
9100A Series

9100A-017
Vector Output

I/O Module

P/N 855437
May 1989
©1989, John Fluke Mfg. Co., Inc.
All rights reserved. Litho in U.S.A.

LIMITED WARRANTY

John Fluke Mfg.Co., Inc. (Fluke) warrants your 9100A-017 Vector Output I/O
Module to be free from defects in material and workmanship under normal
use and service for one (1) year from the date of shipment. Software and
firmware products are provided "AS IS." We do not warrant that software or
firmware products will be error free, operated without interruption or that all
errors will be corrected. This warranty extends to you if you are the original
purchaser and does not apply to fuses, batteries, or any product which, in our
sole opinion, has been subject to misuse, alteration, or abnormal conditions
of operation or handling.

To obtain warranty service, contact a Fluke Service Center or send the
product, with the description of the difficulty, postage prepaid, to the nearest
Fluke Service Center. Fluke assumes no risk for damage in transit.

Fluke will, at our option, repair or replace the defective product free of charge.
However, if we determine that the failure was caused by misuse, alteration, or
abnormal condition of operation or handling, you will be billed for the repair.
The repaired product will be returned to you, transportation prepaid.

THIS WARRANTY IS EXCLUSIVE AND IS IN LIEU OF ALL OTHER
WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR
A PARTICULAR PURPOSE OR USE. FLUKE WILL NOT BE LIABLE FOR
ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES
OR LOSS WHETHER IN CONTRACT, TORT, OR OTHERWISE.

Contents

Section Title Page

1. Introduction ...1-1

1-1. THE VECTOR OUTPUT I/O MODULE1-1
1-2. HIGH SPEED PARALLEL STIMULUS1-1
1-3. BUS EMULATION ..1-2
1-4. TEST VECTOR PATTERN GENERATION1-2
1-5. USER OPERATIONS ...1-3

2. Specifications ..2-1

2-1. SPECIFICATIONS ..2-1

3. Vector Output Operation ..3-1

3-1. INTRODUCTlON ..3-1
3-2. CLOCK SELECTION ..3-1
3-3. VECTOR LOADING ...3-2
3-4. VECTOR DRIVING ...3-2
3-5. LOOP CONTROL ...3-2
3-6. HANDSHAKING ...3-2
3-7. STOPPING VECTOR DRIVING ...3-3
3-8. TRISTATE CONTROL ..3-4
3-9. COMPLETION STATUS ...3-5

4. Hardware ..4-1

4-1. PHYSICAL DESCRIPTION ..4-1
4-2. CONNECTING THE MODULE

 TO THE MAINFRAME ...4-5
4-3. PERFORMING THE MODULE SELF TEST4-6
4-4. CALIBRATING THE MODULE ...4-6
4-5. I/O Module to External and Capture 4-7
4-6. I/O Module to Pod ..4-8
iii

Section Title Page

4-7. CONNECTING THE MODULE
 TO THE UUT .. 4-9

4-8. Using the Clip Modules ... 4-9
4-9. Connecting the External Lines 4-10
4-10. Using the Card Edge Fixture Kit 4-10
4-11. SYNCHRONIZING THE MODULE TO THE UUT 4-11
4-12. External Sync Mode .. 4-11
4-13. Pod Sync Mode ... 4-13
4-14. Freerun Sync Mode .. 4-14
4-15. Internal Sync Mode ... 4-14
4-16. Capture Mode ... 4-15
4-17. SYNCHRONIZING MULTIPLE MODULE

 VECTORS ... 4-16

5. TL/1 Functions .. 5-1

5-1. INTRODUCTION ... 5-1
5-2. CLOCKFREQ ... 5-1
5-3. DRIVEPOLL ... 5-1
5-4. EDGEOUTPUT .. 5-2
5-5. ENABLEOUTPUT .. 5-3
5-6. STROBEOUTCLOCK .. 5-3
5-7. SYNCOUTPUT .. 5-3
5-8. VECTORDRIVE ... 5-3
5-9. VECTORLOAD .. 5-3

6. Using the Vector Editor ... 6-1

6-1. INTRODUCTION ... 6-1
6-2. CREATING A NEW VECTOR FILE 6-1
6-3. SOFTKEY OPERATIONS .. 6-2
6-4. WORKING WITH THE VECTOR FILE 6-4
6-5. The Groups Line ... 6-4
6-6. The Display Line ... 6-5
6-7. Comment Lines ... 6-6
6-8. Data Fields .. 6-6
6-9. Control Phrases in Data Fields 6-11

7. Applications .. 7-1

7-1. USING THE VECTOR OUTPUT I/O MODULE 7-1
7-2. BUS EMULATION .. 7-2
iv

Section Title Page

7-3. TESTING THE IBM CGA VIDEO CARD7-4
7-4. Fixturing the CGA Interface ...7-5
7-5. Fixturing Considerations ..7-6
7-6 Vector File Programming ...7-6
7-9. Vector File Generation ...7-10
7-10. CGA Write/Read Program Example7-11
7-11. 68000 BUS VIDEO APPLICATION7-12
7-12. Testing The Video Board ...7-12
7-13. Fixturing the Video Board Interface7-13
7-14. Determining Bus Cycles ..7-14
7-15. Determining the Write Cycle ..7-14
7-16. Determining the Read Cycle ..7-16
7-17. WAIT APPLICATION ..7-18
7-18. TIMING SETS ...7-19
7-19. TL/1 VECTOR FILE GENERATION7-21

Appendices

A. New TL/1 Commands ..A-1

B. I/O Module Clip/Pin Mapping ...B-1

C. Keypad Reference Changes ..C-1
v

vi

Tables

Table Title Page

2-1. Vector Output I/O Module Specifications2-1
7-1. CGA to Vector Output I/O Module Mapping7-5
7-2. Video Board to Vector Output I/O Module Mapping7-13
vii

viii

Figures

Figure Title Page

3-1. WAIT Input Timing Diagram ...3-3
3-2. TRISTATE Input Timing Diagram3-4
4-1. Vector Output I/O Module Block Diagram4-4
4-2. Vector Output I/O Module Output Section4-4
4-3. Input Section Block Diagram ..4-5
4-4. Pod Sync Input/Output Section Timing Diagram4-13
4-5. Capture Clock Timing Diagram ..4-15
5-1. Vector I/O Control ...5-2
7-1. MC6845 Cycle Timing Diagram ..7-7
7-2. SCN2674 Controller Timing Diagram7-15
7-3. Using WAIT to Check for a Level (Method 1)7-19
7-4. Using WAIT to Check for a Level (Method 2)7-19
7-5. Connecting Two Modules for Timing Sets7-20
ix

x

Section 1
Introduction

THE VECTOR OUTPUT I/O MODULE 1.1.

The Fluke 9100A-017 Vector Output I/O Module adds high
speed test stimulus capabilities to the 9100A Digital Test System
and 9105A Digital Test Station (referred to in this manual as the
Mainframe). The 9100A-017 can generate vectors (parallel pat-
terns) with clock speeds up to 25 MHz for functional testing and
troubleshooting. This speed improves card edge stimulus and
bus emulation performance for both microprocessor and non-
microprocessor bus-based cards.

HIGH SPEED PARALLEL STIMULUS 1.2.

The Vector Output I/O Module allows you to drive vectors
(parallel patterns) with four different clock modes. Vectors can
be clocked out at up to 25 MHz using an external clock source.
Each 40-pin module also provides a selectable internal clock
generator of 1, 5, 10, or 20 MHz. The clock can be qualified by
external lines that control start, stop, and enable. A handshaking
line allows additional synchronization between the module and
the unit under test (UUT) bus. Each pin can be tri-stated indi-
vidually for any number of vectors by program control in a vec-
tor file. An external tri-state input allows all 40 pins to be tri-
stated simultaneously.

Parallel vectors may be up to 8192 bits deep. With 40 pins per
module, four modules may be used together for a total width of
1-1

9100A-017
160 pins. The ability to loop on a set of vectors from 1 to 65536
times makes the maximum effective depth of the test vector
536,870,912 patterns.

The Vector Output I/O Module input response capabilities are
identical to the 9100-003 Parallel I/O Module. Responses may
be gathered at clock speeds up to 10 MHz for signature analysis
and frequency/count measurement.

BUS EMULATION 1.3.

The high speed vector generation allows the module to emulate
many common busses. An external input, WAIT, can be used to
synchronize the output vectors to bus cycle events. Separate
drive and receive clocks allows bus cycles to be simulated with
many drive patterns, and data input can be sampled on com-
mand.

TEST VECTOR PATTERN GENERATION 1.4.

The generation of the test vector patterns can be accomplished in
two ways: using the 9100A Editor or downloading from another
system.

The 9100A Editor has been enhanced to effectively enter test
vectors for the 9100A-017. Vectors can be entered in user-pro-
grammable groups in hexadecimal notation, binary notation, or a
mixture of both. The vector editor displays the vector
information in the order set by the pin group assignments. Each
vector is displayed in its position in the driving sequence.

Test vectors generated on a CAE workstation can be down-
loaded into the 9100A. Once they are in the 9100A, these vec-
tors can then be translated to the 9100A vector format, making
them suitable for use with the 9100A-017.

Several new Test Language (TL/1) functions have been added to
make use of the new capabilities of the 9100A-017. Loading the
vectors from the 9100A hard disk to each module during pro-
gram execution requires a maximum of 3 seconds, with 1 sec-
ond typical.
1-2

9100A-017
USER OPERATIONS 1.5.

Users may access the new Vector Output I/O Module through
functions provided in the Operator’s Interface, TL/1, and the
Editor.

From the Operator’s Interface, all the input functions of the
original 9100A-003 Parallel I/O Module are still available for
the new Vector Output I/O Module. In addition, another soft key,
CAPTURE, has been added to the SYNC I/O MOD operation.
The user may now select CAPTURE as the input measurement
clock. This clock synchronizes the vector output section with the
input section (this clock is user-programmable and is generated
by the vector file).

To create a vector file using the 9100A Editor, you need to edit a
file of the new type, VECTOR, which has been added under
each UUT directory. The file type should be specified as
VECTOR when editing the file.

Eight new TL/1 built-in functions have been added to the 9100A
Test Language (TL/1) to support the new Vector Output I/O
Module. These functions are:

Clockfreq
Drivepoll
Edgeoutput
Enableoutput
Strobeoutclock
Syncoutput
Vectordrive
Vectorload

In addition, other TL/1 built-in functions have been modified for
use with the new Vector Output I/O Module.

The Vector Output I/O Module is designed for high-speed output
applications in which overdrive capabilities are not required. If
overdrive capabilities are a requirement, use the 9100A-003
Parallel I/O Module.

1-3

9100A-017
1-4

Section 2
Specifications

SPECIFICATIONS 2.1.

Table 2-1 contains the specifications for the Vector Output I/O
Module.

NOTE

Output specifications for Table 2-1 were obtained
using the Y9100-102 Card Edge Interface Module
into 10 LSTTL loads. Results may vary depending
on the impedance, length, and shielding of the
connector used. Output timing is measured at 50%
of signal amplitude. Typical input signal transition
times: clocks 5 ns, all others 12 ns.

Table 2-1. Vector Output I/O Module Specifications

VECTOR OUTPUT I/O MODULE OUTPUT SECTION
(into 10 LS TTL loads with card edge connector attached):

Module Vector Size ... 8192 Vectors 40 Channels Wide
Maximum Vector Pattern (4 Modules)................... 8192 Vectors 160 Channels Wide
Vector Looping .. Up to 65536 Repetitions of One

Vector Set
Output Logic Levels:

High.. 3.7V minimum (6.0 mA Source)
Low... 0.4V maximum (6.0 mA Sink)

INT CLK (internal dock) .. 1,5, 10, or 20 MHz (±100 ppm).
DR CLK (external dock) .. 25 MHz Maximum. (This may be

exceeded in some cases based
upon application and hardware
interfacing.)
2-1

9100A-017
Table 2-1. Vector Output I/O Module Specifications (cont)

Clock to Vector Out (tdel):
INT CLK Out to Vector Out Delay37 ns typical, 45 ns maximum.
DR CLK in to Vector Out Delay.........................50 ns typical, 58 ns maximum.

WAIT (Handshake) Setup Time (twsu)42.5 ns maximum (35 ns typical)
from WAIT acknowledgement until
next dock cycle drives vector. If the
setup time is not met, the next clock
drives out the vector. Minimum
WAIT pulse width is 10 ns.

Single Module Channel to Channel Skew *6 ns Maximum (1 ns typical).
Module to Module Channel Skew *........................10 ns Maximum (1 ns typical).
TRISTATE:

Activation (txout) ...Output source/sink released 25 ns
maximum (20 ns typical) after
TRISTATE goes low. Minimum
TRISTATE pulse width is 10 ns.

Recovery (txsu)... TRISTATE must go high no later
than 5 ns after the rising edge of
the INT CLK or no later than 10 ns
after the clocked edge of DR CLK
for the vector to be output by that
dock, otherwise that vector is only
driven internally and the output is
held tri-stated, effectively skipping
that vector.

Output Series Termination33 Ohms
Capture Clock: **

INT CLK ..Capture Clock clocks 42.5 ns ±5 ns
after the falling edge of INT CLK.

DR CLK...Capture Clock clocks 55 ns ±10 ns
after non-clocking edge of DR CLK
(approximate 50% duty cycle).

START, STOP, and ENABLE:
START, STOP pulse width10 ns minimum

INT CLK
START Setup Time30 ns minimum
STOP Setup Time ..30 ns minimum
ENABLE Setup Time....................................25 ns minimum
ENABLE Hold Time......................................20 ns minimum

DR CLK
START Setup Time20 ns minimum
STOP Setup Time ..20 ns minimum
ENABLE Setup Time....................................15 ns minimum
ENABLE Hold Time......................................35 ns minimum

Input Impedance:
DR CLK...40 KQ minimum, 35 pF maximum.
TRISTATE ...40 KQ minimum, 80 pF maximum.
WAIT ...40 KQ minimum, 50 pF maximum.

