Errata

Title & Document Type: 16520A/16521A Pattern Generator Module Programming Reference

Manual Part Number: 16520-90908

Revision Date: September 1988

HP References in this Manual

This manual may contain references to HP or Hewlett-Packard. Please note that Hewlett-
Packard's former test and measurement, semiconductor products ad chemical analysis
businesses are now part of Agilent Technologies. We have made no changes to this
manual copy. The HP XXXX referred to in this document is now the Agilent XXXX.
For example, model number HP8648A is now model number Agilent 8648A.

About this Manual

WEe' ve added this manua to the Agilent website in an effort to help you support your
product. This manual provides the best information we could find. It may be incomplete
or contain dated information, and the scan quality may not be ideal. If we find a better
copy in the future, we will add it to the Agilent website.

Support for Your Product

Agilent no longer sells or supports this product. Y ou will find any other available
product information on the Agilent Test & Measurement website:

www.tm.agilent.com

Search for the model number of this product, and the resulting product page will guide
you to any available information. Our service centers may be able to perform calibration
if no repair parts are needed, but no other support from Agilent is available.

Agilent Technologies

Christina Samii
16520A/16521A Pattern Generator Module Programming Reference

Christina Samii

Christina Samii
16520-90908

Christina Samii
September 1988

X,
Programming Reference

HP 16520A/16521A
Pattern Generator Module

for the HP 16500A Logic Analysis System

[ﬁﬁ HEWLETT

PACKARD

© Copyright Hewlett-Packard Company 1988

Manual Part Number 16520-90908 Printed in U.S.A. September 1988

Product
Warranty

Limitation of Warranty

This Hewlett-Packard product has a warranty against defects in material
and workmanship for a period of three years from date of shipment.
During warranty period, Hewlett-Packard Company will, at its option,
either repair or replace products that prove to be defective.

For warranty service or repair, this product must be returned to a service
facility designated by Hewlett-Packard. However, warranty service for
products installed by Hewlett-Packard and certain other products
designated by Hewlett-Packard will be performed at the Buyer’s facility at
no charge within the Hewlett-Packard service travel area. Outside
Hewlett-Packard service travel areas, warranty service will be performed
at the Buyer’s facility only upon Hewlett-Packard’s prior agreement and
the Buyer shall pay Hewlett-Packard’s round trip travel expenses.

For products returned to Hewlett-Packard for warranty service, the Buyer
shall prepay shipping charges to Hewlett-Packard and Hewlett-Packard
shall pay shipping charges to return the product to the Buyer. However,
the Buyer shall pay all shipping charges, duties, and taxes for products
returned to Hewlett-Packard from another country.

Hewlett-Packard warrants that its software and firmware designated by
Hewlett-Packard for use with an instrument will execute its programming
instructions when properly installed on that instrument. Hewlett-Packard
does not warrant that the operation of the instrument software, or
firmware will be uninterrupted or error free.

The foregoing warranty shall not apply to defects resulting from improper
or inadequate maintenance by the Buyer, Buyer-supplied software or
interfacing, unauthorized modification or misuse, operation outside of the
environmental specifications for the product, or improper site preparation
or maintenance.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED.
HEWLETT-PACKARD SPECIFICALLY DISCLAIMS THE
IMPLIED WARRANTIES OR MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE.

Exclusive Remedies

Assistance

Certification

Safety

THE REMEDIES PROVIDED HEREIN ARE THE BUYER'S SOLE
AND EXCLUSIVE REMEDIES. HEWLETT-PACKARD SHALL
NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL
INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER
BASED ON CONTRACT, TORT, OR ANY OTHER LEGAL
THEORY.

Product maintenance agreements and other customer assistance
agreements are available for Hewlett-Packard products.

For any assistance, contact your nearest Hewlett-Packard Sales and
Service Office.

Hewlett-Packard Company certifies that this product met its published
specifications at the time of shipment from the factory. Hewlett-Packard
further certifies that its calibration measurements are traceable to the
United States National Bureau of Standards, to the extent allowed by the
Bureauw’s calibration facility, and to the calibration facilities of other
International Standards Organization members.

This product has been designed and tested according to International
Safety Requirements. To ensure safe operation and to keep the product
safe, the information, cautions, and warnings in this manual must be

heeded.

Table of Contents
]

Chapter 1 1 Programming the HP 16520A/16521A
1-1 Introduction
1-1 About This Manual
1-2 Programming the HP 16520A Pattern Generator

1-2 Selecting the Module v

1-2 Programming the Pattern Generator
1-4 Mainframe Commands

1-4 CARDcage? Query

1-5 MENU Command/Query

1-5 SELect Command/Query

1-5 STARt Command

1-5 STOP Command

1-5 RMODe Command/Query

1-6 SYSTem:ERRor? Query

1-6 SYSTem:PRINt Command/query
1-6 MMEMory Subsystem

1-6 INTermodule Subsystem

1-6 Command Set Organization
1-9 Module Status Reporting

1-10 MESE
1-12 MESR
I
Chapter 2 Module Level Commands
2-2 STEP
2-4 RESume

Contents - 1

Chapter 3 FORMat Subsystem
3-1 Introduction
3-1 Strobe Sublevel Set
3-4 CLOCk
3-5 DIVide
3-6 LABel
3-8 PERiod
39 REMove
3-10 THReshold
3-11 STRobe
3-12 DElLay
3-14 WIDTh
|
Chapter 4 LISTing Subsystem
41 Introduction
4-3 COLumn
4-5 PROGram
4.5 NOOP
4-5 REPeat
4-5 WAIT
4-6 WIMB (Wait IMB)
4.7 BREak
47 SIGNal (Signal IMB)
4-7 MACRO
4-9 REMove
|
Chapter 5 MACRo Subsystem
5-1 Introduction
53 PROGram
53 Setting Pass Parameters
5-6 REMove

Contents - 2

SYMBol Subsystem

Chapter 6
6-1 Introduction
6-3 BASE
6-4 PATTern
6-5 RANGe
6-6 REMove
.67 WIDTh
|
Appendix A Data and Setup Commands
A-1 Introduction
A-1 Definition of Block Data
A-3 System Setup
A-4 System DATA
A-4 Section 1 "MAINPROG"
A-7 Section 2 "MACROT1"
A-9 Section 3 "MACRO2"
A-9 Section 4 "MACRO3"
A-9 Section 5 "MACRO4"

Contents -3

Programming the 1
HP 16520A/16521A
o

Introduction This manual combined with the HP 165004 Programming Reference
manual provides you with the information needed to program the HP
16520A/HP 16521A pattern generator module. Each module has its own
manual to supplement the mainframe manual since not all mainframes will

be configured with the same modules.

About This This manual is organized into six chapters. The first chapter contains:
Manual ’

® General information and instructions to help you get started

e Mainframe system commands that are frequently used with the
pattern generator module

o HP 16520A/HP 16521A Pattern Generator command tree
¢ Alphabetic command-to-subsystem directory

Chapter two contains the module level commands. Chapters three
through six contain the subsystem commands for the pattern generator.

Chapter six contains the Symbol Subsystem.

Error messages for the HP 16520A are included in generic system error
messages and are in the HP 165004 Programming Reference manual.

Programming the HP 16520A
1-1

Appendix A contains information on the SYSTem:DATA and
SYSTem:SETup commands for this module.

R

Programming This section introduces you to the basic command structure used to

the HP 16520A program the pattern generator. Also included is an example program that
uses the two pods of the master card.

Pattern

Generator

Selecting the Module

Programming the
Pattern Generator

Before you can program the pattern generator, you must first "select” it,
otherwise, there is no way to direct your commands to the pattern
generator.

To select the module, use the system command :SELect , followed by the
numeric reference for the slot location of the pattern generator(1...5 refers
to slot A...E respectively). For example, if the pattern generator master
card is in slot E, then the command:

:SELect 5

would select this module. For more information on the select command,
refer to the HP 165004 Programming Reference Manual.

