Application Information Boi63

9010A Micro-System Troubleshooter:
The Probe and the Program

The 9000-series Micro-System Troubleshooter’s
probe is used extensively when designing a Guided
Fault Isolation (GFI) program. This bulletin will
show how the probe can be made to interact with a
GFI program and provide some subroutines that
can be used when developing a GFI program. These
subroutines, once inserted into main memory, can
be called whenever probe information is required by
a program,

The first step in using the PROBE is to gather data.
Internal to the Troubleshooter there is a register,
other than the 16 registers labeled 0 - F, used for

—  Technical Data
i
l




FLUKE

accumulating PROBE data. This bulletin will refer
to this register as the probe register. Whether in the
immediate or programming mode, the procedure for
using this register is always the same. The three
basic steps are:

READ PROBE
STIMULUS

To clear the probe register

Run stimulus by the probe.
This could take the form of
any Troubleshooter function
i.e. RAMP, WALK,
TOGGLE, etc.

To terminate the gathering
of data by dumping the data
from the probe register into
the display and register 0. In
the executing mode, only
register 0 is affected and not
the display.

READ PROBE

The only way that you can get probe data into

a program is through Register 0. The following table
shows how the probe data is formatted inside
Register 0.

The probe response data is stored in bits 0-31 of
Register 0 as follows:

8 bits

16 bits 8 bits

Register 0
Bits 27-31=0Q

Bit 7=0
Bl K[ ... ]
LOGIC LEVEL COMPUTED EVENT
HISTORY SIGNATURE COUNT

Bit 24 =1 if logic high detected
Bit 25 =1 if logic tristate (invalid) detected
Bit 26 =1 if logic low detected

NOTES:

1. Accumulated probe data is placed in Register 0
when the Read Probe step is executed.

2. Signatures may range from 0000 to FFFF.

3. Event Counts may range from 0 to 127. When a
count of 127 is reached, the counter begins counting
again at 0.

L

Figure 1

Once the data is in Register 0, the three pieces of
data, LEVEL HISTORY, SIGNATURE, and
COUNT have to be separated into their
individual parts to be of any use.

To show this, using the Troubleshooter, assume

© Copyright 1982, John Fluke Mfg. Co., Inc., all rights reserved

that a READ PROBE operation has caused the
value of 596 EC55 to be entered into register 0.

Register 0 looks like this:

0 5 9 6 E C 5 5
0000 0101 1001 0110 1110 1100 0101 0101

Figure 2

Using the AND function of the Troubleshooter as
a mask, unwanted data from Register 0 can be
masked out leaving only the desired information as
a result. If, for instance, only the count is
required, then all bits EXCEPT 0 thru 6 need to be
masked out. To do this you can AND Register 0
with a number that has bits 0 - 6 set to one and all
other bits set to zero.

0 5 9 6 E C 5 5
0000 0101 1001 0110 1110 1100 0101 0101

ANDed with:
0000 G000 0000 0000 0000 0000 0111 1111
Resulting in:

0 0 0 0 0 0 5 5
0000 0000 0000 0000 0000 0000 0101 0101

Figure 3

The Troubleshooter will only accept the AND
value in hexadecimal form, so 1111111 converted to
hex is 7F.

To demonstrate this operation, perform the follow-
ing keystrokes.

First set register 0 equal to 596EC55:

KEYSTROKE DISPLAY
REG REG__
0 REGO = _
596EC55 REGO = 596EC55__
ENTER REGO = 596EC55

Now to perform the MASK operation without
changing register 0:

KEYSTROKE DISPLAY

REG REG__
1 REG1 = _
REG REG1 = REG__
0 REG1 = 596EC55 __
AND REG1 = 596EC55 AND __
7F REG1 = 596EC55 AND 7F__
ENTER REG1 = 55

This leaves the count in Register 1 and register 0
is unchanged.

To get the signature information, you can mask out
unwanted bits by ANDing with FFFF00.



FLUKE

KEYSTROKE DISPLAY
REG REG_
1 REG1 = _
REG REG1 = REG__
0 REG1 = 596EC55 __
AND REG1 = 596EC55 AND __
FFFFOO0 REG1 = 596EC55 AND FFFFO0__
ENTER REG1 = 96EC00

That leaves the signature followed by eight bits set
to zero. To remove these trailing zeros, the shift
function should be used. After performing eight
shift right operations, the signature will be left as a
result.