* Skew measurement assumes equal loading. Differences in capacitance may affect
results.

** Capture clock may be adjusted in approximate 15 ns steps by using the setoffset
command (see the 9100 Series TL/1 Reference Manual).
2-2

9100A-017
Table 2-1. Vector Output I/O Module Specifications (cont)

VECTOR OUTPUT I/O MODULE INPUT SECTION:

Input Impedance ... 50 KΩ Minimum, 90 KΩ typical. 100
pF Maximum, 65 pF typical. *

Operating Voltage Range...................................... -0.5V to +5.5V (all lines)
Input/Output Protection ... +10V/-5V for one minute max. one

line only (all lines).
Input Thresholds:

CLOCK, START, STOP, and ENABLE Inputs:
Thresholds:

Logic LOW... 0.8V maximum.
Logic HIGH.. 2.0V minimum.

Input Current .. 125 µA. maximum
Input/Output Protection +10V/-5V for one minute maxi-

mum, one line only.
Transition Counter:

Maximum Frequency.. 10 MHz minimum.
Maximum Count (Transition Mode) 8388608 (23 bits) counts

(+ overflow).
Frequency Accuracy (Frequency Mode) ±250 ppm ±2 Hz

Stop Counter:
Maximum Frequency.. 10 MHz
Maximum Count ... 65535 clocks

Clock:
Maximum Frequency.. 10 MHz
Minimum Pulse Width 50ns

Timing for Synchronous Measurements:
Maximum Frequency of Clock.......................... 10 MHz
Maximum Frequency of Data 5MHz
Data Setup Time .. 30 ns minimum
Data Hold Time .. 30 ns minimum
Minimum Pulse Width

(Start/Stop/Enable/Clock) 50ns
Start Edge Setup Time (before clock edge,

for clock to be recognized) 0 ns minimum

* Input capacitance includes the Y9100A-102 Card Edge Interface Module.

TTL CMOS LEVEL

- - - 5.0V- - - - - - - - 5.0V - - - - - -
Guaranteed HIGH

- - - 2.6V- - - - - - - - 3.4V - - - - - -
HIGH or INVALID

- - - 2.1V- - - - - - - - 2.9V - - - - - -
Guaranteed INVALID

- - - 1.0V- - - - - - - - 1.2V - - - - - -
LOW or INVALID

- - - 0.6V- - - - - - - - 0.8V - - - - - -
Guaranteed LOW

- - - 0.0V- - - - - - - - 0.0V - - - - - -
2-3

9100A-017
Table 2-1. Vector Output I/0 Module Specifications (cont)

Stop Edge Setup Time (before clock edge,
for clock edge to not be recognized)............5 ns minimum

Enable Setup Time (before clock edge,
for clock edge to be recognized)..................0 ns minimum

Enable Hold Time (after clock edge,
for clock edge to be recognized)..................10 ns minimum

Data Timing for Asynchronous Measurements:
Maximum Frequency ..10 MHz
Minimum Pulse Width (HIGH or LOW)50 ns
Minimum Pulse Width (tri-state)........................150 ns

Data Compare Equal:
Minimum Pulse Width of Data and Enable75ns

PHYSICAL SPECIFICATIONS

Operating Temperature:
5 to 27°C, 95% RH maximum (non-condensing).
27 to 40°C, RH decreasing linearly form 95% to 50% (non-condensing).

Storage/Shipping Temperature:
20 to 60°C, 8% to 80% RH, (non-condensing).
2-4

Section 3

Vector Output Operation

INTRODUCTlON 3.1.

This section describes the general functions of the Vector Output
I/O Module. Each of these functions are covered more fully in
the Sections that follow.

CLOCK SELECTION 3.2.

The Vector Output I/O Module can be synchronized to a number
of different clock sources, both external and internal.

There are several methods of synchronizing the Vector Output
I/O Module to the UUT. To synchronize vector driving with a
UUT clock, the DR CLK input of the Vector Output I/O Module
can be connected to a UUT clock source. The syncoutput
command would then be set to “drclk”. To synchronize re-
sponse gathering with a UUT clock, connect the Vector Output
I/O Module CLOCK input (yellow lead) to the UUT clock
source and set the sync command to “ext”.

To synchronize the UUT to the Vector Output I/O Module, con-
nect the UUT clock input to INT CLK and set the syncoutput
command to “intfreq”. Use the clockfreq command to select ei-
ther 1, 5, 10, or 20 MHz as the clock rate. If the delay between
INT CLK and the vector data output is too long, dedicate one
output line in the 40-pin connector of the Vector Output I/O
Module as the clock input to the UUT and program that line (in
the vector file) to perform as a clock.
3-1

9100A-017
To synchronize response gathering, connect the Vector Output
I/O Module input CLOCK line to the INT CLK output and set
the sync command to “ext”. Another method would be to use
the TL/1 sync “capture” mode. This method allows you to pro-
gram clocks into the vector file to determine when data is gath-
ered in the input section of the I/O Module.

VECTOR LOADING 3.3.

The vector file to be output is loaded by the vectorload
command into the designated module(s) and resides in the
module until changed by a writeword or writepin command
directed to that module, or by another vectorload.

VECTOR DRIVING 3.4.

Vector driving has two modes of operation. In the first mode of
operation, vector driving can begin immediately upon receipt of
the proper start, enable, and clock signals. In the second mode of
operation, driving begins after the execution of the TL/1 arm
command and upon the receipt of the proper start, enable, and
clock signals. The second mode permits the simultaneous
starting of vector driving and response gathering. The vector
number (in the current vector file) that the driving begins on can
also be selected.

LOOP CONTROL 3.5.

To drive a certain pattern of vectors more than once within a
single file, use the LOOP and ENDLOOP commands within a
vector file to control the number of times and the bounds of the
pattern to be repeated. The number of loops must be set be-
tween 1 and 65536. At least 2 vectors must appear between the
LOOP and ENDLOOP commands.

HANDSHAKING 3.6.

The vector file WAIT command enhances synchronization of the
Vector Output I/O module to the UUT. This command suspends
vector driving until the programmed edge (+ or -) transition has
occurred on the WAIT input pin (see Figure 3-1). Once the edge
3-2

9100A-017
transition has occurred, vector driving resumes on the next
qualified clock. The edge polarity cannot be changed from one
polarity to the other within the vector file.

STOPPING VECTOR DRIVING 3.7.

Vector driving is stopped if the STOP statement is reached in a
vector file, if the programmed edge on the external STOP line is
received, or if a writeword or writepin command is performed
during driving. Vector driving is suspended if the WAIT state-
ment has been reached within the vector file, if the external
ENABLE condition set by enableoutput is not satisfied, or if no
clock for the appropriate syncoutput mode is received.

Figure 3-1. WAIT Input Timing Diagram
3-3

9100A-017
TRISTATE CONTROL 3.8.

A low signal on the TRISTATE input line of the Vector Output
I/O Module asynchronously tri-states the 40-pin output of the
module. The output of the module remains tri-stated after the
removal of the TRISTATE low signal until a writeword or
writepin command has been executed or further vector driving
has occurred.

If the TRISTATE occurred during vector driving, the proper re-
covery time (txsu) must be met to have the next vector driven
out upon receipt of a clock (see Figure 3-2 and Table 2-1 in
Section 2 of this manual). If the recovery time is not met, the
output of the module remains tri-stated and the current vector is
effectively skipped. To prevent vectors from being skipped,
connect the external ENABLE line to the TRISTATE pin and
use the enableoutput mode “high”.

Figure 3-2. TRISTATE Input Timing Diagram

One method of using the external tri-state feature would be when
the Vector Output I/O Module is connected to a peripheral port
on a bus of a UUT. The peripheral select line could be con-
nected to the TRISTATE input of the module. When the port is
not in use, the peripheral select line would tri-state the module.
3-4

9100A-017
COMPLETION STATUS 3.9.

The drivepoll command determines the completion status of
vector driving. Two bits are returned from a drivepoll com-
mand: Bit 1 indicates if vector driving is currently suspended
while awaiting the programmed WAIT edge (0 for waiting, 1 for
not waiting) and Bit 0 indicates if the vector has been driven out
until a STOP statement in the vector file has been reached (0 for
not done, 1 for done).

When the TL/1 syncoutput mode is “intfreq” or “drclk”, vector
driving is terminated but not completed if the programmed edge
of the external STOP line is received. Other syncoutput modes
are not affected by the STOP line.
3-5

9100A-017
3-6

Section 4

Hardware

PHYSICAL DESCRIPTION 4.1.

The 9100A-017 Vector Output I/O Module connects to the
9100A/9105A Mainframe through a round shielded cable, and
connects to the UUT or fixture through a variety of I/O Module
clip modules and measurement control lines.

All of the I/O Module clip modules used with the 9100A-003
I/O Module also work with the Vector Output I/O Module. I/O
Module clip modules plug into the Vector Output I/O Module at
one end and interface with the UUT or fixture at the other end.
One or two I/O Module clip modules (depending on size) can
plug into a Vector Output I/O Module at a time. Each I/O
Module clip module contains a pushbutton (called a ready but-
ton) and a common clip. When the ready button is pressed, it
signals the system to start a measurement cycle. The common
clip should be connected to UUT common.

At one end of the Vector Output I/O Module case is a set of leads
labeled CLOCK, START, STOP, ENABLE, and COMMON (the
CLOCK line is for input only, all other lines are input and
output). These lines are used for external synchronization of the
module. External synchronization first requires a Start signal
edge (either rising or falling) to be input on the START lead.
Once this has been received, each active external clock edge (on
the CLOCK lead), during which the Enable input (on the
ENABLE lead) is asserted, triggers a measurement, until a Stop
signal (on the STOP lead) occurs, the number of enabled clock
edges specified has occurred, or a TL/1 readout command has
4-1

9100A-017
been executed. The COMMON lead should always be connected
to the UUT except during self test and calibration.

On the right side of the Vector Output I/O Module is a 6-pin
connector. These pins perform the following functions:

• DR CLK

A user-supplied clock that can be selected to drive out the
vectors. This input can be clocked at up to 25 MHz (the
signal must conform to the specifications listed in Section
2). Either a rising or falling edge can be selected as the
clocking edge (using the edgeoutput command). This in-
put can synchronize the vectors with a UUT, synchronize
multiple modules to the same clock, or provide a custom
clock speed for an application.

• TRISTATE

A user-supplied tri-state input signal. When an active low
signal is present on this input, all 40 outputs of the Vector
Output I/O Module are tri-stated immediately (see the
specifications in Section 2 of this manual for activation
time txout). TRISTATE must go high no later than the re-
covery time txsu after the clocking edge of INT CLK or
DR CLK for the vector to be output. Otherwise, that vec-
tor is only driven internally and the output is held tri-
stated, effectively skipping that vector.

• WAIT

A user-supplied handshake input signal used in association
with the vector file WAIT command. This pin synchro-
nizes vector output communication between the UUT and
the Vector Output I/O Module. When a WAIT command
occurs in a vector file, no new vectors are driven until the
proper signal edge is received on this input. The WAIT
command in the vector file determines which edge of the
signal on this pin is considered valid (see Section 6 of this
manual for more information on the vector editor WAIT
command).
4-2

9100A-017
• COMMON

System common. This pin should be connected to the UUT
if any of the other pins on this part of the Vector Output I/O
Module are used.

• INT CLK

The internal clock specified by “intclk” in the syncoutput
command is output on this line. The speed of the output
signal on this pin is set to 1, 5, 10, or 20 MHz using the
clockfreq command. The default value for clockfreq is 1
MHz. If a clock other than “intclk” is specified in the
syncoutput command, the signal that is output from this pin
remains the same as the last clockfreq command specified
(or 1 MHz if at default). This output is a free-running
clock.

• DCE

The Data Compare Equal output. When a pattern is pre-
sent on the input pins that is equal to the pattern set using
the compare command or the front panel SET I/O MOD x
COMPARE command, this pin is asserted high. This pin
can be used as hardware notification that a DCE has oc-
curred.

The Vector Output I/O Module common line is fuse protected. If
the line is accidentally connected to a UUT power supply when a
pod is also connected to the UUT, the fuse will blow. If the fuse
is blown, either a message appears on the operator's display or
the TL/1 fault “iomod_fuse_blown” is invoked to indicate that
the fuse needs replacing.

Figure 4-1 shows a block diagram overview of the Vector Output
I/O Module. The output section of the module is further
illustrated in Figure 4-2. A block diagram of one channel of the
receive section of the module is shown in Figure 4-3.
4-3

9100A-017
Figure 4-1. Vector Output I/O Module Block Diagram

Figure 4-2. Vector Output I/O Module Output Section
4-4

9100A-017
Figure 4-3. Input Section Block Diagram

CONNECTING THE MODULE TO THE MAINFRAME 4.2.

Before performing the Vector Output I/O Module self test or
calibration, connect the module to the 9100A/9105A Mainframe
as follows:

1. Check that the Mainframe is OFF.

2. Connect the module's 37-pin connector to one of the four
I/O Module connectors found on the back of the
Mainframe.
4-5

9100A-017
PERFORMING THE MODULE SELF TEST 4.3.

The Vector Output I/O Module self test determines if the
selected module(s) is connected to the Mainframe and is
communicating with the system. Perform the following steps to
begin the self test:

1. Remove any clip modules from the Vector Output I/O
Module.

2. Press the MAIN MENU key on the Mainframe keypad and
use the left arrow key to move the cursor to the left-most
field.

3. Press the SELFTEST softkey.

4. Move the cursor to the next field using the right arrow key
and press the I/O MOD softkey.

5. Move the cursor to the right and select the module(s) to be
tested by either entering a number between 1 and 4 or en-
tering each of the numbers of the modules connected (i.e.,
1234). For example, to self test Vector Output I/O Module
2, the display should read:

MAIN: SELFTEST I/O MOD 2

6. Press the ENTER key. If the self test fails, a failure mes-
sage is displayed on the Mainframe. If this happens, check
the Vector Output I/O Module connection and repeat the
test, carefully following any instructions. If the self test
passes, the display reads:

MAIN: SELFTEST COMPLETE

CALIBRATING THE MODULE 4.4.