A typical pattern generator program includes the following tasks:

e select the appropriate module

e set program parameters

o define a pattern generator program

e run the pattern generator program
Programming the HP 16520A

1-2

Program Comments

The following example program generates a pattern using the two output
pods of the master card:

10 OUTPUT XX SELECT 1"

20 OUTPUT X004 ":FORMAT:REMOVE ALL"

30 OUTPUT XXX FORMAT:LABEL 1 'A’,POSITIVE,127,0
40 OUTPUT XXX FORMAT:LABEL 'B',POSITIVE,0,255"
50 OUTPUT XXX LIST:REMOVE ALL"

60 OUTPUT XXX;*LIST:PROG 1,NOOP,'#H7F'#HFF™
70 OUTPUT XXX;*:RAMODE REPETITIVE"

80 OUTPUT XXX;*: START"

90 END

Note

The three Xs (XXX) after the OUTPUT statement in the above
example refer to the device address required for programming
over either HP-IB or RS-232-C. Refer to your controller manual
and programming language reference manual for information on
initializing the interface.

Line 10 selects the pattern generator in slot A

Line 20 removes all labels previously assigned

Line 30 assigns label ’A’, the output polarity and defines active channels of
pod A3

Line 40 assigns label ‘B’ and defines active channels of pod A2

Line 50 removes all program lines

Line 60 lists the first line of the pattern generation program. Channel data
may be specified in binary, octal, decimal, hexadecimal.

Line 70 Sets the RMODE to repetitive. If the program is to be run only
once, select the :RMODE SINGLE command.

Line 80 Starts the program.

For more information on the specific pattern generator commands, refer
to chapters two through six of this manual.

Programming the HP 16520A
13

Mainframe These commands are part of the HP 16500A mainframe system and are
mman mentioned here only for reference. For more information on these
Co ands commands, refer to the HP 165004 Programming Reference manual.

CARDcage? The CARDcage query returns a string which identifies the modules that
Query are installed in the mainframe. The returned string is in two parts. The
first five two-digit numbers identify the card type. The identification
number for the HP 16520A pattern generator is 21 and the HP 16521A
identification number is 22. A "-1"in the first part{of the string indicates
no card is installed in the slot. Aec Srnnd

The five single-digit numbers in the second part of the string indicate in
which slots cards are installed and where the master card is located.

Example: 11,12,-1,-1,31,1,1,005

A returned string of 11,12 -1,-1,31,1,1.0,0,5 means that an oscilloscope
timebase card (ID number 11) is loaded in slot A and the oscilloscope
acquisition card (ID number 12) is loaded in slot B. The next two slots (C
and D) are empty (-1). Slot E contains a logic analyzer module (ID
number 31).

The next group of numbers (1,1,0,0,5) indicate that a two card module is
installed in slots A and B with the master card in slot A. The "0" indicates
an empty slot or the module software is not recognized or not loaded.
The last digit (5) in this group indicates a single module card is loaded in
slot E. Complete information for the CARDcage query is in the AP
165004 Programming Reference manual.

Programming the HP 16520A
14

MENU
Command/query

SELect
Command/query

STARt
Command

STOP
Command

RMODe
Command/query

The MENU command selects a new displayed menu. The first parameter
(X) specifies the desired module. The optional second parameter
specifies the desired menu in the module (defauits to 0 if not specified).
The query returns the currently selected (and displayed) menu.

For the HP 16520A/HP 16521A Pattern generator:

X,0 - Format Menu
X,1 - Listing Menu
X,2 - Macro 1 Menu
X,3 - Macro 2 Menu
X,4 - Macro 3 Menu
X,5 - Macro 4 Menu

X = slot number that contains the pattern generator master card.

The SELect command selects which module or intermodule will have
parser control. SELect 0 selects the intermodule, SELect 1 through 5
selects modules A through E respectively. Parameters -1 and -2 select
software options 1 and 2. The SELect query returns the currently selected
module.

The STARt command starts the specified module or intermodule. If the
specified module is configured for intermodule, STARt will start all
modules configured for intermodule.

The STOP command stops the specified module or intermodule. If the
specified module is configured for intermodule, STOP will stop all
modaules configured for intermodule.

The RMODe command specifies the run mode (single or repetitive) for a
module or intermodule. If the selected module is configured for
intermodule, the intermodule run mode will be set by this command. The
RMODe query returns the current setting.

Programming the HP 16520A
1-5

SYSTem:ERRor?
Query

SYSTem:PRINt

The SYSTem:ERRor query returns the oldest error in the error queue. In
order to return all the errors in the error queue, a simple FOR/NEXT
loop can be written to query the queue until all errors are returned. Once
all errors are returned, the queue will return zeros.

The SYSTem:PRINt command initiates a print of the screen or listing

Command/query buffer over the current printer communication interface. The
SYSTem:PRINt query sends the screen or listing buffer data over the
current controller communication interface.

MMEMory The MMEMory Subsystem provides access to both internal disc drives for
Subsystem loading and storing configurations.
INTermodule The INTermodule Subsystem commands are used to specify intermodule
Subsystem arming between multiple modules.
I

Command Set
Organization

The command set for the HP 16520A is divided into four separate
subsystems. The subsystems are: FORMat, LISTing, MACRo, and the
SYMBol subsystem. Each of the subsystems commands are covered in
their individual chapters starting with chapter 2.

Each of these chapters contains a description of the subsystem, syntax
diagrams and the commands in alphabetical order. The commands are
shown in longform and shortform using upper and lowercase letters. For
example, FORMat indicates that the longform of the command is
FORMAT and the shortform is FORM. Each of the commands contain a
description of the command and its arguments, the command syntax, and
a programming example.

Figure 1-1 is the command tree for the HP 16520A pattern generator
module.

Programming the HP 16520A

1-6

SELECT)

—

Module Leve!

STEP
RESume

16520/8L03

FORMat LISTing
COLumn
PROGr am
CLOCk REMove
DIVide
|
STRobe LABe
PERiod
DELay
WIDTh REMove
THReshold

MACRo

PROGr am
REMove

SYMBo |

BASE
RANGe
PATTern
REMove
WIDTh

(X)=SLOT NUMBER THAT CONTAINS-J%MEB*SfrE:RD.

— SEREEF—B=GYEFEM-E

SELECT
SELECT
SELECT
SELECT
SELECT

1=8107
2=SLOT
3=SLOT
4=SL0OT
5=5L0T

Figure 1-1. HP 165204/HP 165214 Command Tree

mogoOw>»

Programming the HP 16520A

17

“

Table 1-1. Alphabetical Command to Subsystem Directory.

COMMAND | WHERE USED
BASE SYMBo |
CLOCK FORMat
COLumn LISTing
DELay STRobe
DIvide FORMat
LABel FORMat
PATTern SYMBo |
PERiod FORMat
PROGr om LISTing
MACRo
RANGe SYMBo |
REMove FORMat
LISTing
MACRo
SYMBo |
RESume Moduie Level
STEP Moduie Level
THReshold STRobe
WwiDth STRobe
SYMBo

18520/81.02

Programming the HP 16520A
18

Module Status
Reporting

Each module reports its status to the Module Event Status Register
(MESR < N >) which in turn reports to the Combined Event Status
Register (CESR) in the HP 16500A mainframe (see HP 165004
Programming Reference manual). The Module Event Status Register is
enabled by the Module Event Status Enable Register (MESE<N>).

The following descriptions of the MESE<N> and MESR <N>
commands provide the module specific information needed to enable and
interpret the contents of the registers

Module Event Module
Status Register
\
Combined
Event Status Register
Mainfraome
Stotus Byte Register
16500/BLZ.

Figure 1-2. Module Status Reporting

Programming the HP 16520A
19

MESE<N>

MESE<N>

Command Syntax:

where:

<N>

command/query

The MESE < N> command sets the Module Event Status Enable register
bits. The MESE register contains a mask value for the bits enabled in the
MESR register. A one in the MESE will enable the corresponding bit in
the MESR register; a zero will disable the bit.