The keystrokes for this operation are:

REG REG__
1 REG1 = __
Press SHIFT RIGHT key eight times.
ENTER REG1 = 96EC

Bits 24-26 are used for the logic level history in
Register 0.

To separate level history, AND register 0 with
7000000. Then shift register 1, right 24 times.

This completes the procedure for separating the
probe data into its three parts. The next step is
to put this procedure into a program.

If this procedure is to be a subroutine which will
be called by another program, then global
registers will have to be used to transfer the data
back to the calling program. The global registers
are 8 - F. So this program uses register 8 for the
COUNT, register 9 for the SIGNATURE and
register A for the LEVEL.

First write the program so it only performs the
separating operation and not the read probe and
stimulus operations.

KEYSTROKE DISPLAY
PROGRAM PROGRAM _
1 PROGRAM 1__
ENTER PROGRAM 1 CREATED

REG 8 REG8 = _

REG 0 REG8 = REGO _

AND REG8 = REGO AND _

7F REG8 = REGO AND 7F_
ENTER REG8 = REGO AND 7F

REG 9 REG9 = __

REG 0 REGY9 = REGO _

AND REG9 = REGO AND _
FFFFOO REG9 = REGO AND FFFF0O0__
ENTER REG9 = REGO AND FFFFQO0
REG 9 REG9 =

SHIFT RIGHT REG9Y9 EEGQ SHR _
Press the SHIFT RIGHT key seven more times:

ENTER SHR SHR SHR SHR SHR SHR SHR SHR
REG A REGA = _

KEYSTROKE DISPLAY

REG 0 REGA = REGO _

AND REGA = REGO AND __
7000000 REGA = REGO AND 7000000__
ENTER REGA = REGO AND 7000000
REG A REGA =

SHIFT RIGHT REGA = REGA SHR _

Press the SHIFT RIGHT key 23 more times:
ENTER SHR SHR SHR SHR SHR SHR SHR SHR

For test purposes add a display statement that
displays the LEVEL HISTORY and SIGNATURE
in hexadecimal, and the COUNT in decimal. The
display step should look something like this:

ENTER DPY-LVL = $A SIG = $9CNT = @8

Also add a step at the very beginning setting
register 0 to a test value.

Press the PRIOR key until display =

KEYSTROKE DISPLAY
PRIOR START OF PROGRAM 1
Then enter:
REG 0 REGO = __
596EC55 REGO = 596EC55__
ENTER REGO = 596EC55

Now close the program:
PROGRAM PROGRAM 1 CLOSED-XXXX BYTES LEFT

Now execute the program:

EXEC 1 EXECUTE PROGRAM 1__
ENTER

Almost immediately, the display should read:
LVL = 5SIG = 96EC CNT = 85

If the display is different, then check your program.
Often there is a mistake in the number of Shift
Right commands. Remember that when the SHR
steps are displayed, every time “MORE” is pressed,
eight characters are added to the display - less if it is
the end of the program line.

Once this program is working properly with the test
value, you should remove the first step which sets
REG 0 to 596 EC55 and the last step for displaying
the values. Now you could add the three basic steps
for probe operation.

Read Probe - Stimulus - Read Probe

As mentioned in the beginning of the bulletin, the
probe operation should be used as a subroutine, for
it is performed many times in different places
throughout a GFI program. Putting these three
steps into this program would make it very
inflexible.



FLUKE

@®

Having the stimulus as part of the separator routine
would mean that the program could only be used
for that one type of stimulus at that one address.
One solution would be to put the Read Probe -
Stimulus - Read Probe in the main program and
then jump to the separator subroutine.
Unfortunately this would not work because
Register 0 is not a global register. When a program
branches to a called program, Register 0 is stored
and then set to 0 before entering the called program.
Entering Register 0’s value into a global

Register (8-F) before going to the routine would
work, but is not necessary.

Putting the first Read Probe and Stimulus in the
main program, and then going to the separator
routine where the second Read Probe is located,
would give the flexibility required. This removes the
requirement of using a global register for
transferring data to the called program. The Probe
Register, that accumulates probe data before
dumping it to Register 0, is used for this transfer.