Calibration is the process of determining individual variations in
the time delays between the clock path and the data path of the
input section so the delays can be compensated.
4-6

9100A-017
Calibration should be done when the system is first set up and at
regular intervals (at least monthly). Calibration is also necessary
whenever devices attached to the system are changed or re-
paired.

Once the calibration is complete, the calibration data can be
saved and restored when needed. Restoration should be done
after each power-up or reset before testing or troubleshooting a
UUT. For more information on saving and restoring calibration
data, see the heading, An Alternative to Calibration, in Section 4
of the 9100 Series Technical User's Manual.

I/O Module to External and Capture 4.5.

This calibration determines the proper setting for the internal
delay between the clock and data. This routine performs the
necessary calibration for both the External and Capture sync
modes. Perform the following steps to calibrate the module:

1. Press the MAIN MENU key and use the left arrow key to
move the cursor to the left-most field.

2. Press the CAL softkey.

3. Move the cursor to the right and press the I/O MOD soft-
key.

4. Move the cursor to the right and press the EXT softkey.
The Mainframe display reads:

MAIN: CAL I/O MOD TO EXT

5. Press the ENTER key. The display reads:

MAIN: CAL I/O MOD TO EXT
 INSTALL CAL HEADER IN DESIRED I/O MODULE
 PRESS BUTTON WHEN READY

6. Plug the calibration module into the Vector Output I/O
Module to be calibrated.
4-7

9100A-017
7. Press the ready button on the calibration module. When the
calibration is complete, the BUSY light on the Mainframe
goes off and the display reads:

MAIN: CALIBRATION COMPLETE

I/O Module to Pod 4.6.

This calibration calculates the proper settings for the Vector
Output I/O Module's internal clock delay for use with the SYNC
I/OMODTOEXT, SYNC I/O MOD TO CAPTURE, and SYNC
I/O MOD TO POD command. When any of these commands are
entered, the appropriate delay is selected. This calibration
requires the use of the calibration module that is supplied with
the Vector Output I/O Module. Use the following steps to
perform the I/O Module to Pod calibration:

1. Connect a UUT to the pod.

2. Press the MAIN MENU key and use the left arrow key to
move the cursor to the left-most field.

3. Press the CAL softkey.

4. Move the cursor to the right and press the I/O MOD soft-
key.

5. Move the cursor to the right and press the POD softkey.

6. Move the cursor to the right and press the desired softkey.
For example, if you want to use the Mainframe in SYNC
I/O MOD TO POD ADDR mode, press the ADDR softkey.
The display then reads:

MAIN: CAL I/O MOD TO POD ADDR

7. Press the ENTER key. The display reads:

MAIN: CAL I/O MOD TO POD ADDR
 INSTALL CAL HEADER IN DESIRED I/O MODULE
 PRESS BUTTON WHEN READY
4-8

9100A-017
8. Plug the calibration module into the Vector Output I/O
Module and press the calibration module's ready button.
(The calibration lead on the calibration module must be un-
connected before pressing the ready button.)

9. After a few seconds, a pod-dependent message is dis-
played. For example, the display may read:

COMPLETED EXT CAL PRIOR TO CAL POD
 NOW CONNECT CAL LEAD TO ~Sl
 PRESS BUTTON WHEN READY

10. Refer to a schematic of your UUT and locate the specified
signal, in this case, ~S1. At a suitable point on the UUT,
attach the calibration lead to this signal. Also attach the
Vector Output I/O Module COMMON lead to common on
the UUT.

11. Press the calibration module's ready button. After several
seconds, the display reads:

MAIN: CALIBRATION COMPLETE

12. Repeat steps 6 through 11 for each SYNC mode in which
the pod is to be operated.

CONNECTING THE MODULE TO THE UUT 4.7.

Using the Clip Modules 4.8.

The same clip modules can be used with the 9100A-017 Vector
Output I/O Module as are used with the 9100A-003 Parallel I/O
Module. The clip modules therefore connect to the UUT in the
same way as with the Parallel I/O Module. However, because
the Vector Output I/O Module runs at a much greater speed,
some of the following measures may need to be implemented:

• When receiving, all clip modules perform correctly for
measuring stimuli. However, the longer the cable length
used with the clip module, the more capacitance is added to
the circuit. If this additional capacitance creates problems
4-9

9100A-017
with the UUT, try connecting the clip to another point in
the circuit or provide a buffer between the UUT and the
clip.

• When vector driving, capacitance associated with the clip
modules may alter the driving specifications slightly (all
driving specifications were obtained using the Y9100A-
102 Card Edge Interface Module). As the output speed in-
creases, there may be increasing waveform degradation.
The flying lead set (John Fluke model number Y9100-
20L) is susceptible to overshoot at higher speeds and
should not be used in systems with system clocks that run
at more than a few megahertz. Because the Vector Output
I/O Module has no overdrive capability, care should be
used in selecting where the clip is placed.

Connecting the External Lines 4.9.

The DR CLK, TRISTATE, WAIT, INT CLK, DCE, and
COMMON lines may be connected to a UUT using cables with
the module end terminated with a 0.64 mm (0.025 in.) square pin
receptacle. As the signal speed increases, good quality cabling
(such as ribbon cable, twisted pair, or coax cabling) should be
utilized to preserve signal integrity on the DR CLK, TRISTATE,
WAIT, INT CLK and DCE lines. For some applications, a
fixture may require buffering to maintain signal integrity.

Using the Card Edge Fixture Kit 4.10.

The Card Edge Fixture Kit (John Fluke model number Y9100A-
100) provides a simple means to interface the 9100 test system
to boards with card-edge connectors. The kit enables up to four
Vector Output I/O Modules to be connected to a card edge.

To provide easy connection from the UUT to the Card Edge
Fixture Kit, the Card Edge Interface Module is also recom-
mended. This module allows direct connection of all 40 pins
from the Vector Output I/O Module, along with pins for the ex-
ternal START, STOP, CLOCK, ENABLE, and COMMON
measurement control lines. The INT CLK, WAIT, TRISTATE,
DCE, DR CLK, and COMMON lines from the Vector Output
4-10

9100A-017
I/O Module may be substituted for any of the measurement
control line pins on the fixture kit performance card. Application
circuitry may also be added to the performance card in the
fixture to provide buffering, dynamic RAM control circuitry, or
for other purposes.

The Card Edge Fixture Kit manual (John Fluke part number
830349) contains further application and fixturing information
that is not only useful for the fixture kit, but for general
applications as well.

SYNCHRONIZING THE MODULE TO THE UUT 4.11.

Synchronization of the Vector Output I/O Module input section
is accomplished either by pressing the Mainframe SYNC key or
using the TL/1 sync command. The SYNC command allows you
to specify the source of the clock signal used with the Vector
Output I/O Module input section. For the Module, this clock
gathers synchronous data.

For the Vector Output I/O Module, there are five sync modes:

• External Sync.
• Pod Sync.
• Freerun Sync.
• Internal Sync.
• Capture.

External Sync Mode 4.12.

The External Sync Mode qualifies the external CLOCK line
with the external START, STOP, and ENABLE lines. Start, Stop,
and Clock are edge-sensitive inputs from the UUT. Each can be
made to respond to falling or rising edges. The sync period can
also be programmed to end after a specified number of valid
clock pulses, in which case, the Stop input is ignored. Enable is a
level sensitive signal and can be specified as valid HIGH, LOW,
or ALWAYS. When the sync enabling condition is set to
ALWAYS, the Enable input is ignored. One additional mode al-
lows the valid Pod Sync (POD) time to be used as the enable
condition.
4-11

9100A-017
NOTE

The enabling condition need not always depend on
the specified state (HIGH, LOW, ALWAYS) of the
Enable input. The enabling condition can also
involve the state of the internal PodSync line.

After an ARM I/O MOD command is entered and after a valid
Start edge is detected, the measurement period begins. Start is
recognized independently of the enabling condition, but data is
only gathered after the enabling condition becomes true.
Synchronous data is gathered after the same point, but only at
the selected clock edges.

The data gathering period ends when the Stop condition be-
comes true: the selected Stop edge occurs, or a programmed
number of clock edges completes. After the period ends, enter
the appropriate SHOW I/O MOD command (found under the
Mainframe I/O MOD key), which displays data gathered by the
following:

• CRC signature register.

Contains signature data clocked in at each enabled clock
edge between Start and Stop.

• Clocked level history register.

Contains all logic levels (1, 0, X) seen at each enabled
clock edge between Start and Stop.

• Asynchronous level history register.

Contains all logic levels (1, 0, X) seen while enabled be-
tween Start and Stop. An X level must be present for a
fixed period before being recorded because an X should not
be recorded during fast 0-to-1 or 1-to-0 transitions, which
do pass briefly through the invalid (X) region.
4-12

9100A-017
• Transition counter.

Records each rising transition at the input, between Start
and Stop, while enabled. A rising transition is either 0-to-1
or X-to-l.

For more information, see the sync command in Section 3 of the
TL/1 Reference Manual and the SYNC key in the Technical
User's Manual keypad reference section.

Pod Sync Mode 4.13.

This mode uses an internal pod signal as the clock. This signal
(shown in Figure 4-4) is generated by the pod at each pod cycle
for the selected addressing mode (i.e.,READ, WRITE). Its
generation can be made to depend on valid address, data, or
other (pod-dependent) cycles. External lines (START, ENABLE,
and CLOCK) are ignored.

Figure 4-4. Pod Sync Input/Output Section Timing Diagram

Data is gathered after an ARM I/O MOD command.
Synchronous data is gathered until a SHOW I/O MOD com-
mand, which displays data gathered by:

• CRC signature registers.
4-13

9100A-017
• Clocked level history registers.

• Asynchronous level history registers.

• Transition counter.

The data is gathered as described previously in External Sync
Mode, except that the CRC signatures and clocked level history
are clocked by the internal pod signal.

For more information, see the sync TL/1 command in Section 3
of the TL/1 Reference Manual and the SYNC key in the
Technical User's Manual keypad reference section.

Freerun Sync Mode 4.14.

This sync mode is more usefully invoked under TL/1 program
control, rather from the keypad.

In this mode, the Vector Output I/O Module gathers asyn-
chronous level history and transition count data between the
TL/1 arm and readout commands. CRC signatures and clocked
level histories are not gathered.

For more information, see the sync TL/1 command in Section 3
of the TL/1 Reference Manual and the SYNC key in the
Technical User's Manual keypad reference section.

Internal Sync Mode 4.15.

This sync mode uses a clock signal generated internally by a
program. It is therefore more usefully invoked under TL/1 pro-
gram control. The external START, ENABLE, and CLOCK
lines are ignored.

For more information, see the sync TL/1 command in Section 3
of the TL/1 Reference Manual and the SYNC key in the
Technical User's Manual keypad reference section.
4-14

9100A-017
Capture Mode 4.16.

The capture sync mode synchronizes the response gathering
hardware with the vector output automatically. When the vector
files are edited, vectors can be programmed to clock the input
section on a single vector, specific vectors, or all vectors. For
more information, refer to Section 6 of this manual for the cap-
ture command description.

After a vector that has been programmed to capture is driven, the
receive hardware is clocked (see Figure 4-5). When syncoutput
mode is “intfreq” or “drclk”, the receive hardware is clocked at
about the midpoint of a single vector period (for example, when
a 1 MHz clock is used, a vector period is 1000 ns and clocking
occurs 500 ns after the vector is driven). (For “drclk”, a 50%
clock duty cycle is assumed.)

Figure 4-5. Capture Clock Timing Diagram

For all syncoutput modes, capture clock performs without any
user consideration. When the syncoutput mode is “drclk”, the
clock cycle should be close to a 50% duty cycle to get receive
clocking in the center of the driven vector. A 50% duty cycle
4-15

9100A-017
becomes critical as clock speeds increase above 5 Mhz. This
duty cycle ensures that the the minimum clock pulse width of 50
ns is maintained. If the clock does not have a duty cycle close to
50%, the external sync mode is recommended instead of the
capture mode for high speeds.

When capture clock is used, performing the external calibration
procedure (described earlier in this section) is recommended. If
a UUT has considerable propagation delay, the TL/1 setoffset
command can adjust for this. (The sync mode must be set to
“capture” prior to using the setoffset command.)

SYNCHRONIZING MULTIPLE MODULE VECTORS 4.17.

To synchronize the output vectors of multiple modules, the same
clock source must be applied to the DR CLK input of all the
modules that are to be synchronized. The INT CLK clock
(selectable at 1, 5, 10, or 20 MHz) may be used as the clock
source by connecting it to the DR CLK input of all modules. An
external clock at any frequency may also be used (external clock
signals must meet the specifications listed in Section 2).

As the speed of the clock increases, high-speed signal tech-
niques must be used to ensure signal integrity. A connector made
of high-quality cabling with each set of signal and ground lines
the same length gives good results. In some cases, providing a
separate buffered clock signal to each DR CLK input may be
necessary.
4-16

Section 5
TL/1 Functions

INTRODUCTION 5.1.

Eight new functions have been added to the 9100A Test
Language (TL/1) to support the new Vector Output I/O Module.
This section briefly describes each of these new functions. See
Appendix A for a complete description of the functions. Figure
5-1 illustrates the relationship between the TL/1 commands and
the Vector Output I/O Module operations they affect. (Note that
the “storepatt”, “writepatt”, and “clearpatt” functions are not
used with the Vector Output I/O Module.)

CLOCKFREQ 5.2.