The first parameter after the command specifies the module (<N> =
1...5 refers to the module in slot A...E). The second parameter specifies
the enable value.

The MESE query returns the current setting.

Refer to table 1-2 for information about the Module Event Status register
bits, bit weights, and what each bit masks in the module. Complete
information for status reporting is in the HP 165204 Programming
Reference manual,

:MESE < N> <enable_mask >

= {1]2}3]4|5} number of slot in which the module resides

<enable_mask> := integer 0 to 255
Example: OUTPUT XXX;":MESES 2*
Programming the HP 16520A

1-10

MESE<N>

Query Syntax:
Returned Format:

Example:

:MESE<N>?

[MESE] <enable_mask> <NL>

10 OUTPUT XXX;":MESE2?"
20 ENTER XXX; Mes

30 PRINT Mes

40 END

Table 1-2. Module Event Status Enable Register

Module Event Status Enable Register

RUN COMPLETE

(A "1" enables the MESR bit)
BIT WEIGHT ENABLES
7 128 NOT USED
6 64 NOT USED
5 32 NOT USED
4 16 NOT USED
3 8 NOT USED
2 4 NOT USED
1 2 NOT USED

18520/8L04

The Module Event Status Enable Register contains a mask value for the
bits to be enabled in the Module Event Status Register (MESR). A one in
the MESE enables the corresponding bit in the MESR, a zero disables the

bit.

Programming the HP 16520A

1-11

MESR<N>

MESR<N>

Query Syntax:

Returned Format:

query

The MESR < N> query returns the contents of the Module Event Status
register.

Note
Reading the register clears the Module Event Status Register.

Table 1-3 shows each bit in the Module Event Status Register and their bit
weights for this module. When you read the MESR, the value returned is
the total bit weights of all bits that are high at the time the register is read.

The parameter 1...5 refers to the module in slot A...E respectively.

:MESR<N>?

[MESR] < status > <NL>

where:
<N> = {1]2]|3]|4|5} number of siot in which the module resides
<status> 1= 0to 255
Example: 10 OUTPUT XXX;":MESR2?"

20 ENTER XXX; Mer

30 PRINT Mer

40 END

Programming the HP 16520A

1-12

MESR<N>

|
Table 1-3. Module Event Status Register

Module Event Status Register
BIT WEIGHT CONDITION
7 128 NOT USED
6 64 NOT USED
5 32 NOT USED
4 16 NOT USED
3 8 NOT USED
2 4 NOT USED
) 2 " NOT USED
] 1 1=RUN COMPLETE
@=RUN NOT COMPLETE

16520/8L05

Note

The MESR bit will be set at the end of the program or if a
BREAK instruction is encountered within the program.

Programming the HP 16520A
1-13

Module Level Commands 2
T

The Module Level Commands control the operation of pattern generator
programs. The two Module Level Commands are STEP and RESume.
Refer to figure 2-1 for the Module Level Syntax Diagram.

f—® aukat
—CO =G
count L

e STEP? }

»{ STEP FSTote)}
RESume -
-) 16520/5%04

count = an integer from I to 999, specifying number of program lines

Figure 2-1. Module Level Syntax Diagram

Module Level Commands
2-1

STEP

STEP

Command Syntax:

For the STEP command
Example:

Command Syntax:

For STEP Count
command

where:

<gount>

Example:

Module Level Commands
2-2

Command/Query

The STEP command consists of four parts: the STEP command, the
STEP Count command, the STEP query, and the STEP FSTate
command .

The STEP command causes the pattern generator to step through the
number of program lines specified by the STEP Count command. The
valid program line range for the STEP Count command is from 1 to 999.
The STEP count query returns the current count.

The STEP FSTate (step first state) command allows you to return to
program line 0 of the current program.

:STEP

OUTPUT XXX;":STEP"

STEP <count>

;1= an integer from 1 to 999, specifying the number of program lines.

OUTPUT XXX;":STEP 20"

STEP

|
Query Syntax:

Returned Format:

Example:

Command Syntax:

For STEP FSTate
command:

Example:

:STEP?

[STEP] <count>

10 DIM Sc${100]
20 OUTPUT XXX;*:STEP?*
30 ENTER X0X;S¢c$

40 PRINT Sc$

50 END

:STEP FSTate

OUTPUT XXX;*:STEP FSTATE"

Module Level Commands
2-3

RESume
I

RESume Command

When the pattern generator encounters a BREAK instruction, program
execution is halted. The RESume command allows the program to
continue until another BREAK instruction is encountered, or until the
end of the program is reached.

Command Syntax: :RESume

Example: OUTPUT XXX;":RESUME"

Module Level Commands
2-4

FORMat Subsystem 3

—

Introduction

Strobe
Sublevel Set

The commands of the Format subsystem control the pattern generator
values such as data output rate, strobe width and delay, and the channels
that you want to be active. The Format subsystem also lets you specify the
clock source and allows you to group channels together under a common,
user - defined name. Refer to Figure 3-1 for the Format subsystem syntax
diagrams.

The commands of the Strobe sublevel are part of the Format subsystem
and are used to set the strobe delay and strobe width.

Each pattern generator master card has three strobe outputs. The strobe
outputs are data channels with selectable pulse width and pulse delay.
While standard data channels can change state only at the start of an
output clock cycle, strobes can change state after the clock transition or
can change state in the middle of a clock cycle.

If the polarity of a strobe channel needs to be changed, use the LABEL
command. To specify the polarity of strobe channels individually, rename
each strobe under a different label.

FORMat Subsystem
31

@ N CED S

~
INTerna lj—?

EXTernal

-={ CLOCK? }

|-~{ DIVide? }

LABe space
pod_assignment .

° label_naome ° ’

[}

S

chan_gssignment

r—b(PERiod)——{ space }—Dijock_per iod }
He={ PERi0d? }

\j

P/O Figure 3-1. Format Subsystem Syntax Diagram

FORMat Subsystem
3.2

—C— Y

tabel_name

——GHResho@——{ space

AL D?

user_level

>

DELGD———' delagy_arg }-———’

width.arg

16520/5%03 wiotne J
label name = g string of up to 6 alphanumeric characters
chan_assignment = an integer from 0to 255
clock period = a real number from 20 ns through 200 us
user_level = a voltage level from -9.9 V'to + 9.9V
delay_arg = a real number specifyving strobe delay time
width_arg = a real number specifying strobe width
P/O Figure 3-1. Format Subsystem Syntax Diagram
FORMat Subsystem
3-3

CLOCk

CLOCKk

Command Syntax:
Example:

Query Syntax:
Returned Format:

Example:

FORMat Subsystem
34

Command/Query

The CLOCk command specifies the clock source for the pattern
generator. The choices are INTernal or EXTernal. The clock specified by
this command is the output data clock. Each time a new clock period
starts, the pattern generator outputs go to their next state, as defined by
the program listing. The internal clock pulse period may be varied using
the PERIOD command. The maximum external clock rate is 50 MHz.
The query returns the current clock choice.

:FORMat:CLOCk {INTernal | EXTernal}
OUTPUT XXX;":FORMat: CLOCK INTERNAL"
:FORMat:CLOCk?

[:FORMat:CLOCK] {INTernal | EXTernal} <NL>

10 DIM CI${100]

20 OUTPUT XXX;": FORMAT: CLOCK?*
30 ENTER X0XX;ClI$

40 PRINT CI$

50 END

DIVide

Command Syntax:

where

<divide by value >

Example:

Query Syntax:

Returned Format:

Example:

DiIVide

Command/Query

The DIVide command allows you to divide the external clock frequency
by 1, 5 or 10. When divide by 1 is chosen, the output strobes are not
available. The divide by 5 and divide by 10 division parameters determine
the resolution by which the strobe width and delay paramcters can be set.
In divide by 5, the width and delay may be set in 1/5 increments of the
clock period. In divide by 10, the width and delay may be set in 1/10
increments of the clock period. The query returns the current division
ratio.