Instead of adding all three basic steps, just add a
READ PROBE step at the beginning of the
program. The separator routine should now look like
this:

READ PROBE
REG8 = REGO AND 7F
REG9 = REGO AND FFFF00

REG9 SHR SHR SHR SHR (8 TIMES)
REGO AND 7000000

REGA = REGA SHR SHR SHR SHR (24 TIMES)
With the separator routine in this form, it only
needs to be remembered that Reg 8 will equal the
COUNT, Reg 9 will equal the SIGNATURE and
Reg A will equal the LEVEL HISTORY. When
returning to the main program from the separator
routine, just test the proper register for the proper
value.

An example of how to use this routine from another
program is:
START OF PROGRAM XX

B
m
0]
©
It

READ PROBE

RAMP @ FFFF

EXECUTE PROGRAM 1
IF REG9 = 96EC GOTO 1
DPY-REPLACE U36

1: LABEL 1
DPY-U36 TEST GOOD

END OF PROGRAM XX

If the GFI program cannot afford to use three
registers for this subroutine, a slight modification
will reduce the requirement to one register. For
this example, assume Reg 8 is available. The
separator routine can be told which one of the
three pieces of Probe data is required by the main
program,

Before executing the separator routine, the main
program enters a code into a global register that
will be used by the separator routine to identify
which piece of probe data is required by the main
program. The separator routine will peform the
proper action and return to the main program
with the proper value.

One of our Troubleshooter users suggested the
following program.

The first significant variation, from our first
separator routine, is that the second READ
PROBE will be in the main program. This change
was made because as long as we are going to use
a global register (8) to send a code to the
separator routine, we might as well use it to
carry the probe data as well. There were some
other considerations for this change that will
become clear later. The first problem is to get the
code into register 8 along with the PROBE
DATA from register 0.

Refer to figure 1 and notice that bits 7, and 27
thru 31 are not used for PROBE DATA. The
separator routine will use bits 28 and 29 to
determine wich piece of PROBE DATA the main
program needs. If bit 28 is set to a 1, the
separator routine will return register 8 to the
main program with the signature in it. If bit 29
is set, register 8 will contain LEVEL HISTORY,
and if neither bit 28 or 29 is set to a 1, register 8
will contain the COUNT.

After the second READ PROBE, the main
program will put the contents of register 0 into
register 8. If COUNT is desired, nothing more
needs to be done, just execute the separator
routine. If SIGNATURE is required, then the
main program will have to set bit 28 of register
8. This is done by ORing register 8 with a value
that has bit 28 set to a 1.



FLUKE

0 5 9 6 E C 5 5
0000 0101 1001 0110 1110 1100 010t 0101

ORed with
0001 0000 0000 0000 0000 0000 0000 0000
Resulting in

1 5 9 6 E C 5 5
0001 010t 1001 0110 1110 1100 0101 0101

This OR value must be entered into the
Troubleshooter in Hexadecimal form. 10000000 is
the proper Hex value to set bit 28. Bit 29 would
be set with a hex value of 20000000.

Now with the proper bit set, the separator
program will test these two bits and branch to
the proper section of the separator routine. The
new subroutine should look like this:

START OF PROGRAM 1
IF REG8 AND 10000000 >0 GOTO 1
IF REG8 AND 20000000 >0 GOTO 2
REG8 = REGS8 AND 7F
GOTO F
1. LABEL 1
REG8 = REGS8 SHR (8 TIMES) AND FFFF
GOTO F
2. LABEL 2
REG8 = REGS8 SHR (24 TIMES) AND 7
F: LABEL F
END OF PROGRAM 1

To use this subroutine, our main program would
look like this:

START OF PROGRAM XX

READ PROBE

RAMP @ FFFF

READ PROBE

REG8 = REGO OR 10000000
EXECUTE PROGRAM 1

IF REG8 = 96EC GOTO 1
DPY-REPLACE U36

1: LABEL 1
DPY-U36 TEST GOOD

END OF PROGRAM XX

Since Register 8 had bit 28 set, when the main
program called the subroutine, the signature was
in register 8 after returning from the separator
routine,

One feature of this separator routine allows you
to get all three pieces of PROBE DATA from one
STIMULUS. This is due to the fact that register
0 is restored to its original value after returning
from the separator routine. This is another reason
why the second READ PROBE is in the main
program. Just put register 0 into register 8 along
with the proper code and you can get each piece
of PROBE DATA by re-executing the separator
program for each piece of data.

No matter which of the two routines you use,
they both should work in any type of GFI
program you design.