The clockfreq function controls which internal clock (1, 5, 10, or
20 MHz) is selected. The change is immediate upon command
execution and is reflected on the output pin INT CLK. It has no
effect on the clock driving the vectors unless the vector driving
is synchronized to the “intfreq” mode. Changing the clockfreq
while vector driving is active and synchronized to the “intfreq”
mode is not recommended.

DRIVEPOLL 5.3.

The drivepoll function returns two pieces of information about
vector driving status when driving vectors. Bit 0 indicates
whether the vector pattern being driven has reached the end of
the pattern. If the vector pattern has not reached its end, Bit 1
indicates if vector driving is suspended while waiting for a
WAIT handshake.
5-1

9100A-017
Figure 5-1. Vector I/O Control

NOTE

If an external stop signal has been received and is
enabled, the vector driving terminates, but drive-
poll does not indicate vector driving as complete.

EDGEOUTPUT 5.4.

The edgeoutput function sets the signal edges for triggering the
START, STOP, and DR CLK lines. Note that the START and
STOP lines are in common with the receive side of the module,
but can have separate edge control. The START edge can also be
set to “at_vectordrive”, which means that no external start signal
is required to begin driving out vectors.
5-2

9100A-017
ENABLEOUTPUT 5.5.

The enableoutput function controls the enabling (or qualifying)
of the vector drive clock. If the enable is not received, the vector
count remains at the current vector regardless of the clocks
received until the clock is enabled. Only syncoutput modes
“drclk” and “intfreq” are affected by this command.

STROBEOUTCLOCK 5.6.

The strobeoutclock function provides a software controlled
strobe for single-step vector driving when the syncoutput mode
is set to “int”. This is useful for debugging, troubleshooting, or
for applications where other TL/1 functions must be used be-
tween vector outputs.

SYNCOUTPUT 5.7.

The syncoutput function determines the clocking source for
driving out the vector patterns. Available clocking sources are
“drclk”, “intfreq”, “int”, and “pod”.

VECTORDRIVE 5.8.

The vectordrive function enables vector driving. The start and
enable conditions must be met to drive the vectors out. There are
two startmodes associated with vector driving: “now” and
“at_arm”. The “now” argument immediately enables the module
for vector pattern driving. The “at_arm” argument does not en-
able the vector pattern driving until the TL/1 arm command has
been executed. The “at_arm” mode ensures that both the receive
and drive sides are started simultaneously. The user can also
indicate which vector within the pattern he wishes to begin
driving on.

VECTORLOAD 5.9.

The vectorload function loads the named vector file into the de-
clared module(s). Once a module is loaded with a vector file,
the file resides in the module and does not require reloading un-
less the user has performed a writeword or writepin command
(which overwrites the vector file).
5-3

9100A-017
5-4

Section 6

Using the Vector Editor

INTRODUCTION 6.1.

To be able to drive vectors out the 9100A-017 Vector Output I/O
Module, a vector file must be created. This file contains all the
information required by the module to output the proper se-
quence of signals. When used in conjunction with the various
signal inputs and outputs of the Vector Output I/O Module, con-
trol of the vector patterns and handshaking between the module
and the UUT is greatly enhanced.

To use the Vector Editor, you must be familiar with the basic
operations of the 9100A Editor. Operation of the 9100A Editor
is covered in the 9100 Series Programmer’s Manual.

CREATING A NEW VECTOR FILE 6.2.

To create a new vector file, press the EDIT key, enter the path
name (for example, “/hdr/tmp/vec1”) followed by <CR>, and
press the FIELD SELECT key until VECTOR is displayed in the
TYPE field. Press <CR>. When the file is created, the follow-
ing text is displayed:

GROUPS [40-1]
DISPLAY BIN

!TIME DATA
 1
6-1

9100A-017
Whenever a vector file is created, the text at the top of the file is
automatically produced. When loading a previously created file,
nothing is added to the file.

Once the file is loaded, use the standard editor functions to enter
new data. For example, to create a vector file that outputs zeroes
to all 40 lines, then outputs ones to all 40 lines, position the cur-
sor on the last character of the last line, and type in “0” 40 times.
Go to the second line and type “2” followed by 40 “1”s. Press
the F10 softkey (Check) followed by the F2 key (Save). Press
the QUIT key. You have just created your first vector file.

SOFTKEY OPERATIONS 6.3.

When you first enter a vector screen, you’ll notice a row of soft
keys at the bottom of the screen that provide additional opera-
tions during editing. The following list describes the function of
each of the softkeys:

• F1 - Goto

Allows you to go to a specific line of the vector file. (This
softkey takes you to a specified line number, and not the
number of the vector).

• F2 - Save

Checks the vector file to see that no syntax errors are pre-
sent and then saves the vector file to disk.

• F3 - Renum

Automatically renumbers the sequence of vector numbers.
This key can be used during the course of entering a new or
editing an existing file.

• F4 - Mark

Marks the beginning of a line or character (i.e., as in
Mark/CUT/PASTE). See the 9100 Series Programmer’s
Manual for more information.
6-2

9100A-017
• F5 - Cut

Deletes the marked block from the display and moves it
into one of the temporary buffers. This softkey does not
appear until a Mark has been set. See the 9100 Series
Programmer’s Manual for more information.

• F6 - Yank

Copies the marked block into one of the temporary buffers,
but does not remove the block from the display. This
softkey does not appear until a Mark has been set. See the
9100 Series Programmer’s Manual for more information.

• F7 - Paste

Copies the contents of one of the temporary buffers into the
display just before the cursor position. See the 9100 Series
Programmer’s Manual for more information.

• F8 - Replace

Moves the cursor to and replaces the next occurrence of a
character string you have specified. See the 9100 Series
Programmer’s Manual for more information.

• F9 - Search

Moves the cursor to the next occurrence of a character
string you have specified. See the 9100 Series
Programmer’s Manual for more information.

• F10 - Check

Performs an overall check of the vector file by searching
for syntax errors that cannot be detected by the line-
checker. See the 9100 Series Programmer’s Manual for
more information.
6-3

9100A-017
WORKING WITH THE VECTOR FILE 6.4.

When a vector file is first created, four lines of text are automati-
cally created at the beginning of the file. These four line are:

GROUPS [40-1]
DISPLAY BIN

!TIME DATA
 1

The first line is called the groups line. The second line is called
the display line. The third line is a comment line. The fourth line
is the beginning of the data fields. The following paragraphs
describe these lines in detail.

Blank lines are only allowed after the display line. If, during
editing, a blank line is inserted between the groups line and the
display line, an error message is displayed.

The Groups Line 6.5.

The first line of the display is the groups line. The groups line
determines how the pins of the Vector Output I/O Module are to
be grouped together. All 40 pins on the module must be listed in
this group. This line may be changed to group together the 40
pins using the following syntax:

GROUPS <label>[<group>]...

where GROUPS is the name of the line, <label> is an optional
label made of any ASCII characters except “[“, and <group> is
any number or range of numbers from 1 to 40 (in any order)
separated by a comma (,), a space (), or a comma and a space
(,)(,). If more than 2 numbers are listed in a row, the numbers
can be shown using the beginning and ending number separated
by a dash (-). For example, pins 1, 2, 3, and 4 on the module can
be listed as 1-4.

More than one <label> and <group> pair can be listed on the
group line. For example, if you wanted to group together pins 1
6-4

9100A-017
through 4 and pin 6, and put the rest of the pins in another group,
the groups line would be changed to read:

GROUPS [1-4,6][5,7-40]

Note that the groups line in the previous example did not use the
optional <label>. If, however, you want to add a label that
designates pins 1 through 4 and 6 as control lines, the groups
line could be changed to read:

GROUPS control[1-4,6][5,7-40]

If the second group consists of address lines, the groups line
could be changed to read:

GROUPS control[1-4,6]address[5,7-40]

Any combination of numbers from 1 to 40 in any order can be
listed on the <group>. A <group> consists of a minimum of
one number (i.e., [24]) and a maximum of forty numbers (i.e.,
[40-1]). All forty pins of the Vector Output I/O Module must be
listed. For example, if all the <group>s consisted of one num-
ber, forty <group>s would be listed on the groups line.

The Display Line 6.6.

The display line specifies whether the data shown in the data
fields are displayed in binary or hexadecimal. When a vector file
is first created, the display line is shown as:

DISPLAY BIN

This designates that all forty pins in the data field are displayed
in binary. If you want all the pins in the data fields to be dis-
played in hexadecimal, change the display line to read:

DISPLAY HEX

If more than one group exists in the groups line, each of the
groups can be displayed individually as either binary or
hexadecimal. A comma or a comma and a space is used to
separate the designators. For instance, if there are two groups
6-5

9100A-017
and you want the first group to be displayed in hexadecimal and
the second group to be displayed in binary, you would change
the display line to read:

DISPLAY HEX, BIN

If more than one group exists in the groups line and both are to
be displayed as hexadecimal, only one designator is necessary.
The vector editor automatically assumes that any group not iden-
tified by an individual designator is the same as the last
identified designator.

If there are more designators on the display line than there are
groups in the groups line, any extra designators are ignored.

The designators are case insensitive. The display line could be
changed to read:

DISPLAY hex, HeX, BIN

Comment Lines 6.7.

Comment lines can be added to the vector file on any line after
the groups and display line. All comment lines must begin with a
“!”. Comment lines must contain only comments (i.e., no
comments can be added to the end of a data field).

Data Fields 6.8.

Data fields consist of the data that is to be sent out the Vector
Output I/O Module pins. In addition, a set of special phrases are
available for looping, capturing input data, pausing until a spe-
cific signal is received, and stopping the vector driving.

Data fields are composed of 1s, Os, and Xs in either binary or
hexadecimal notation. “1” denotes an active high signal, “0” de-
notes an active low signal, and “X” denotes a tri-state signal.
6-6

9100A-017
Using the first four lines that appear when the vector file is cre-
ated, a data field may be entered that looks like:

GROUPS [40-1]
DISPLAY BIN

!TIME DATA
1 1000000010001000100000000001111111110111

The data field in the previous example must be 40 characters
long and is entered in binary format. Each binary number corre-
sponds to the data sent out the Vector Output I/O Module. If the
binary number you enter is less than 40 characters long, the
numbers are right justified and zeroes fill in the missing numbers
to the left. If you enter more than 40 numbers, only the right-
most 40 numbers you enter are placed on the data field line. All
other numbers are discarded. If you try to enter anything but a 0,
1, or X into a binary data field, an error message is displayed.

The first field on the data field is the line number. These num-
bers are used by the TL/1 vectordrive command to determine
where in the vector file to begin driving vectors. The line num-
bers must be in the range of 1 through 8192. If a number out-
side this range is used, an error message is displayed. The first
data field has its number automatically supplied when a vector
file is created. All other line numbers must be entered by the
user. These numbers do not have to be in any order, and re-
peated numbers do not cause an error. Once the program is
saved, however, all of the lines are automatically renumbered in
ascending order. The order in which they are displayed on the
screen is not changed. For example, if:

 2 XX
 2 11
 1 00
8000 XXXX00001111XXXX00001111XXXX00001111XXXX

is saved, the lines are automatically renumbered to:

 1 XX
 2 11
 3 00
 4 XXXX00001111XXXX00001111XXXX00001111XXXX
6-7

9100A-017
Press the F3 (RENUM) key to renumber the lines while editing.

To fill a data field line when there is more than one group on the
groups line, you must enter the data with a space separating the
groups. For example, the following vector file contains two
groups that are separated by a space:

GROUPS [40-9] [8-1]
DISPLAY BIN

!TIME DATA
 1 01000000000100000000011111111101 1111XXXX

Since both of the data fields in the previous example are binary,
the display line did not need to be changed. However, you could
have changed it to read:

DISPLAY BIN, BIN

and the data fields would remain the same.

If you did not enter a space on data field line in the previous ex-
ample, all of the numbers in the second group would have been
automatically tri-stated. For example, if you entered:

1111

the first field would have been right justified and filled in with
zeroes and the second field would have been tri-stated:

1 00000000000000000000000000001111 XXXXXXXX

If the display line is changed so that the second data field is a
hexadecimal number, the data that you enter on the data field
line is also expected to be in hexadecimal notation (0 through F).
For example, if the first field in the previous example was
changed to hexadecimal, and you enter the following data:

401007FD 1111XXXX
6-8

9100A-017
the editor would display the file as:

GROUPS [40-9] [8-1]
DISPLAY HEX, BIN

!TIME DATA
 1 $401007FD 1111XXXX

The “$” sign that was added to the data field line indicates a hex-
adecimal number. The second field is still in binary notation.
The space between the first and second field is the space neces-
sary to expand the hexadecimal field to a binary field.

If the display line designates that a group is displayed in hex-
adecimal format and you need to tri-state one pin of the Vector
Output I/O Module, you must use the “*” special character to
enter the data on the data field line. The “*” character indicates
that the data field is normally hexadecimal, but is being dis-
played in binary. For example, if you wanted pin 9 to output a
tri-state condition in a hexadecimal data field, you would enter
the data line as:

*0100000000010000000001111111110X 1111XXXX

The line on this field will continue to be displayed as a binary
representation in the hexadecimal field as long as the “*” is left
in place. If the “*” character is removed, the data field converts
to hexadecimal representation, taking only the rightmost num-
bers that will fit in the field and discarding the rest (this effec-
tively changes the data in the field). If the “*” character is re-
moved from line 1 in the previous example, the line would
change to:

1 $1111110X 1111XXXX

If the “$” sign was removed and the “*” character was placed at
the beginning of the field, the line would expand out to:

1 *0000000000000000000000001111110X 1111XXXX
6-9

9100A-017
If the groups line or the display line are modified after data fields
have been entered into the file, the data fields change to match
the modifications. For example, if the following vector file was
loaded:

GROUPS [40-9] [8-1]
DISPLAY HEX, BIN

!TIME DATA
 1 $401007FD 1111XXXX
 2 $FFFFFFFF 0000XXXX
 3 $00000000 1100XX11

and the groups line was changed to read:

GROUPS [40-13] [12-1]

the vector file would change to:

GROUPS [40-13] [12-1]
DISPLAY HEX, BIN

!TIME DATA
 1 $401007F 11011111XXXX
 2 $FFFFFFF 11110000XXXX
 3 $0000000 00001100XX11

If the display line was then changed to read:

DISPLAY BIN, HEX

the vector file would change to:

GROUPS [40-13] [12-1]
DISPLAY BIN, HEX

!TIME DATA
 1 0100000000010000000001111111 $DFX
 2 1111111111111111111111111111 $F0X
 3 0000000000000000000000000000 *00001100XX11
6-10

9100A-017
On line 3, the binary representation in the second field could not
be converted to a hexadecimal representation, so the “*” charac-
ter was added to the beginning of the field to retain its binary
representation.