:FORMat:DiVide <divide by ratio >

u=1,50r10

OUTPUT XXX;":FORM:DIV 1"
:FORMat:Dlvide?

[FORMat:DiVide] <divide by ratio> <NL>

10 DIM Di$[100]
20 OUTPUT XXX;*:FORMAT:DIVIDE?*
30 ENTER)0 Di$

40 PRINT Di$

50 END

FORMat Subsystem
3.5

LABel

LABel

Command Syntax:

where:

< pod assignment >
<label name >
< polarity >

FORMat Subsystem
36

Command/Query

The LABel command inserts a new label or modifies the contents of an
existing label. If more than 20 labels are specified, and an attempt is made
to insert another new label, the last label (bottom label) will be modified.

Stimulus channels can be assigned to only one label at a time. If duplicate
assignments are made, the last channel assignments take precedence.

The first parameter is optional and is used to specify the first pod that is
to have channels assigned. If the first parameter choice is not made, then
the STROBE/DATA pod of the master card is assumed. The pods are
numbered in the same order as they appear in the format menu, with zero
representing the STROBE/DATA pod of the master card. The second
parameter sets the channel polarity. If the polarity is not specified, the last
polarity assignment is used. The last parameters assign the active channels
for each pod.

Each assignment parameter is a binary encoding of the channel
assignments of the pod. A "1" in a bit position means that the associated
channel in that pod is included in the label. A "0" in a bit position excludes
the channel from the label. The minimum value for any pod specificaiion
is 0, the maximum value for all pods except the STROBE/DATA pod is
255. The maximum value for the STROBE/DATA pod is 127. A value of
255 includes all channels of a pod assignment. The query must specify a
label name and returns the current pod assignments and channel polarity
for that label.

:FORMat:LABel [< pod assignment >,] <label name >’ [<polarity>,] <channel
assignment >, <channel assignment >

::= an integer from O to 26, depending on how many expansion cards are used.
.1 = string of up to 6 alphanumeric characters
::= polarity of the channel outputs,NEGative or POSitive

< channel assignment >

Example:

Query Syntax:

Returned Format:

Example:

LABel

;1= a string in one of the following forms:
'B0O1..." for binary

'#Q01234567..'for octal
'#H0123456789ABCDEF... for hexadecimal
'0123456789..." for decimal.

OUTPUT X0¢":FORMAT:LABEL 1,’A",POSITIVE,255,0"

:FORMat:LABei? <label name >

[:FORMat:LABel] <!abel name >, <polarity >, <channel assignment >, <channel

assignment > < NL >

10 DIM La$[100]

20 OUTPUT XXX;*FORMAT:LABEL? 'A™
30 ENTER XXX;La$

40 PRINT La$

50 END

FORMat Subsystem

37

PERiod

I
PERiod Command/Query

The PERiod command specifies the internal clock period. The range
limits are from 20 ns to 200 us in a 1, 2, 5 sequence. The query returns the

current clock period.

Command Syntax: :FORMat:PERiod <clock period >

where:

<clock pericd> ::= areal number from 20 ns to 200 us, in a 1, 2, 5 sequence

Example: OUTPUT X0XX;*:FORMAT:PERIOD 1.0E-6"

Query Syntax: :FORMat:PERiod?
Returned Format: [:FORMAT:PERIOD] <clock period > <NL>

Example: 10 DIM Cp${100}
20 OUTPUT X% FORMAT: PERIOD?"

30 ENTER Y00;Cp$
40 PRINT Cp$
50 END

FORMat Subsystem
38

REMove

e
REMove Command

The REMove is used to delete a single label, or all labels from the format
menu. If a label name is specified, it must match a label name currently
active in the format menu.

Command Syntax: :FORMat:REMove {ALL| <label name >}

Example: OUTPUT X0 FORMAT:REMOVE ALL"

FORMat Subsystem
39

THReshold

THReshold

Command Syntax:

where:

<value>

Example

Query Syntax:
Returned Format:

Example:

FORMat Subsystem
3-10

Command/Query

The THReshold command sets the input threshold levels for the pattern
generator input pod. The selection may be TTL, ECL or User Defined.
The user defined input may range from -9.9 V to +9.9 V. The query
returns the current setting.

:FORmat: THReshold {TTL|ECL| <value>}

:: = voltage (real number) -9.9 to +9.9
OUTPUT XXX;*:FORMAT: THRESHOLD 5.2v*
:FORMAT: THRESHOLD?

[FORMAT: THRESHOLD] <vaiue >

10 DIM Th$[100]

20 OUTPUT XXX;":FORMAT: THRESHOLD?"
30 ENTER Y00 Th$

40 PRINT Th$

50 END

STRobe

Command Syntax:

where:

< strobe number >
<strobe parameter >

Example:

STRobe

Selector

The STRobe Selector is used as part of a compound header to set the
output strobe parameters.

It always follows the FORMAT selector because it selects a branch below
the Format level in the command tree. When setting strobe parameters,
the strobe number must always be specified (strobe 0 through strobe 2).

:FORMat:STRobe < strobe number > : < strobe parameter >

:: = strobe number 0, 1, 0r 2
::= strobe parameter may either be DELay or WIDTh command

OUTPUT XXX;":FORMAT:STROBE1:DELAY 10E-8"

FORMat Subsystem
3-11

DELay

DELay

Command/Query

The DELay command sets the strobe delay value. The delay value set is
with respect to the rising edge of the output clock. In other words, the
delay value tells the pattern generator to delay the start of the strobe from
the rising edge of the output clock. The output strobes are not available at
the clock period of 20 ns or external clock divide by 1. Strobe delay time
and strobe width are related to the clock period. The delay time plus
width can not exceed the one clock period. The delay parameters may be

set as shown in Table 3-1. The query reports the current delay setting.

INTERNAL EXTERNAL DELAY PARAMETER SETTING
CLOCK PERIOD CLOCK =+ (MAXIMUM RESOLUTION)
20ns =1 OUTPUT STROBES ARE NOT AVAILABLE
. DELAY may be set in 1/5
Sons -5 increments of output clock period.
w&”s 10 DELAY moy be set in 1/10
200us : increments of output clock period.

Command Syntax:

where:

< strobe number >
<delay value >

Example:

FORMat Subsystem
3-12

16520/8L10

Table 3-1. Strobe DELAY Parameter Setting

:FORMat: STRobe < strobe number >:DELay <delay value >

.= strobe number 0, 1,0r 2

:: = a real number from O to the current output data rate if internally clocked
or

an integer between 0 and § if output is externally clocked

OUTPUT XXX;“:FORMAT:STROBE1:DELAY 1E-6"

DELay

Query Syntax: FCRMat:STRobe < strobe number > :DELay?
/

Returned Format: [FORMAT:STROBEY < strobe number > :DELAY] < delay value > <NL>

Example: 10 DiM Sd$[100]
20 OUTPUT XXX;*:FORMAT:STROBE1:DELAY?*
30 ENTER XXX;Sd$
40 PRINT Sd$
50 END

FORMat Subsystem
3-13

WIDTh

WIDTh Command/Query

The WIDTh command sets the strobe width value. The width parameter
are set in the same manner as the strobe delay parameters. Refer to Table
3-2 for an explanation of the strobe width parameter settings. The query
returns the current width setting.

INTERNAL EXTERNAL WIDTH PARAMETER SETTING
CLOCK PERIOD CLOCK + (MAXIMUM RESOLUTION)
2@ns =1 OUTPUT STROBES ARE NOT AYAILABLE
50ns 5 WIDTH may be set in 1/5.
increments of clock period.
18@ns .
to 10 WIDTH may be set in 1/10

200us increments of output clock period.

