM,

B full front panel control of the UUT

resources, :

B rapid examination of the contents of

memory,

W start address specification,

B many other control and observations

functions.

The disassembly capabilities of the 7D02
will allow:

B examination of address and data bus

contents,

B precise timing measurements,

B glitch capture.

In addition, the logic analyzer is now able - g
to look at resources not directly connected
to the processor bus or isolated by inter- A
mediate resources. Since the analyzer
allows masking of interrupt cycles, you

(continued next page)




N

... .
Using the Q010A....
(continued )
UUT
Processor
Socket  7D02 Data
Acquisition
uuT Pod
N/
TEK 7D02 \
Pod
Fluke TEK
9010A | S| 7D02
9000A-XXXX

Capabilities Pod Capabilities

M Resource Manipulation B Mnemonic Disassembly

B ‘‘Start Execution’’ point B Triggering

H Object Code Alteration B Timing Diagram

M Custom Diagnostic B Glitch Capture

S/W Entry

can now examine only those states you
are interested in, without having to wade
through several hundred bus cycles of
information.

Inclusion of a RAM flag check in the
UUT ROM is another technique that has
been developed for debugging the Z80
testing tool. This technique could also be
applied in similar situations. Depending on
the status of this flag, the UUT would either

execute out of UUT ROM or it would
branch to the address following the flag
in UUT RAM. This allows the placing of
object code other than the normal ROM
code into RAM, and executing it in lieu of
the ROM code. The flag, of course, could
be set via the 9010A, which is also used
to downioad the RAM object code.

The most obvious use of this technique
is that it allows an engineer to put manually

assembled routines in RAM, and in turn,
will allow you to exercise small portions

of UUT circuitry without blowing a new
PROM. These small routines can be used
to branch around code in the ROM that

is discovered to be defective or to create
alternate initialization states for simulated
reset conditions.




FLUKE

John Fluke Mfg. Co., Inc. .
P.O. Box C9090, Everett, WA 98206 ]
Tel. 206-347-6100

Fluke (Holland) B.V.

F.O. Box 2269, 5600 CG,
Eindhoven, The Netherlands
Tel (040) 458045, TELEX 51846

Printed in U.S.A. P0014A-13U8604/SE EN