Control Phrases in Data Fields 6.9.

A set of special control phrases are available for performing
specialized functions within the data fields. The following list
describes these control phrases:

Loop <n>
Endloop

The Loop <n> phrase begins a loop. The loop count <n>
may be set to any number between 1 and 65536. The
Endloop phrase indicates the end of the loop. Only one
loop/endloop pair is allowed for each vector file. There
must be at least 2 data fields (i.e., vectors) between a
loop/endloop pair. The loop count <n> value determines
the number of times the vectors between loop and endloop
are driven. When the loop count <n> is set to 1, the effect is
the same as if the loop/endloop pair was not used.

Stop

The Stop phrase stops vector driving after the vector on the
previous line. If this phrase is positioned just before an
endloop, stop acts as if the phrase was entered after the
endloop line type. For example:

stop
endloop

is the same as:

endloop
stop
6-11

9100A-017
Capture
Capture On
Capture Off

The Capture phrase causes the input section to be clocked
on the opposing edge of the selected output clock (which
causes the clocking to occur near the center of the
preceding vector). Only one capture should be used for a
single data field (i.e., you can place two capture statements
in a row, but only one will be performed). The Capture
On/Capture Off pair can be placed in a file where clocking
the input section for all data fields contained between
Capture On and Capture Off is required. If INTFREQ, INT,
or POD are the selected clocks, an input capture is
guaranteed. If DRCLK is selected, the clock supplied by
the user must have an opposing edge to assure that an input
capture occurs.

Wait <x>

The Wait phrase pauses vector driving until the appropriate
rising or falling edge is detected on the Vector Output I/O
Module WAIT line before vector driving continues. <x>
may be specified as + for rising edges and - for falling
edges. <x> can only be set to one edge type in a vector file.
If more than one edge type is specified in the file, an error
message is generated.

If the vector file contains a loop/endloop pair and you start driv-
ing vectors from a data field within that loop using the TL/1
vectordrive command, vectors are driven until the count reaches
the endloop statement, and then starts the loop again on the vec-
tor just after the loop command. For example, if your vector file
looks like:

GROUPS [40-1]
DISPLAY BIN

TIME DATA
 1 1111111000111110000000000000111010001110
LOOP 20
 2 11
6-12

9100A-017
 3 1111110001101010100001010010101010000111
 4 00
 5 11
ENDLOOP

and the vectordrive command specifies that the file begins driv-
ing on data field 4, the vectors are driven out in the order - 4, 5,
2, 3, 4, 5, 2, etc.
6-13

9100A-017
6-14

Section 7

Applications

USING THE VECTOR OUTPUT I/O MODULE 7.1.

The Vector Output I/O Module can be used in a wide variety of
applications, from simple pattern stimulus to performing bus
cycles such as read and write cycles. Regardless of the
application, five main steps are required to fully use the
capabilities of the module. These are:

1. Create the vector files using the editor or another source.

2. From TL/1, use a program to setup the output section.

3. From TL/1, use a program to setup the input section.

4. From TL/1, use a program to drive vectors and measure
responses.

5. From TL/1, use a program to process the results.

Section 6 “Using the Vector Editor” illustrated how to make
vector files. (To make vector files that perform bus cycles, see
“Bus Emulation”, “Testing the IBM CGA Video Card”, and
“68000 Bus Video Application” further on in this section.)

The following example shows a typical program with the four
steps necessary for setting up the output and input sections,
driving vectors and measuring responses, and processing the
results.
7-1

9100A-017
**
program example

 devname - "/mod1"
 reset device devname

 setword device devname, word 1, as_pins "1 2 3 4 5 6 7 8 9 10 11 12 13 14
 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
 40"

 low_word = "00"

! *****Setup Output Section*****
 writeword device devname, word 1, patt low_word ! initialize outputs
 ! before loadinq file
 ! vec_hilo is 40 pins wide 8192 vectors deep alternating hi and lo
 vectorload device devname, file "/hdr/vector/vec_hilo"

 clockfreq device devname, freq "1MHz"
 syncoutput device devname, mode "intfreq"

 edgeoutput device devname, start "at_vectordrive" ! stop don't care
 ! clock is always "+"
 ! for syncoutput=
 ! "intfreq"
 enableoutput device devname, mode "always"

! *****Setup Input Section*****
 counter device devname, mode "transition"
 sync device devname, mode "capture" ! in "capture" mode start is forced
 ! at arm, clock edge is fixed,
 ! stop don't care

! *****Drive and Measure Responses*****
 arm device devname
 vectordrive device devname, startmode "now", vector 1
 loop until (drivepoll device devname) = 3 ! ensure driving complete
 end loop
 readout device devname

! *****Process the Results*****
 for pinnum = 1 to 40
 alvl = level device devname, pin pinnum, type "async"
 slvl = level device devname, pin pinnum, type "clocked"
 cnt = count device devname, pin pinnum
 crc = sig device devname, pin pinnum
 ! if not expected results, display them
 if ((alvl <> 5) or <slvl <> 5> or (cnt <> 4096) or (crc <> $BC67)) then
 print "Pin" + str (pinnum,10) + "ALVL = "+ str (alvl,10) +
 " SLVL - " + str (slv1,10) +" CNT " + str lent,10) +
 " CRC = " + str (crc, 16)
 end if
 next

 clearoutputs device devname
end program
**

BUS EMULATION 7.2.

The Vector Output I/O Module can provide bus-cycle emulation
for many popular buses for testing non-microprocessor based
UUTs.

To obtain the simplest level of emulation, the signal timing
required to perform a read and a write cycle should first be
determined. Once the timing is determined, data and/or address
information that is required can be inserted on the bus. Timing
diagrams from a microprocessor or UUT controller specification
sheet typically provide this information.
7-2

9100A-017
A logic analyzer may also be useful for determining cycle infor-
mation. The logic analyzer can be connected to a known-good
system with the UUT plugged into a motherboard so the cycles
can be observed. The analyzer can also provide other informa-
tion (such as initialization sequences, handshaking protocols,
etc.) that may be necessary to perform bus communication.

There are two methods by which a read cycle may be imple-
mented:

• For read cycles where individual data reads are not impor-
tant or not possible (such as block reads), but the block of
data must be correct, a cyclic redundancy check (CRC) can
be used to verify the data. When CRC checking is used,
read cycles occur at full speed with no delays between cy-
cles.

• For read cycles where the individual data must be ob-
served, a TL/1 readword function must be performed after
each cycle. By using the “capture” sync mode and placing
the CAPTURE keyword in the appropriate vector in the
vector file, or by using the “ext” sync mode and connect-
ing the external clock line (CLOCK) to an address strobe or
data strobe, the readword function can read the “stored”
synchronous level history. This method allows read cy-
cles at full speed with some delay between read accesses.

Data Compare Equal (DCE) can trap asynchronous events on the
bus, or can detect bus errors or interrupts if a line(s) of the
Vector Output I/O Module is dedicated for monitoring the event.

For applications where the Vector Output I/O Module provides a
clock to the UUT for synchronization and the skew between INT
CLK and the data out is too large, the vector data output can be
synchronized with the clock by dedicating an output pin of the
module to be the UUT clock.
7-3

9100A-017
TESTING THE IBM CGA VIDEO CARD 7.3.

The Vector Output I/O Module can test bus-based UUTs that do
not have an on-board microprocessor. The key to testing this
type of board is to determine the vector patterns necessary to
perform the required bus cycles.

In the following example, the Vector Output I/O Module is used
to control an IBM PC* CGA Video Card. There are four main
areas to be tested on the CGA Video Card: the CRT Controller,
the Video RAM, the Video Character ROM, and the Video
Output. The basic test strategy for each of the main areas is
defined as:

• CRT Controller

The controller to card-edge interface is checked and the
controller's ability to control the video in all modes is
verified.

• Video RAM

The video RAM is tested by filling it with various patterns
and reading back the stored information.

• Video Character ROM

Various character codes are loaded into video RAM and the
pattern of the ROM output characters is verified.

• Video Output

The video RGBI output is displayed for user pattern
inspection and the 9100A Probe and Clock Module are
used to take CRCs of the R, G, B, and I outputs.

* IBM and IBM PC are registered trademarks of International Business Machines Corporation
7-4

9100A-017
Fixturing the CGA Interface 7.4.

Table 7-1 maps the pins and signal names of the CGA Card with
the pins of the Vector Output I/O Module.

To accomplish the fixture design and vector bus cycle pro-
gramming, you must use the specifications for the MC6845 CRT
Controller and the information on the CGA Card contained in
the IBM Technical Reference Manual.

Table 7-1. CGA to Vector Output I/O Module Mapping

Pin Signal Module
Pin Pin Signal Module

Pin
A1 B1 GND
A2 D0 13 B2 RESET 7
A3 D1 14 B3 +5V
A4 D2 15 B4
A5 D3 16 B5
A6 D4 17 B6
A7 D5 18 B7
A8 D6 19 B8
A9 D7 20 B9 +12V
A10 IORDY 8/WAIT B10 GND
A11 AEN 5 B11 MEMW 3
A12 A19 40 B12 MEMR 4
A13 A18 39 B13 IOW 2
A14 A17 38 B14 IOR 1
A15 A16 37 B15
A16 A15 36 B16
A17 A14 35 B17
A18 A13 34 B18
A19 A12 33 B19
A20 A11 32 B20 IOCLK

(6 MHz)
6/DRCLK

A21 A10 31 B21
A22 A9 30 B22
A23 A8 29 B23
A24 A7 28 B24
A25 A6 27 B25
A26 A5 26 B26
A27 A4 25 B27
A28 A3 24 B28
A29 A2 23 B29 +5V
A30 A1 22 B30 14 MHz

(14.31818
MHz)

A31 A0 21 B31 GND
7-5

9100A-017
Fixturing Considerations 7.5.

Fixturing between the Vector Output I/O Module and the CGA
Card is minimal. To keep line lengths as short as possible and to
keep interfacing easy, the Y9100A-102 Card Edge Interface
Module is recommended. Most lines from the card edge module
to the CGA card-edge connector match except for the following:

• IOCLK

To provide the 6 MHz bus timing clock, a 24 Mhz
Oscillator is divided by four using a 74LS74 D Flip-Flop
(that is placed on the Performance board in the Card Edge
Fixture Kit). The clock is connected to pin B20 of the CGA
connector, and to pin 6 and DR CLK (to synchronize the
vectors with the bus) on the Vector Output I/O Module.

• IORDY

The IORDY line is connected to pin A10 of the CGA
connector, and pin 8 and WAIT (to provide Video RAM
synchronization) of the Vector Output I/O Module. A
pullup resistor is added to this line on the performance
board of the Card Edge Fixture Kit.

• 14 MHz

An external signal generator provides the 14.31818 MHz
signal required for Video Sync.

• +5V, +12V, GND

An external power supply provides the required voltages to
a DPDT switch that controls the power to the CGA Card.

Vector File Programming 7.6.

To control the CGA card, the proper vector patterns to perform
read and write bus cycles must be determined and placed in
vector files. There are two sets of these cycles on the CGA card:
one set to communicate with the MC6845 CRT Controller and
another to access the video RAM.
7-6

9100A-017
MC6845 CRT CONTROLLER BUS CYCLES 7.7.

Examine the timing diagram for the MC6845 (shown in Figure
7-1) to determine the vector patterns necessary to achieve the
required bus cycles.

To perform a read/write cycle, the following conditions must be
met:

• The address (RS) and read/write (R/W) signal must be set a
minimum of 80 ns before the rising edge of the E clock and
held for 10 ns after the falling edge of the clock.

• WRITE DATA must be set a minimum of 165 ns before the
falling edge of the E clock and held for 10 ns after the fall-
ing edge of the clock.

• READ DATA must be output a maximum of 290 ns after
the rising edge of the E clock and will be held for a maxi-
mum of 50 ns after the falling edge of the E clock.

Figure 7-1. MC6845 Cycle Timing Diagram

The following CRT Controller Write Cycle Vector File contains
the vectors necessary to perform the write cycle. Since the
driven vectors are synchronized with the 6 MHz bus clock, each
7-7

9100A-017
vector period is 167 ns. Vector 1 sets the address and control
data. Vector 2 is driven out 167 ns later. IOW is set low so that,
on the next clock cycle, the E clock will be set high. To ensure
that the E clock remains high for the required time, vector 3 and
4 are driven. Vector 5 adds the data to the data bus to meet the
165 ns setup time to the falling edge of the E clock. Finally,
vector 6 sets IOW high, resetting E low, thereby latching the
data. (In this example, all of the timing requirements have been
met for the write cycle except for the 10 ns hold time on R/W
and CS; these cannot be met since the removal of IOW is
required to force the E clock to return low. However, the card
and bus cycle function properly.)