16520/BLO%

Table 3-2. Strobe WIDTH Parameter Settings

Command Syntax: :FORMat:STRobe <strobe number>:WIDTh <width value>

where:
<strobe number> ::= strobe numberO0, 1,2
<width value> ::= a real number between 0 and the output data rate if internal clock is used

or
an integer between 0 and 10 if external clock is used

Example: OUTPUT XXX;*:FORMAT:STROBEO:WIDTH 500ns"

FORMat Subsystem
3-14

WIDTh

Query Syntax: :FORMat:STRobe:WIDTh?

Returned Format: [FORMAT:STROBE < strobe number > :WIDTh] < width value > <NL >

Example: 10 DIM W$[100]
20 CUTPUT XXX;":FORMAT:STROBE1:WIDTH 500ns"
30 ENTER X00GWv$
40 PRINT W$
50 END

FORMat Subsystem
3-15

LISTing Subsystem 4

Introduction The commands of the Listing subsystem allow you to write a pattern
generator program using the parameters set in the Format subsystem.

— =
oD 6 G S My) & T

—JCOLumn?)——{ space H column_numJ - o

——(PROGromH space H prog-!ine_num l——@

}
V{ 1

P/O Figure 4-1. LISTing Subsystem Syntax Diagram

LISTing Subsystem
4-1

;a

o

NOOP

REPeat

WIMB

BREak

SIGNal

MACRo<N>

I

PARaometer

\

e N\
N

’ fabel_vaiue

*@rom?}-——‘?pace ,-——l;g_l ine_nﬂ}—

\DCREMove)—D[spoce

prog_line_numj

_/

18520/5X01

@ rEamE

ALL

column_num = an integer specifying the column that is to receive the new label
label_name = the label name that is to be removed

prog_line_num = an integer specifying the program line number

label_value = a string in one of the following forms:

'#B01..." for binary
20Q01234567..." for octal

2"H0123456789 ABCDEF..." for hexadecimal

’0123456789..." for decimal

repeat_arg = an integer from 1 through 256
wait_arg = an integer from 0 through 255

LISTing Subsystem
4.2

P/O Figure 4-1. LISTing Subsystem Syntax Diagram

COLumn

P
COLumn command/Query

The COLumn command allows you to reorder the labels in the listing
menu and set the numerical base for each label. The order of the labels in
the format menu is not changed when the COLUMN command is used.

The first parameter of the command specifies the column number,
followed by a label name and an optional number base. If a number base
is not specified, the current number base for the label is used.

The query must include a column number and returns the label in that
column and its base.

Command Syntax :LISTing:COLumn <column number >, <label
name > '[,{BINary| OCTal | DECimal | HEXadecimal | ASCii | SYMBol}

where:
<column number> ::= an integer specifying the column that is to receive the new label
<label name> :: = the label name that is to be moved

Note

To move the Instruct column, use INSTRUCT as the label name
without quotation marks.

Example: OQUTPUT XX0G*LIST:COL 1,'A’ HEX"

LISTing Subsystem
4-3

COLumn

Query Syntax;

Returned Format:

Example:

LISTing Subsystem
4-4

:LISTing:COLumn? <column number >

[UISTING:COLUMN] <column number >, <label name >,
{BINary|OCTal | DECimal | HEXadecimai | ASCIl | SYMBol}

10 DIM Co${100]
20 OUTPUT X006 LIST:COL? 1
30 ENTER XXX;Co$

40 PRINT Co$

50 END

PROGram

NOOP

REPeat

WAIT

PROGram

Command/Query

The PROGram command adds pattern generator program lines, or
modifies an existing line. The first parameter is the program line number.
If the line number specified is beyond the last program line currently
entered, a new line is added to the program. If the line number reference
is a line within the current program, the existing program line is modified.
The valid range of line numbers is 0 to 4094.

The labels are programmed in the same order as they are specified in the
format menu regardless of their order in the listing.

If macros are invoked in the main program, the PROGram command line
numbers may not correspond with the line numbers shown on the listing
menu. This is because the macro program is inserted in the main program
list. The PROGRAM command however, compensates for this and allows
contiguous line numbering.

The second parameter is an optional string parameter. It specifies the
starting label for the pattern strings that follow. This parameter is useful
when long program strings are to be separated into several commands.

The next parameter may be one of five instructions or a call to one of four
user defined macros. The instructions that may be used in a program are:
NOOP, REPeat, WAIT, WIMB (Wait IMB), BREak, SIGNal, and
MACRO#.

The NOOP instruction places a no instruction into the program line.

The REPeat instruction allows you to repeat a program line up to 256
times.

Along with an external clock, there are three external input qualifiers
available with each master card. The WAIT instruction causes the pattern
generator to wait at the current program line until the three external
inputs go to a predefined state. When the predefined state is met, the

LISTing Subsystem
4-5

PROGram

program proceeds to the next program line.

When the wait parameter is represented in binary, each bit determines
whether the associated state on the external inputs will be included or
excluded from the wait condition. If all the wait bits are 1’s, the pattern
generator output is stopped, while all 0’s allow the pattern generator to
continue to the end of the program. A wait parameter of 01010101 is used
in the example of Figure 4-2).

BIT 7

BIT 6 | BIT 5{ BIT 4 {BIT 3 |BIT 2|BIT 1|BIT @ EXTERNAL

128

64 32 186 8 4 2 INPUTS

1 14 1] 1 1] 218

Nt

WAIT ON Q
CONTINUE @
WAIT ON 2
@
1

Q
1

- o @
Q

CONTINUE
WAIT ON
CONTINUE 1
WAIT ON 1

- e ©®

Yyvyvyvyyy {

CONTINUE 1 11

16520/BLO8

WIMB (Wait IMB)

LISTing Subsystem
4-6

Figure 4-2. WAIT Condition Example

Any module in the HP 16500A can signal the other modules through the
Intermodule Bus (IMB).

If the pattern generator encounters a WIMB instruction in the program,
it will hold the data outputs at their current state, while the output data
clock and the strobes continue to run. The pattern generator will not
continue to the next program line until it sees a signal on the IMB. In
other words, the pattern generator will wait until another module tells it to
continue.

PROGram

BREak When a BREak is encountered in a program line, the pattern generator
will stop. To advance to the next program line, use the RESume command.

SIGNal (Signal IMB) The SIGNal instruction is the complement of the WIMB instruction.
When the pattern generator program encounters a SIGNal instruction, it
will output a signal to the Intermodule Bus (IMB). This signal is used to
trigger other modules that are linked through the IMB, or the Port Out
BNC.

MACRO<N> The macro instruction field lets you call one of four macros into a
program. The macro programs are written in a similar manner as the main
pattern generator programs. The MACRO subsystem section of this
manual explains how to generate macros.

The program query returns the content of a program line and must
include a program line number.

Command Syntax: :LISTing:PROGram < program line number > ,[< label
name',]{NOOP | REPeat, < repeat arg >, | WAIT, <wait
arg>, |WIMB/| BREak}[SIGNal |MACRO*;| PARameter} < 'label value'> [, < 'label
y /
value >.....]

where:

an integer specifying the program line number
string of up to six alphanumeric characters
<repeat arg > an integer from 1 through 256
<wait arg > an integer from O through 255
<label value> ::= astring in one of the following forms:
'#B01..." for binary
'#Q01234567...'for octal
'#H0123456789ABCDEF...'for hex
'0123456789...'for decimal

< program line number>
<label name >

LISTing Subsystem
4-7

PROGram

Examples:

Query Syntax:

Returned Format:

Example:

LISTing Subsystem
4-8

OUTPUT XXX;":LIST:PROG 0,REPEAT,255,' #801X10111™

OUTPUT X00%;"LIST:PROG 1,NOOP,'0™

OUTPUT XXX;*:LIST:PROG 2,SIGNAL,'1234"

OUTPUT XXX;":LIST:PROG 3,WAIT,#B01010101,"#H2XBC"
OUTPUT X0 LIST:PROG 4,MACRO2,'#H3X45™

OUTPUT X0XX:*:LIST:PROG 5,PARAMETER, #B80101111100001111™

:LISTing:PROGram? < program line number >

[LISTING:PROGRAM] < program line number >,{NOOP | REPeat < repeat
arg > |WAIT <wait arg > | WIMB| BREak | SIGNal [MACRO<N> | PARameter}, <label
value > [, <label value >]

10 DIM A$[100]

20 OUTPUT XXX;%LIST:PROG? 1*
30 ENTER XXX;A$

40 PRINT A$

50 END

REMove

Command Syntax:

where:

< program line number >
< program line range >

Example:

REMove

Command

The REMove command allows you to remove one or several lines from
the main pattern generator program. If only one parameter number is
given, that line number is deleted. If two numbers are given, the range of
lines between those two values inclusive is deleted. The command
REMove ALL deletes the entire program.

LISTing:REMove{ <program line number[, < program line range > |ALL >}

::= an integer specifying the program line to be removed
1= two integers separated by a comma, specifying the program line range 1o be
removed.

QUTPUT XXX;*:LIST:REM 1,4"

LISTing Subsystem
4-9

MACRo Subsystem 5
{5

Introduction The commands of the MACRo subsystem allow you to write and edit
macros for use in the main pattern generator program. Up to four macros
may be called into the main listing program. The macros are labeled
MACRO1 through MACRO4 and cannot be renamed over the interface
bus.

The query returns the content of a program line and must include a
program line number.

Refer to figure 5-1 for the MACRo subsystem syntax diagram.

/_® Y ™

——@?OCrcn’D——{ space prog_|ine_num }-——@-j

C (ooP) —

ez (O (et~ rereicors
DD~ erers |

SIGNal

Y {)

S

@

N

PO/ Figure 5-1. MACRo Subsystem Syntax Diagram

MACRo Subsystem
5-1

|

-—(PROGr om?)—b(space H prog-1 ine_numJl

@—{ space

prog-| ine_nui}

o prog—|ine_num

16520/5X02
prog_line_num = an integer specifying the program line number

repeat_arg = an integer from I through 256

wait_arg = an integer from 0 through 255

label_value = a string in one of the following forms:

'#B01...” for binary

#Q01234567..." for octal

"#H012345679ABCDEF...’ for hexadecimal

'0123456789...° for decimal

P/O Figure 5-1. MACRo Subsystem Syntax Diagram

MACRo Subsystem
5-2

PROGram

T
PROGram Command/Query

The PROGram command adds macro program lines, or modifies an
existing line. This command is identical to the LISTing:PROGram
command, with two exceptions:

o MACRoO and PARameter are not included as choices for the
instruction parameter because a macro cannot be invoked from
another macro.

o The pattern generator allows you to pass parameters between the
main listing program and the macros using the PARAM1 and
PARAM?2 key words. These key words may be substituted for any
label value string

Setting Pass There are two parameters available for each label in the macro list. They
Parameters are labeled PARAM1 and PARAM2. In the example of figure 5-2,a
macro call is made at line three of the main listing program.

MACRo Subsystem
5-3

PROGram
I

MEMORY MAP MAIN LISTING PROGRAM MACRO LISTING

|
%
+++START OF PROGRAMss» |
|
|

MAIN LISTING |@ 5 —3
PROGRAM 1 =]
— 2)
MACRO 3 MACRO 1 (RS VAT PARMMETERS, PASSED T0 UACRG 1 :::::E;:.

TABEL_VALUE CABEL VALUE &
EXPANSION |4 PARAVETERS I wix] Lo ias R S
e e et et oot o e o ls e totelels

DS ICII IR R I IR IR R IERIEIR e

TO NEXT LINE
(AFTER PARAMETER)
OF THE MAIN
LISTING PROGRAM 16520/BLO1

PROGRAM LINES @ AND 1 OF THE MACRO ARE
NOT PART OF THE MAIN LISTING LINE COUNT.

€00 o entoonnlind S w8 00,000 9.8.0.0.0.0.0.0.50
—, I s
7L 1 “a’o:g::;::::ofo"
MAIN LISTING |g ¢ =)
PROGRAM | @ MACRO 1 [
' ' | 1 PARAMETERS [[ABEC VAL
N " | 5 ’
——rrr————— [] l 3
PR —
| 3
NOTE : : CONTINUES

Figure 5-2. Setting Pass Parameters

The data of lines three and four are passed into the macro lines zero and
one and are labeled PARAM1 and PARAM?2. At the last line of the
macro, the program continues to the next line in the main listing program.
The main listing program line numbering is not consecutive. This is
because the macro is placed in memory at the location of the macro
command. Also note that lines zero and one of the macro are not part of
the main listing line count.

MACRo Subsystem
5-4

Command Syntax:

where:

< macro number >

< program line number >
<label_name >

<repeat arg >

<wait arg >

<label vaiue >

Examples:

Query Syntax:

Returned Format:

Example:

PROGram

:MACRo < macro number > :PROGram < program line number > ,[<labei_ name >]
{NOOP|REPeat, < repeat arg > | WAIT, < wait arg > | WIMB | BREak | SIGNai |},
{PARameter < 1}2> | <label value > }[,PARameter < 12> | <label value >]

an integer from 1 through 4

an integer specifying the program line number
string of up to six alphanumeric characters

an integer from 1 through 256

::= an integer from O through 255

;1= a string in one of the following forms:

'#B01..." for binary

'#Q01234567..." for octal
'#H123456789ABCDEF..." for hexadecimal
'0123456789..."' for decimal

OUTPUT XXX;*:MACRo1:PROG 0,NOOP,'#B8010110010','#B000100101™
OUTPUT XXX;*:MACRO1:PROG 1,REPEAT,127,PAR1,PAR2"
OUTPUT XX%;*:MACRO1:PROG 2,NOOP,'#B01X10X10’,PAR2"

:MACRO < macro number >:PROGram? < program line number >

[:MACRo < macro number > :PROGram < program line
number >],{NOOP | REPeat, <repeat arg > | WAIT, <repeat
arg> | WIMB|BREak | SIGNal} | {PARameter < 1|2> | <label
value > }[,PARameter < 1]2> | <label value >}

10 DIM A${100]
20 OUTPUT XXX;*:MACRO1:PROGRAM? 1"
30 ENTER XXX;A$

40 PRINT A$

50 END

MACRo Subsystem
5-5

REMove

REMove

Command Syntax:

where:
<macro number >

< program line >
< program line range >

Example:

MACRo Subsystem
5-6

Command

The REMove allows you to remove one or several lines from the macro.
If only one parameter is given, only that line is deleted. If two numbers are
specified, the range of lines between those values, inclusive, is deleted.
The command REMove ALL deletes the entire program.

:MACRo < macro number > :REMove < program line number > [, < program line
range > |ALL

an integer from 1 through 4
an integer specifying the program line to be removed
two integers separated by a comma, specifying the program lines to be removed

OUTPUT XXX;:MACRO1:REM 1,3"

SYMBol Subsystem 6

e

Introduction The SYMBol subsystem contains the commands that allow you to define
symbols on the controller and download them to the HP 16520A/HP
16521A Pattern Generator module. The commands in this subsystem are:

BASE
PATTern
RANGe
REMove
WIDTh

—CD ~—"

@ N R T e S G,
DECimal

e(PATTern)] space |-+ labe I_nome |-,)

° pattern_value

BT S ey = rR SN e

O lrrcrarse (D rorveree]

k—(ID Hspcce H I abe |l _name width_value ppvrp—"

P/O Figure 6-1. SYMBol Subsystem Syntax Diagram

SYMBol Subsystem
6-1

<label_name> = string of up to 6 alphanumeric characters
< symbol_name> = string of up to 16 alphanumeric characters
< pattern_value> = string of one of the following forms:
'#B01X...” for binary

"#001234567X..° for octal

'#H0123456789ABCDEFX...” for hexadecimal
°0123456789...° for decimal

<start_value> = string of one of the following forms:
'#B01..." for binary

'#Q01234567.." for octal

'#H0123456789ABCDEF..." for hexadecimal

’0123456789...” for decimal

<stop_value> = string of one of the following forms:
"#B01... for binary

'#0Q01234567..” for octal

"#H0123456789ABCDEF..." for hexadecimal
'0123456789..." for decimal

<width_value> = integer from 1to 16

P/O Figure 6-1. SYMBol Subsystem Syntax Diagram

SYMBol Subsystem
6-2

BASE

BASE command

The BASE command sets the base in which symbols for the specified label
will be displayed in the symbol menu. It also specifies the base in which
the symbol offsets are displayed when symbols are used.