CRT Controller Write Cycle Vector File

GROUPS [40-21][20-13][1][2][3][4][5)[7][8][6][12-9]
DISPLAY HEX,HEX,BIN

! A19 -- AO D7-DO I I M M A R I I UNUSED
! O O E E E E O O
! R W M M N S R C
! - - W R E D L
! - - T Y K
!
! START OF WRITE CYCLE write $3D5, data $55
 1 $003D5 $XX 1 1 1 1 0 0 X X XXXX
 2 $003D5 $XX 1 0 1 1 0 0 X X XXXX
 3 $003D5 $XX 1 0 1 1 0 0 X X XXXX
 4 $003D5 $XX 1 0 1 1 0 0 X X XXXX
 5 $003D5 $55 1 0 1 1 0 0 X X XXXX
 6 $003D5 $55 1 1 1 1 0 0 X X XXXX
 STOP

(Note that the grouping of vectors in the file with a few
comments can be self-documenting. By using the appropriate
mixture of hexadecimal and binary vector entry, a very readable
file results. Also, the GROUPS statement in the vector file
allows flexibility in mapping the module pins to the fixture
while maintaining a readable vector file.)

The following CRT Controller Read Cycle Vector File contains
the vectors necessary to perform the read cycle. The read cycle
is almost identical to the write cycle except for a few points.
IOR is used in place of the IOW line. The data lines are not
driven since the CGA Card provides the bus data. After vector 5,
the CAPTURE statement is entered to clock the input section. At
the time the actual clocking occurs, the E clock will have been
7-8

9100A-017
high for two cycles (334 ns) to ensure that the data held on the
bus is valid. Using the TL/1 readword command in the “stored”
mode will return the data read.

CRT Controller Read Cycle Vector File

GROUPS [40-21][20-13][1][2][3][4][5][7][8][6][12-9]
DISPLAY HEX,HEX,BIN

! A19 - A0 D7-D0 I I M M A R I I UNUSED
! O O E E E E O O
! R W M M N S R C
! - - W R E D L
! - - T Y K
!
! START OF READ CYCLE read addr $3D5
 1 $003D5 $XX 1 1 1 1 0 0 X X XXXX
 2 $003D5 $XX 0 1 1 1 0 0 X X XXXX
 3 $003D5 $XX 0 1 1 1 0 0 X X XXXX
 4 $003D5 $XX 0 1 1 1 0 0 X X XXXX
 5 $003D5 $XX 0 1 1 1 0 0 X X XXXX
 CAPTURE
 6 $003D5 $XX 1 1 1 1 0 0 X X XXXX
STOP

VIDEO RAM BUS CYCLES 7.8.

Another pair of bus cycles must be determined for accessing the
video RAM. The access time of the RAM is much greater than
that of the CRT Controller and, because the RAM is shared
between the controller and bus accesses, the IORDY line is used
with the WAIT line of the module to provide synchronization.

In the Video RAM Write Cycle Vector File that follows, vector 1
sets addresses A19 through A0 and data D7 through D0. Vector
2 holds the address and data while MEMW goes low. Upon
receipt of MEMW and the correct address, IORDY goes low.
The module then waits until the UUT acknowledges the write by
returning the IORDY line high, which satisfies the WAIT
condition, and vector driving continues. Vector 3 maintains the
address and data for hold time.

Video RAM Write Cycle Vector File

GROUPS [40-21][20-13][1}[2][3][4][5J[7][8][6][12-9]
DISPLAY HEX,HEX,BIN

! A19 - A0 D7-D0 I I M M A R I I UNUSED
! O O E E E E O O
! R W M M N S R C
! - - W R E D L
! - - T Y K
!
! WRITE CYCLE address $B8000, data $41

1 $B8000 $41 1 1 1 1 0 0 X X XXXX
7-9

9100A-017
2 $B8000 $41 1 1 0 1 0 0 X X XXXX
WAIT +
3 $B8000 $XX 1 1 1 1 0 0 X X XXXX
STOP

In the Video RAM Read Cycle Vector File that follows, vector 1
sets addresses A19 through A0 and data D7 through D0 to tri-
state. Vector 2 holds the address and data while MEMR goes
low. Upon receipt of MEMR and the correct address, IORDY
goes low. The module then waits until the UUT acknowledges
the read (by returning the IORDY line high), which satisfies the
WAIT condition. Vector driving then continues. Vector 3
maintains the address and MEMR while the CAPTURE Clock
clocks the data on the bus. Vector 4 returns MEMR high to fin-
ish up the cycle.

Video RAM Read Cycle Vector File

GROUPS [40-21][20-13][1][2][3][4][5][7][8][6][12-9]
DISPLAY HEX,HEX,BIN

! A19 - A0 D7-D0 I I M M A R I I UNUSED
! O O E E E E O O
! R W M M N S R C
! - - W R E D L
! - - T Y K
!
! READ CYCLE address $B8000
 1 $B8000 $XX 1 1 1 1 0 0 X X XXXX
 2 $B8000 $XX 1 1 1 0 0 0 X X XXXX
 WAIT +
 3 $B8000 $XX 1 1 1 0 0 0 X X XXXX
 CAPTURE
 4 $B8000 $XX 1 1 1 1 0 0 X X XXXX
 STOP

Vector File Generation 7.9.

Once the basic read and write cycles have been determined, the
vector files to control and test the CGA Card can be built. One
vector file can contain the initialization routines for the CGA
Card for the 40 Column, 80 Column, and Graphics Modes. This
consists of a sequence of writes to the CRT Controller. The data
required for each register is described in the 6845 Register
Description in the Color/ Graphics Monitor Adapter Section in
the IBM Technical Reference Manual.

Other vector files can be built to read and write to various
registers for testing the CRT Controller, and to write various
patterns into video RAM and to read back the values. In
7-10

9100A-017
addition to performing writes and reads to the CGA Card, the
9100 probe and clock module can take signatures of the RGBI
outputs to test the outputs.

CGA Write/Read Program Example 7.10.

The following program initializes the CGA Card in the 80
column character mode, fills the screen with ASCII characters,
and then reads back two locations.
**
program cga_prog

declare
 global string devname
end declare

! **
! READ_LOC (ADDR) - This function calls the read_cycle function with the
! vector start number (which corresponds to the address to be read), and
! processes the returned byte read.
! **
 function read_loc (addr)

 declare
 numeric addr
 end declare

 ! *****get the vector start address*****
 ! $B8000 = 1, $B8001 = 4, $B8002 = 7,. . .
 vec_num = ((addr - $BB000) * 3) + 1

 ! *****go do the read*****
 byte_str = read_cycle vec_start vec_num

 ! *****check for stable levels on the read (no "*"'s)*****
 if (instr (byte_str, "*") = 0) then
 ! *****stable read*****
 byte_nun = val (byte_str,2)
 print "Read @ "+ str (addr,16) +" = " + str (byte_num,16)
 else
 ! *****unstable read*****
 print "Read @ " + str (addr,16) + " Is Not Stable"
 end if

 return errflg

 end function

! **
! READ_CYCLE (VEC_START) - This function drives the vector at vec_start
! returns the stored readword byte.
! **
 function read_cycle (vec_start)

 declare
 numeric vec_start
 global string devname
 end declare

 ! *****set up input section for read*****
 sync device devname, mode "capture"

 arm device devname
 vectordrive device devname, startmode "now"; vector vec_start
 loop until (drivepoll device devname) = 3
 end loop
 readout device devname

 byte_str = readword device devname, word 1, mode "stored"

 return byte_str
7-11

9100A-017
 end function
! **
! This is the main program body.
! **
 devname - "/mod1"

 ! *****Define Word To Match D7 - D0*****
 setword device devname, word 1, as_pins "20 19 18 17 16 15 14 13"

 ! *****Reset PC CGA Card*****
 writepin device devname, pin 7, level "1", mode "latch" ! Reset
 writepin device devname, pin 7, level "0", mode "latch"

 ! *****Sync Vector Output With 6 MHz Bus Clock*****
 syncoutput device devname, mode "drclk"

 ! *****Drive upon "vectordrive" command, use rising edge*****
 edqeoutput device devname, start "at_vectordrive", stop "+", clock "+"

 ! *****initialize CGA card*****
 vectorload device devname, file "init_color"
 vectordrive device devname, startmode "now", vector 1
 loop until (drivepoll device devname) = 3 ! Wait for drive complete
 end loop

 ! *****Put up ascii screen (part 1)*****
 vectorload device devname, file "alpha_80_1"
 vectordrive device devname, startmode "now", vector 1
 loop until (drivepoll device devname) = 3
 end loop
 ! *****Put up ascii screen <part 2)*****
 vectorload device devname, file "alpha_80_2"
 vectordrive device devname, startmode "now", vector 1
 loop until (drivepoll device devname) = 3
 end loop

 vectorload device devname, file "read_vram"
 read_loc addr $B8000 ! read character 1
 read_loc addr $B8001 ! read attributes
 read_loc addr $B8002 ! read character 2
 read_loc addr $B8003 ! read attributes

end program

68000 BUS VIDEO APPLICATION 7.11.

The video board of the 9100A is a 68000 bus-controlled UUT. It
uses the Signetics SCN2674 Advanced Video Display Controller
as the CRT Controller. The board has a write-only, character
mode, memory-mapped video RAM to which the character code
and attribute information are written.

Testing The Video Board 7.12.

The test strategy for the video board is similar to that of the CGA
Card. One significant difference is that the video RAM is write-
only, so its performance is tested by using CRCs of the video
output. Because the CRT controller is different than that of the
CGA Card, a different fixture interface and bus cycles are re-
quired.
7-12

9100A-017
Fixturing the Video Board Interface 7.13.

Table 7-2 maps the pin and signal names of the Video Board
with the pins of the Vector Output I/O Module.

The fixturing between the Vector Output I/O Module and the
Video Board is minimal. To keep line lengths as short as pos-
sible and to keep interfacing easy, the Y9100A-102 Card Edge
Interface Module is recommended. Most lines from the card
edge interface module to the video 64-pin DIN connector go di-
rectly from the module to the connector except for the following:

• VDTACK, VWAIT

To synchronize the bus cycles with the UUT, DTACK must
be applied to the WAIT input on the module. There are two
separate signals from the video board; VDTACK (a one
wait-state DTACK from the controller) and VWAIT (a
three wait-state DTACK from the video RAM). Both of
these lines are connected to the inputs of a 74LS08 AND

Table 7-2. Video Board to Vector Output I/O Module Mapping

Pin Signal Module
Pin Pin Signal Module

Pin
27C A11 40 7A D6 20
28C A10 39 6A D5 19
29C A9 38 5A D4 18
30C A8 37 4A D3 17
24A A7 36 3A D2 16
25A A6 35 2A D1 15
26A A5 34 1A D0 14
27A A4 33 14A R/W 13
28A A3 32 12A UDS 12
29A A2 31 13A LDS 11
30A A1 30 10C PS7 10
8C D15 29 13C PS6 9
7C D14 28 12C RESET 8
6C D13 27 22A VWAIT 7
5C D12 26 16A VDTACK 6
4C D11 25 32A +5V
3C D10 24 32C +5V
2C D9 23 11C +5V
1C D8 22 9A GND
8A D7 21 9C GND

31A GND
7-13

9100A-017
gate whose output is connected to WAIT. If either signal
goes low, the WAIT input will go low as well. For trou-
bleshooting in the case of no DTACK, both the VDTACK
and VWAIT lines should also be connected to Vector
Output I/O Module pins where their activity can be moni-
tored.

• +5V, GND

An external power supply provides the required voltages to
a DPDT switch that controls power to the video board.

Determining Bus Cycles 7.14.

The SCN2674 Advanced Video Display Controller timing dia-
grams and the video board schematic (found in the 9100 Series
Service Manual) can be used to determine the vector patterns
necessary to perform bus cycles (see Figure 7-2). Signals PS7
and PS6 are formed by address strobe AS and memory decoding
(PS7 = $FXXXX, PS6 = $EXXXX) on the 9100A main board.
To access either the controller or video RAM requires the same
basic cycle, the only difference being the controller data is D7
through D0 and is selected by PS7, while the video RAM data is
D15 through D0 and is selected by PS6.

Because of the similarity of the cycles to access the controller
and the video RAM, only the bus cycles to the controller are
illustrated in this section.

The video input PS7 provides CE and also exits the board as
VDTACK. The R/W signal is “ANDed” with LDS to get the RD
and WR signals.

Determining the Write Cycle 7.15.

Examine the SCN2674 4 MHz write cycle timing diagram to
learn how its signals interface with the video board. To perform
a write cycle, the following events must occur:

• Address bus A11 through A1 must be set a minimum of 30
ns prior to WR going low (R/W low and LDS low).
7-14

9100A-017
Figure 7-2. SCN2674 Controller Timing Diagram (4 MHz Version)

• CE (which is controlled by PS7) has a setup time of 0 ns
prior to R/W going low.

• WR has a minimum pulse width of 200 ns.

• Data D7 through D0 must be setup 150 ns minimum before
WR goes high.

• Data D7 through D0 must be held a minimum of 5 ns after
WR goes high.

• Address bus A11 through A1 and CE have a 0 ns hold time
after WR goes high.

• CE must be high for 300 ns between chip accesses.

Using an internal clock frequency of 5 MHz (which gives 200 ns
per vector resolution), the following 2674 Video Display
Controller Write Cycle vector file can be made.
7-15

9100A-017
2674 Video Display Controller Write Cycle

 GROUPS [40-30,1][29-22][21-14][13][12][11][10][9][8][7][6][5-2]
 DISPLAY HEX,HEX,HEX,BIN

 ! ADDR DATA CTRL UNUSED
 ! All - Al D15-D8 D7-D0 R U L P P R V V
 ! (A0) / D D S S E W D
 ! W S S 7 6 S A T
 ! - - - - - E I A
 ! T T C
 ! - - K
 ! -
 ! WRITE CYCLE addr $f0013, data $XX00 (addr $fxxxx = PS7-, data $XX00 =
LDS-)
 1 $013 $XX $XX 1 1 1 1 1 1 X X XXXX
 2 $013 $XX $00 0 1 0 0 1 1 X X XXXX
 WAIT -
 3 $013 $XX $00 1 1 1 1 1 1 X X XXXX
 STOP

Eleven address lines go to the video board for addressing the
controller and video RAM. In a 68000-based system, A0
determines if the access is LDS or UDS. To provide a more
readable vector file, the unused pin 1 in the previous example is
assigned to be A0. (The LDS/UDS information is still contained
under the control section of the vector file.)

The first vector in this file sets the address. Vector 2, which is
driven 200 ns later, holds the address, sets the data, sets R/W and
LDS low (to get WR low), and sets PS7 low (to get CE low).
The WAIT statement ensures that VDTACK is returned before
continuing, The final vector, which is driven 200 ns later, holds
the address and data while the CTRL signals are changed to
return WR and CE high, thereby latching the data. Compare the
write cycle described above with Figure 7-2 to confirm that the
requirements for writing to the SCN 2674 are met.

Determining the Read Cycle 7.16.

Examine the SCN2674 4 MHz read cycle timing diagram
(Figure 7-2) to learn how its signals interface with the video
board. To perform a read cycle, the following events must occur:

• Address bus All through A1 must be set a minimum of 30
ns prior to RD going low (R/W high and LDS low).
7-16

9100A-017
• CE (which is controlled by PS7) has a setup time of 0 ns
prior to RD going low.

• RD has a minimum pulse width of 200 ns.

• Data D7 through D0 will be valid a maximum of 100 ns
after RD goes low.

• Address bus A11 through A1 and CE have a 0 ns hold time
after RD goes high.

• CE must be high for 300 ns between chip accesses.

The following 2674 Video Display Controller Read Cycle vector
file performs a read cycle.

2674 Video Display Controller Read Cycle

GROUPS [40-30,1][29-22][21-14][13][12][11][10][9][8][7][6][5-2]
DISPLAY HEX,HEX,HEX,BIN

! ADDR DATA CTRL UNUSED
! A11 - A1 D15-D8 D7-D0 R U L P P R V V
! / D D S S E W D
! W S S 7 6 S A T
! - - - - - E I A
! T T C
! - - K
! -
! READ CYCLE addr $f0011 (addr $fxxxx =PS7-, data = LDS-)
 1 $011 $XX $XX 1 1 1 1 1 1 X X XXXX
 2 $011 $XX $XX 1 1 0 0 1 1 X X XXXX
 WAIT -
 3 $003 $XX $XX 1 1 1 1 1 1 X X XXXX
 CAPTURE
 STOP

The first vector in this file sets the address. Vector 2, which is
driven 200 ns later holds the address holds R/W high and sets
LDS low (to get RD low), and sets PS7 low (to get CE low). The
WAIT statement ensures that VDTACK is returned before
continuing. The final vector, which is driven 200 ns later, holds
the address while the CTRL signals are changed to return RD
and CE high. Approximately 100 ns after RD and CE have
returned high (in the center of the vector period), the CAPTURE
clock clocks the data in on the data bus. A readword command
using the “stored” mode can then be performed to retrieve the
data. Note that the read data is only valid for 100 ns maximum
after the return of RD and CE to the high state. If the read
7-17

9100A-017
results are not stable, the setoffset command should be used to
delay the data read with respect to the clock. An alternative
method would be to add one more vector to hold RD and CE low
while the capture is performed before returning RD and CE
high.

Once the controller read and write cycles have been determined,
a vector file to control and test the controller can be written by
changing the address and data fields as appropriate. By changing
PS7 and PS6 and adding UDS to follow the LDS pattern, the
write cycle to access the video RAM can be made. Vector files
can then be built that display various patterns that can be used to
test the video board

WAIT APPLICATION 7.17.

The edge specified for the WAIT command in a vector file
cannot be changed within the vector file. For some handshaking
protocol, it may be necessary to wait for an edge of one polarity,
drive some vectors, and wait for the edge of the other polarity.
This can be performed externally to the module by dedicating
one of the output lines of the module to control an exclusive OR
gate to be used as a programmable inverter. The vector file
entries for the dedicated line determine if the event connected to
the other input of the gate should be inverted (or not inverted)
before going to the WAIT input of the module.

In some applications, WAIT may need to be checked for a level
rather than an edge (for example, checking for clear-to-send
(CTS) or BUSY signals). The external ENABLE line could be
used to perform this function only if the application does not re-
quire programmable checks and does not have problems if vec-
tor driving is stopped during a particular series of vectors. If
neither of these conditions can be met, there are several different
methods that could be used to check for a level.

One method would dedicate a line from the Vector Output I/O
Module for a gate on a test fixture that enables the controlling
signal (CTS, etc.)(see Figure 7-3). The vector immediately pre-
ceding the WAIT statement in the vector file would contain a
level that enables the controlling signal. When the vector was
driven and the controlling signal was at the desired level, setting
7-18

9100A-017
the line on the vector would provide the edge necessary to sat-
isfy the WAIT. If the controlling signal was not at the desired
level, vector driving would halt until the signal was set to the
correct level.

Figure 7-3. Using WAIT to Check for a Level (Method 1)

Another method would “AND” the controlling signal with the
Vector Output I/O Module INT CLK line (See Figure 7-4). This
method would provide an edge when the controlling signal was
satisfied.

Figure 7-4. Using WAIT to Check for a Level (Method 2)

TIMING SETS 7.18.

The Vector Output I/O Module does not require the use of timing
sets for most applications because of its pattern depth of 8192
vectors and loading time of 3 seconds for an 8K vector file.
However, to reduce programming time or the number of vector
files necessary, two Vector Output I/O Modules can be used to
provide timing sets.

One module would contain a vector file of the basic timing sets;
that is, the control signal vectors required to perform the read-
cycle, writecycle, or other cycles. The vector file would contain
a LOOP statement enclosing the cycle information set to the
7-19

9100A-017
number of times the cycle is to be repeated. One output line of
the first module would be connected to the second module's DR
CLK line to clock out the address and data vectors (as shown in
Figure 7-5).

Figure 7-5. Connecting Two Modules for Timing Sets

The second module would contain the vector patterns to be out-
put on the address and data bus lines. The number of entries in
this vector file should be the same as the LOOP value set in the
first module's vector file.

The following example demonstrates this method:
7-20

9100A-017
Module 1 Vector File (Timing Sets)

GROUPS [25][26][27][28][29][30][31][32][16-9][8-1][24-17][33-40]
DISPLAY BIN,BIN,BIN,BIN,BIN,BIN,BIN,BIN,HEX,HEX,HEX,HEX

! R U L P P R V A A15 A7 D7 UNUSED
! / D D S S E D D -A8 -A0 -D0
! W S S 7 6 S T D
! - - - - - E A C
! T C L
! - K K
! -
 1 1 1 1 1 1 1 X 0 $XX $XX $XX $XX

 LOOP 5
 ! START OF WRITE CYCLE
 2 1 1 1 1 1 1 X 1 $XX $XX $XX $XX
 3 0 0 0 1 0 1 X 0 $XX $XX $XX $XX
 WAIT -
 4 0 1 1 1 1 1 X 0 $XX $XX $XX $XX
 5 1 1 1 1 1 1 X 0 $XX $XX $XX $XX
 ENDLOOP
 STOP

Module 2 Vector File (Address/Data Information)

GROUPS [16-9][8-1][24-17][25-40)
DISPIAY HEX

!TIME DATA

! A15-A8 A7-A0 D7-D0 UNUSED
 1 $01 $00 $55 $XXXX
 2 $01 $01 $67 $XXXX
 3 $01 $02 $46 $XXXX
 4 $01 $03 $00 $XXXX
 5 $01 $04 $13 $XXXX
 STOP

In this example, module 1 is set to the appropriate syncoutput
mode, module 2 is set to syncoutput mode “drclk”, and the
edgeoutput clock argument is set to “+”. When module 1 begins
driving out vectors, its pin 32 ADDCLK line clocks the second
module to get the correct address and data. Each time the loop is
driven, module 2 gets clocked to update its address and data.

Note that module 1 waits until the UUT returns VDTACK
before continuing.

TL/1 VECTOR FILE GENERATION 7.19.

Generation of large vector files that use bus cycles can be easily
automated using TL/1 programming. Once a bus cycle has been
determined, it can be used as a pattern for large vector files that
repeat the cycle with new address and data information. The bus
cycle vector file can be copied into a text file to be used as a
7-21

9100A-017
template (such as the following Write Cycle Text File). A second
text file can be made that contains the address and data to be
inserted into the bus cycle (such as the following Address Data
Text File). A program (such as the example “build” program),
can be used to build a text file that is filled with the bus cycle
information that contains the required address and data
information. Once the file is complete, the text file may be
copied to a vector file.

Write Cycle Text File

GROUPS [40-21][20-13][1][2][3][4][5][7][8][6][12-9)
DISPLAY HEX,HEX,BIN

! A19 - A0 D7-D0 I I M M A R I I UNUSED
! O O E E E E O O
! R W M M N S R C
! - - W R E D L
! - - T Y K
! START OF WRITE CYCLE write $B8000, data $4107
 1 $B8000 $41 1 1 1 1 0 0 X X XXXX
 2 $B8000 $41 1 1 0 1 0 0 X X XXXX
 WAIT +
 3 $B8000 $XX 1 1 1 1 0 0 X X XXXX
 4 $B8001 $07 1 1 1 1 0 0 X X XXXX
 5 $B8001 $07 1 1 0 1 0 0 X X XXXX
 WAIT +
 6 $B8001 $XX 1 1 1 1 0 0 X X XXXX

Note that the previous vector file contains writes at two different
addresses. The build program automatically handles the address
incrementing.

The following text file contains the address followed by the
attribute byte and character.

Address Data Text File

 B8000 07 41
 B8002 07 42
 B8004 07 43
 B8006 07 44
 B8008 07 45
 BS00A 07 46
 BS00C 07 47
 B800E 07 48
 B8010 07 49
 B8012 07 4A

The following program was written specifically to process the
write cycle given in this example. This program can be easily
changed to handle different bus cycles.
7-22

9100A-017
program build
! **
! The build program is used to generate textfiles that may he coerced into
! vector files. It is necessary to have a textfile "WRITECYCLE" which
! contains a description of a single write cycle. The user will be prompted
! to enter the text file name which contains the address and data information
! and the text file name to which the file is to he written to.
!
! Last updated: 4/21/89
! **

declare
 global string array [1:17] writecyc
 global numeric in_text
 global numeric out_text
 global numeric t2o
 string old_file
 string new_file
end declare

! **
! The build_vector routine.
! **
 function build_vector

 declare
 string array [1:9] write_it
 global string array [1:17] writecyc
 global numeric in_text
 global numeric out_text
 string addr_val_str
 string patt_str
 string attr_str
 global numeric t2o
 end declare

 loop while (poll channel in_text, event "input") ! go until end of file

 ! *****get address, attribute, character*****
 input on in_text, using "##### ## ##\nl", addr_val_str, attr_str, patt_str
 print on t2o, "\1B[3;1f\1B[KWrite At $" + addr_val_str + " - Data $" +
 patt_str
 ! *****headinq comment for each cycle*****
 write_it [1] = mid (writecyc [9], 1, 29) + addr_val_str + ", data $" +
 patt_str + attr_str

 ! *****pick apart old cycle, slip in new stuff*****
 preamble = mid (writecyc [10], 1, 7) + addr_val_str + " $" +
 patt_str

 ! *****write cycle to character location*****
 write_it [2] = preamble + mid (writecyc [10], 32, 36)
 write_it [3] = preamble + mid (writecyc [11], 32, 36)
 write_it [4] = writecyc [12]
 preamble = mid (writecyc [13], 1, 7) + addr_val_str + " $XX"
 write_it [5] = preamble + mid (writecyc [13], 32, 36)

 ! ****increment the address by one*****
 addr_val_str = str (((val (addr_val_str,16)) + 1), 16)
 print on t2o, "\1B[4;1f\1B[KWrite At $" + addr_val_str +
 " - Attribute $" + attr_str
 preamble = mid (writecyc [14], 1, 7) + addr_val_str +
 " $" + attr_str

 ! *****write cycle to the attribute location*****
 write_it [6] = preamble + mid (writecyc [14], 32, 36)
 write_it [7] = preamble + mid (writecyc [15], 32, 36)
 write_it [8] = writecyc [16]
 preamble = mid (writecyc [17], 1, 7) + addr_val_str + " $XX"
 write_it [9] = preamble + mid (writecyc [17], 32, 36)

 ! *****write whole cycle cycle*****
 for vec_out = 1 to 9
 print on out_text, write_it [vec_out]
 next

 end loop

end build_vector
7-23

9100A-017
! **
! This is the main program body.
! **
 ! *****open devices, print screen*****
 t2u = open device "/term2", as "update"
 t2o = open device "/term2",as "output"

 print on t2o, "\1B[H\1B[J"

 ! *****get existinq cycle information*****
 ! *****this example has 17 lines in the writecycle file*****
 ! *****which are stored in writecyc string array*****
 if (filestat file "writecycle") <> "" then

 cycle = open device "writecycle", as "input"

 print on t2o, "\1B[1;1fRetrieving Write cycle Information ..."

 for n = 1 to 17
 input on cycle, writecyc [n]
 next

 close (cycle)

 ! *****get name of file with address and data information*****
 print on t2o, "\1B[1;1f\1B[JInput Name Of Address/Data File"
 input on t2u, old_file

 if (filestat file old_file) <> "" then
 in_text = open device old_file, as "input"

 ! *****get file name of the file to store text file to*****
 print on t2o, "\1B[1;1f\1B[JInput Name Of Output File"
 input on t2u, new_file out_text = "open device new_file, as "output"

 ! ****Print out header information. This includes the GROUPS line,
 ! ****DISPLAY line, and comments describinq signal names of the groups.
 for n = 1 to 8
 print on out_text, writecyc [n]
 next

 print on t2o, "\1B[1;1f\1B[J\1B[?251Building Vector Text File . . ."
 build_vector()

 close (in_text)
 close (out_text)

 print on t2o, "\1B[1;1f\1B[JVector Textfile Complete."
 print on t2o, "\1B[2;1fCopy to Vector File."
 else
 print on t2o, "\1B[1;1f\1B[J" + old_file + " Text File Does Not Exist."
 end if

 else
 print on t2o, "\1B[1;1f\1B[JWRITECYCLE Text File Does Not Exist."
 end if

 close (t2o)
 close (t2u)

end program
7-24

Appendix A
New TL/1 Commands
A-1

9100A-017
A-2

clockfreq

Syntax:

clockfreq [device <device list>] [, freq
<freq>]

clockfreq (<device list>,<freq>)

clockfreq()

Syntax Diagram:

Description:

Sets the internal vector output drive clock frequency to 1
MHz, 5 MHz, 10 MHz, or 20 MHz. This command is used
with the Vector Output I/O Module only.