Note

BINary is not available for labels with more than 20 bits
assigned. In this case the base will default to HEXadecimal.

Command Syntax: :SYMBol:BASE <label_name>,<base_value >

where:
<label_name> : = string of up to 6 alphanumeric characters
<base_value> = {BINary | HEXadecimal | OCTal | DECimal | ASCii}

Example: OUTPUT XXX;":SYMBol:BASE 'DATA’,HEXadecimal*

SYMBol Subsystem
6-3

PATTern

PATTern command

The PATTern command allows you to create a pattern symbol for the

specified label. The pattern may contain "don’t cares” in the form of
XX..X’s.

Command Syntax: :SYMBol:PATTern <label_name >, <symbol_name >, <pattern_value >

where:

<label_name >
<symbol_name >
< pattern_vaiue >

string of up to 6 alphanumeric characters
string of up to 16 alphanumeric characters
string of one of the following forms:
'#B01X..’ for binary
'#Q01234567X..’ for octal

'#H0123456789ABCDEFX..." for hexadecimal
'0123456789..." for decimal

Example: OUTPUT XXX SYMBol:PATTern 'STAT', 'MEM_RD","#HO01XX"

SYMBol Subsystem
6-4

RANGe

RANGe command

The RANGe command allows you to create a range symbol containing a
start value and a stop value for the specified label.

Note

Don’t cares are not allowed in range symbols.

Command Syntax: :SYMBol:RANGe <labei_name >, <symbol_name >,
: <start_value >, <stop_value >

where:
<label_name> ::= string of up to 6 alphanumeric characters
<symbol_name> ::= string of up to 16 alphanumeric characters
<start_value> ::= string of one of the following forms:

"#B801..." for binary
'#Q01234567.." for octal
'#H0123456789ABCDEF...' for hexadecimal
'0123456789..." for decimal

<stop_value> ::= string of one of the following forms:
"#B01..." for binary
'#Q01234567.." for octal
'#H0123456789ABCDEF..." for hexadecimal
'0123456789...' for decimal

Example: OUTPUT XXX;":SYMBol:RANGe 'STAT", 'lO_ACCESS', #H0000", #HO00F™

SYMBol Subsystem
6-5

REMove
I

REMove command

The REMove command deletes all symbols from the symbol menu.

Command Syntax: :SYMBot:REMove

Example: OUTPUT XXX;*:SYMBol:REMove"

SYMBol Subsystem
6-6

WIDTh

WIDTh command

The WIDTh command specifies the width (number of characters) in
which the symbol names will be displayed when symbols are used.

Note

The WIDTh command does not affect the displayed length of the
symbol offset value.

Command Syntax: :SYMBol:WIDTh <iabel_name >, <width_value >

where:
<label_name> :: = string of up to 6 alphanumeric characters
<width_value> : = integer from 110 16

Example: OQUTPUT XXX SYMBol:WIDTh 'DATA',9 *

SYMBol Subsystem
6-7

Data and Setup Commands A
—

introduction The DATA and SETup commands are system commands that allow you
to send and receive instrument configuration, setup and program data to
and from a controller in block form. This is useful for saving block data for
re-loading the pattern generator. This appendix explains how to use these
commands.

The block data for the DATA command is broken into byte positions and
descriptions. The SETup command block data is not described in detail.
No changes should be made to the "config" section of the block data.

Definition of Block

Data
Block data in the # format is made up of a block length specifier and a
variable number of sections.
<biock length specifier > < section 1> ... <section N>
The block length specifier is defined as follows:
#8<length>
where:
<iength> ::= the total length of all sections in byte format (must be represented with 8 digits)
—f.-f‘;—/ (P es L - f‘—‘&{"’”-’. jN‘,/“Ja_f
Se ot e A7 A ddarr — = P
a—? Yl & s ad At o - » h ARt ’/Z"—"’

For example, if the total length of the block (all sections) is 14506 bytes,
the block length specifier would be "#800014560" since the length must be
represented with 8 digits.

DATA and SETup Commands
A-1

where:

<section header >

HP-IB Example:

Sections consist of a section header followed by the section data as follows:

< section header > < section data >

)
::= 10 bytes for the section name /‘,u:' a—

1 byte reserved (always 0)
1 byte for the module ID code (21 for pattern generator)

4 bytes for the length of the data in bytes
el er € O’]‘f"’ A

The section data format varies for each section and may be any length.

Note

The total length of a section is 16 (for the section header) plus
the length of the section data. Thus, when calculating the length
of a block of configuration data, don’t forget to add the length of
the headers.

10 DIM Block$[3200] ‘allocate enough memory for block data
20 DIM Specifier$[2]

30 OUTPUT XXX;"EO! ON"

40 OUTPUT XXX;"SYSTEM:HEAD OFF"

50 QUTPUT XOOG"SELECT 1" !select module

60 OUTPUT YO0G:"SYSTEM:DATA? !send the data query

70 ENTER 00X USING"#,2A Specifiers !read in #8

80 ENTER Y0O(USING"#,8D*,Blockiength Iread in biock length
90 ENTER XXX USING"-K*,Block$!read in data

DATA and SETup Commands

A-2

|
m

SYSTem:SETup

Command Syntax:

Query Syntax:

Returned Format:

SYSTem:SETup

The SETup command for the pattern generator module is used to
configure system parameters, such as the pod and bit assignment, input
thresholds, strobe values, and clock rates.

The "CONFIG" section consists of 1128 bytes of information which fully
describe the main parameters for the pattern generator. The total length
of the section is 1144 bytes (recall that the section header is 16 bytes).

The data in this section of the block should not be changed to ensure
proper pattern generator operation.

:SYSTem:SETup <block data in # format>

:SYSTem:SETup?

[:SYSTem:SETup] <block data in # format> <NL>

DATA and SETup Commands
A-3

SYSTem:DATA

|

SYSTem:DATA The DATA command is used to send and receive the pattern generator
main program listings and the macro listings. The complete pattern
generator data block consists of five sections not counting the SYMBOL
section. The sections are:

Section1 "MAINPROG"
Section2 "MACROL1T"
Section3 "MACRO2"
Section4 "MACRO3"
Section5 "MACRO4"

Command Syntax: :SYSTem:DATA <block data in # format>

Query Syntax: :SYSTem:DATA?

Returned Format: [:SYSTem:DATA] <block data in # format> <NL>

Section 1 The Main Program section contains the program listing data. The length
"MAINPROG" of this section depends on the length of the program listing and the
number of expansion cards connected to the master card.

The data for this section is as follows:

1 16 bytes - section header "MAINPROG"

17 2 bytes - number of pods - The total number of pods for which the
program is written. Valid values are 2 to 26 in increments of 6 because the
master card has 2 pods and each expansion card has 6 pods.

e s e O/]f‘c_/ At a4

7° Ve {{/—{"ol ,.._,—4../.}4-’4‘
DATA and SETup Commands 77 / Sy T ¢
A-4 /% “« {Z*GJ S e e SR

A p o Eptra K e

SYSTem:DATA

19

21

29

31

2 bytes - total program length - The total length of the pattern generator
program with macros expanded. Valid values are 1 to 4095.

2 bytes - edit line index - The index of the current editing line on screen.
Valid values are 0 to the total program length - 1.

6 bytes - reserved - The values should be set to zero.

2 bytes - total program lines - The total number of program lines with
macros not expanded. Valid values are 1 to total program length.

Note

Macro calls require two program lines. The first line contains the
MACRO opcode and the values for PARAM]1 for each label.
The second line contains the PARAMETER opcode and the
values for PARAM? for each label.

number of bytes = total program lines (N) - opcode list - This block
contains a list of the opcodes for the main program in order of ascending
line numbers. The opcode for each main program line occupies one byte,
with the opcode for line N preceding the opcode for line N+ 1 in the
structure. The valid opcodes are:

Note

A macro opcode must be followed by the appropriate macro
parameter opcode.

0 - NOOP

1- WAIT IMB

2 - WAIT EXTERNAL
3- REPEAT

4 - SIGNAL IMB

8 - BREAK

16 - MACRO1

17 - MACRO2

DATA and SETup Commands
A-§

SYSTem:DATA

31+N

31+2N

18 - MACRO3
19 - MACRO4
20 - MACRO1 PARAMETER
21 - MACRO2 PARAMETER
22 - MACRO3 PARAMETER
23 - MACRO4 PARAMETER

Note
Byte position from here on varies with total program line length.

number of bytes = total program lines (N) - parameters - This block
contains a list of the parameters for the main program in order of
ascending line numbers. The parameter for each main program line
occupies one byte, with the parameter for line N preceding the parameter
for line N +1 in the structure. These bytes will only be valid when they
correspond to main program lines containing either a REPEAT or a
WALIT instruction. The valid values for the WAIT instruction are 0 to 255,
where 0 in a bit position means continue and a 1 in a bit position means
wait. The WAIT bit positions are defined as follows:

BIT POSITION

L\

WAIT PARAMETER BITS 2

et OO O
OO e O ®
R R A Y
NWWM - OO A

18520/8L07

All other instructions parameters have no effect and should be zero.

number of bytes = total program lines (N) * number of pods (P) -

data array - The data array block contains the 0/1 pattern information for
each main program line and each pod. Program line number is the
primary array index and the pod number is the secondary index, hence P
bytes of pod data are sent for a given line before any data from the next
line. For a given line, pod data is sent in order of descending pod numbers
with master pod data before expansion pod data. When more than one
expansion pod is installed, the data is sent in order of ascending slot
numbers 1-5 or A-E.

DATA and SETup Commands

A-6

31+2N+PN

Section 2
"MACRO1"

17

18

19

SYSTem:DATA

With this organization, data will be sent out in the same order as if read
from the LISTing menu as English text from left to right, then top to
bottom. A "1" in the data array means generate a "1" on the corresponding
channel of the output pod, assuming positive label polarity.

number of bytes = total program lines (N) * number of pods (P) -
auto-fill array - This array contains auto-fill/no auto-fill information for
each main program line and each pod. This array is organized exactly as
the data array described above, therefore bits map directly across from
one to the other. A "1" in this array means output the last specified pattern
for the corresponding bit from the data array when the auto-fill bit was 0.

Note

The easiest way to send a program is to indicate all the data in
the data array and to send all 0’s in the autofill array.

The "MACROL1" section contains all the program listing for MACROL.
The length of this section varies depending on the length of the macro
listing and the number of expansion cards connected to the master card.

16 bytes - section header "MACRO1"
1 byte - number of pods - The total number of pods for which this macro is
defined. Valid values are 2 to 26 in increments of 6 because the master

card has 2 pods and each expansion card has 6 pods.

1 byte - length of macro - The total number of program lines in the macro.
Valid values are 2 to 62.

1 byte - macro references - The total number of times the macro is
referenced by the main program. Valid values are 0 to 127.

7 bytes - macro name - This is the name of the macro. The name may be
up to 6 alphanumeric characters long. The last byte must be a null (0).

DATA and SETup Commands
A-T7

SYSTem:DATA

27

310+6M

310+

310+8M

310+8M +PM

1 byte - macro number - This is the current macro number. Valid values
are 0 through 3.

280 bytes - parameter names - This structure contains the parameter name
for each parameter in the macro. The 280 bytes are organized as 7 bytes
for each name * 20 labels for PARAM1 data, followed by 7 bytes for each
name * 20 labels for PARAM?2 data. The name may be up to 6
alphanumeric characters long and the seventh byte for each name must be
null (0).

6 bytes * macro lines (M) +2 - parameter values - This represents the
parameter usages within the macros and should all be zeros.
Note
Byte position from here on varies with the macro program length.
number of bytes = macro lines (M) - opcode list - This is a list of the

opcodes for the macro program. There should be one opcode for each
line in the macro program. Refer to the "MAINPROG" opcode list for the

description of opcodes.

number of bytes = macro lines (M) - parameters - This is a list of the
parameters for the WAIT and REPEAT instructions used within the
macro. Refer to "MAINPROG" parameters for a description of this
structure.

number of bytes = macro lines (M) - data array - This is the 0/1 pattern
information for each pod. A "1" in the data array means generate a "1" on
the associated output line, subject to the polarity of that label. Refer to the
"MAINPROG" data array for the description of this structure.

number of bytes = macro lines (M) * number of pods

auto-fill array - This represents the auto-fill/no auto-fill information. A "1"
means output the last specified pattern for that bit when the auto-fill array
was 0. Refer to the "MAINPROG" autofill array for the description of this
structure.

DATA and SETup Commands

A-8

SYSTem:DATA

Sections 3, 4,5 The program listing for Macros 2 through Macros 4 are identical to
“MACRO2', Macro 1. The length of these sections vary with the length of the macro
"MACRO3", "MACRO4" listing and the number of expansion cards connected to the master card.
Refer to Section 2 of this appendix for details of the section definitions.

DATA and SETup Commands
A-9

Index

e

BASE 6-3
Block Data
definition of A-1

C
CARDcage? 14
CLOCk 34
COLumn 4-3-4-4
command
BASE 6-3
CLOCk 34
COLumn 4-3
DELay 3-12
DIVide. 3-5
LABel 3-6
PATTern 6-4
PERIod 3-8
PROGram 4-5,5-3
RANGe 6-5
REMove 3-9,4-9, 5-6, 6-6
RESume 2-4
SETup A-3
STEP 2-2
STEP Count 2-2
STRobe 3-11

THReshold 3-10

WIDTH 3-14,6-7
Command Set Organization 1-6

D

data and Setup Commands ~ A-1
DELay 3-12-3-13
DIVide 3-5

instruction
BREak 4-6
NOOP 46
REPeat 4-6
SIGNal 4-7
WAIT 4-6
WIMB 46
INTermodule Subsystem 1-6

L

LABel 3-6-3-7

M

MENU 1-5
MESE 1-10-1-11

Index-1

MESR 1-12-1-13
MMEMory Subsystem 1-6
Module Level Commands 2-1
Module Status Reporting 1-9

P

PATT:rn 64
PERIod 3-8
PROGram 4-5-4-8,5-3-5-5

Q
query
CLOCk 34
COLumn 4-3
DELay 3-12
DIVide 3-5
PERiod 3-8
PROGram 4-7,5-1
STEP 22
WIDTh 3-14
R
RANGe 6-5
REMove 3-9,4-9, 5-6, 6-6
RESume 24

RMODe Command/query 1-5

S

SELect command 1-2
SELect Command/query 1-5
SETup A-3

Index -2

STARt Command 1-5
STEP 2-2-2-3

STEP FSTate 2-2

STOP Command 1-5
STRobe 3-11

Strobe Sublevel Set 3-1
subsystem

FORMat 3-1

LISTing 4-1

MACRo 5-1

SYMBol 6-1

SYMBol Subsystem 6-1
syntax diagram

LISTing Subsystem 4-1
MACROo subsystem 5-1
Module Level 2-1
SYMBol Subsystem 6-2
SYSTem:ERRor? Query 1-6
SYSTem:PRINt Command/query

T

THReshold 3-10

w

WIDTh 3-14 - 3-15, 6-7

1-6