Arguments:

device list I/O module name, clip name,
or combination of these.
(Default = “/mod1”)

freq freq of “1MHz”, “5MHz”,
“10MHz”, or “20MHz”.
(Default = “1MHz”)
clockfreq-1

clockfr
Example 1:

! Set clock frequency of /mod1 to 1MHz
! Set clock frequency of /mod2 to 5MHz
! Set clock frequency of /mod3 to 10MHz
! Set clock frequency of /mod4 to 20MHz
clockfreq device "/mod1", freq "1MHz"
clockfreq device "/mod2", freq "5MHz"
clockfreq device "/mod3", freq "10MHz"
clockfreq device "/mod4", freq" 20MHz"

Example 2:

! Use default values to set clock freq. of
! /mod1 to 1MHz
clockfreq()

Example 3:

! Set clock frequency of "/mod1" to "10MHz"
clockfreq ("/mod1","10MHz")

Remarks:

The clockfreq command sets the internal clock frequency
that is used to drive out vectors. The frequency changes
immediately upon command execution. Note that there is
no synchronization between the internal clocks of each
I/O module. Changing the internal clock frequency dur-
ing vector driving is not recommended. This frequency
is also available on the INT CLK output pin of the mod-
ule as a free-running signal and, unlike the vector output
clock, is not affected by external START, STOP, or
ENABLE conditions.

Related Commands:

syncoutput, vectordrive
eq-2

For More Information:

• The “Overview Of TL/1” section of the Programmer’s
Manual.
clockfreq-3

clockfr
eq-4

drivepoll

Syntax:

drivepoll device <device list>

drivepoll (<device list>)

drivepoll()

Syntax Diagram:

Description:

Returns the current drive and handshake status of the re-
quested I/O module(s). This command is used with the
Vector Output I/O Module only.

Arguments:

Returns:

Vector drive status is indicated by bit 0. Bit 0 is 0 if vector
driving is not complete and is 1 if vector driving is
complete.

Handshake status is indicated by bit 1. Bit 1 is 0 if vector
driving is suspended and the selected edge of the signal on
the WAIT input has not yet been received. Bit 1 is 1 if the
module is not awaiting a WAIT input.

device list I/O module name, clip module
name, or combination of these.
(Default = “/mod1”)
drivepoll-1

drivep
Example 1:

!Wait for drive and handshake to complete on
!/mod1
vectordrive device "/mod1"
loop while ((drivepoll device "/mod1") <> 3)
end loop
print "vector drive completed"

Example 2:

! Use "/mod2" to supply the rising edge to
! "/mod1" each time a handshake is needed.
writepin device "/mod2", pin 1, level "0"
vectorload device "/mod1", file "vec1"
edgeoutput device "/mod1", start
 "at_vectordrive"
vectordrive device "/mod1"
n = 0
loop while (n <> 3)
 n = drivepoll device "/mod1"
 if n = 0 then
 ! give edge to mod1
 writepin device "/mod2", pin 1,
 level "1"
 writepin device "/mod2", pin 1,
 level "0"
 end if
end loop

Remarks:

If the sysncoutput mode is set to “drclk” or “intfreq”, and
a signal on the external STOP line is received with the
proper edge, vectordriving will be terminated, but
drivepoll will not show this termination since all vectors
loaded have not been driven.

Related Commands:

vectordrive
oll-2

For More Information:

• The “Overview Of TL/1” section of the Programmer’s
Manual.
drivepoll-3

drivep
oll-4

edgeoutput

Syntax:

edgeoutput [device <device list>]
[,start<start edge>] [, stop <stop
edge>] [, clock <clock edge>]

edgeoutput (<device list>,<start edge>, <stop
edge>, <clock edge>)

edgeoutput()

Syntax Diagram:

Description:

Specifies the active edge for the external START, STOP, and
DR CLK inputs used to drive out vectors. Does not affect
the input section hardware. This command is used with the
Vector Output I/O Module only.

Arguments:

device list I/O module name, clip name,
or combination of these.
(Default = “/mod1”)

start edge External start edge “+”, “-”, or
“at_vectordrive”.
(Default = “+”)

stop edge External stop edge “+” or “-”.
(Default = “+”)
edgeoutput-1

edgeou
Example 1:

mod = "/mod1"
edgeoutput device mod, start "+", stop "-
",
 clock "+"

Example 2:

modlist = "/mod1,/mod2"
edgeoutput device modlist, start "-", stop
 "-",clock "+"

Remarks:

The start edge argument “at_vectordrive” allows vector
driving to begin upon the receipt of a qualified clock.
This occurs regardless of the start mode argument set in
the vectordrive command. The start edge and the stop
edge arguments have no effect on syncoutput modes
“pod” and “int”. The clock edge argument has no effect
on syncoutput modes “pod”, “int”, and “intfreq”.

Related Commands:

syncoutput, vectordrive

For More Information:

• The “Overview Of TL/1” section of the Programmer’s
Manual.

clock edge External clock edge “+” or “-”.
(Default = “+”)
tput-2

enableoutput

Syntax:

enableoutput [device <device list>] [, mode
<mode>]

enableoutput (<device list>,<mode>)

enableoutput()

Syntax Diagram:

Description:

Specifies the level for the external ENABLE line used to
qualify the clocks for vector driving. Does not affect the
input section hardware. This command is used with the
Vector Output I/O Module only.

Arguments:

Example 1:

mod = "/mod1"
enableoutput device mod, mode "high"

device list I/O module name, clip module
name, or combination of
these.
(Default = “/mod1”)

mode Enable modes: “always”,
“high”, or “low”.
(Default = “always”)
enableoutput-1

enable
Example 2:

enableoutput device "/mod4B", mode "always"

Remarks:

The enableoutput mode argument determines the clock
qualifier used for vector driving. If the “always” mode is
selected, all clocks are qualified to drive out vectors. If
the “high” or “low” mode is selected, the appropriate
level must be present on the external ENABLE line to
qualify the clock. This command only qualifies the clock
when the syncoutput mode is “drclk” or “intfreq”. Both
syncoutput modes “int” and “pod” clocks are always
qualified.

Related Commands:

edgeoutput, syncoutput, vectordrive

For More Information:

• The “Overview Of TL/1” section of the Programmer’s
Manual.
output-2

strobeoutclock

Syntax:

strobeoutclock device <device list>

strobeoutclock (<device list>)

strobeoutclock()

Syntax Diagram:

Description:

The strobeoutclock command performs an internal clocking
of a vector when the module syncoutput mode is set to “int”.
Subsequent executions of the strobeoutclock command
continues to drive vectors until the end of the vector file is
reached. This command is used with the Vector Output I/O
Module only.

Arguments:

Example 1:

mod = "/mod1"
syncoutput device mod, mode "int"
 ! syncoutput must be set to "int"
 ! or error occurs on strobeoutclock
edgeoutput device mod, start "at_vectordrive"
vectorload device mod, file "vec1"
vectordrive device mod
arm device mod
 strobeoutclock device mod

device list I/O module name, clip module
name, or any combination of
these.
(Default = “/mod1”)
strobeoutclock-1

strobe
 strobeoutclock device mod
readout device mod
crc = sig device mod, pin 1
lvl = level device mod, pin 1, type "clocked"

Example 2:

! use "/mod1" to set up peripheral port at
! $90000
! use pod to read results
mod = "/mod1"
edgeoutput device mod, start "at_vectordrive"
syncoutput device mod, mode "int"
 ! syncoutput must be set to "int"
 ! or error occurs on strobeoutclock
vectorload device mod, file "vec1"
! Clock out vector 1 = $55
vectordrive device mod
strobeoutclock device mod
if ((read addr $90000) <> $55) then print
 "Port 2 Failed $55"
! Clock out vector 2 = $AA
strobeoutclock device mod
if ((read addr $90000) <> $AA) then print
 "Port 2 Failed $AA"

Remarks:

The syncoutput mode must be “int” or an error is issued
upon strobeoutclock execution. The strobeoutclock
command is useful for single-step debugging. It is also
useful for controlling vector driving when other TL/1
commands must be used between vectors (such as pod
actions) to perform initialization or control routines.

Related Commands:

syncoutput, vectordrive

For More Information:

• The “Overview Of TL/1” section of the Programmer’s
Manual.
outclock-2

syncoutput

Syntax:

syncoutput [device <device list>] [, mode
<sync mode>]

syncoutput (<device list>,<sync mode>)

syncoutput()

Syntax Diagram:

Description:

Selects the vector output clock source. This command does
not affect the input section hardware. The actual clock
selection does not occur until the vectordrive command has
been executed. This command is used with the Vector
Output I/O Module only.

Arguments:

Example 1:

syncoutput device "/mod1", mode "intfreq"
clockfreq device "/mod1", freq "10MHz"
vectordrive device "/mod1"

device list I/O module name, clip module
name, or any combination of
these.
(Default = “/mod1”)

sync mode Sync Modes: “pod”, “drclk”,
“int” or “intfreq”.
(Default = “intfreq”)
syncoutput-1

syncou
Example 2:

syncoutput device "/mod2", mode "pod"
syncoutput device "/mod1", mode "drclk"
vectordrive device "/mod1, /mod2"

Remarks:

When the syncoutput mode is set to “pod”, use the sync
command to select either pod address, pod data, or an-
other pod sync mode as the clock source.

When the syncoutput mode is set to “intfreq”, use the
clockfreq command to control the frequency of the clock.

When the syncoutput mode is set to “int”, use the
strobeoutclock command to clock out the vectors.

Related Commands:

clockfreq, edgeoutput, enableoutput, strobeoutclock,
sync, vectordrive

For More Information:

• The “Overview Of TL/1” section of the Programmer’s
Manual.
tput-2

vectordrive

Syntax:

vectordrive [device <device list] [,
startmode <startmode>] [, vector
<vector>]

vectordrive (<device
list>,<startmode>,<vector>)

vectordrive()

Syntax Diagram:

Description:

The execution of this command enables the loaded vector
file to be driven, starting at the indicated vector. This
command is analogous to an “arm” command for the output.
This command is used with the Vector Output I/O Module
only.

Arguments:

device list I/O module name or any
combination of I/O module
names.
(Default = “/mod1”)

startmode Start Mode: “at_arm” or “now”
(Default = “now”)
vectordrive-1

vector
Example 1:

vectorload device "/mod1", file "vec1"
vectordrive device "/mod1", startmode "now",
vector 1

Example 2:

vectorload device "/mod1", file
 "/hdr/demo/vec1"
vectordrive device "/mod1", startmode
 "at_arm", vector 3

Remarks:

If startmode is “now”:

and syncoutput mode is “pod”, vector driving occurs
on the receipt of Pod Sync clocks.

and syncoutput mode is “int”, vector driving occurs on
the execution of the strobeoutput command.

and syncoutput mode is either “drclk” or “intfreq”:

and edgeoutput start is “at_vectordrive”, vector
driving occurs upon the receipt of a qualified clock.

and edgeoutput start is “+” or “-”, vector driving
occurs upon on first qualified clock following the
receipt of the external START.

vector Vector number from which to
begin driving (from 1 to the
number of vectors loaded).
The vector number directly
corresponds to the vector
number in the vector file.
(Default = 1)
drive-2

If startmode is “at_arm”:

the same conditions apply as above, except that the TL/1
arm command must be executed first (to permit
simultaneous arming of the vector driving and the
response gathering hardware).

Once loaded, a vector file can be driven repeatedly, starting
at any specified vector, until overwritten by a writepin or
writeword command.

Related Commands:

edgeoutput, enableoutput, syncoutput, strobeoutclock,
vectorload

For More Information:

• The “Overview Of TL/1” section of the Programmer’s
Manual.
vectordrive-3

vector
drive-4

vectorload

Syntax:

vectorload [device <device list>,] file
<file name>

vectorload(<device list>, <file name>)

Syntax Diagram:

Description:

Causes the vector file “filename” to be loaded into all
modules designated in <device list>. A single vector file
cannot cover more than one I/O Module. However,
vectorload may load the same file into several modules at
the same time. This command is used with the Vector
Output I/O Module only.

Arguments:

Example 1:

vectorload device "/mod1", file
 "/hdr/tmp/vec1"
vectordrive device "/mod1"

device list I/O module name or any
combination of I/O module
names.
(Default = “/mod1”)

file name Absolute or relative file name
of the vector file to be loaded.
vectorload-1

vector
Example 2:

vectorload device "/mod1", file "vec1"
vectordrive device "/mod1"

Remarks:

Whenever a vectorload command is executed, all vectors
currently in the designated I/O Module are removed and
the new vector file is loaded. The file remains in the
designated I/O Module until overwritten by execution of
the writeword or writepin commands, or until another
file is loaded.

Vectorload should not be executed during vector driving
or inconsistent results may occur. Loading a vector file
has no effect on the current latched output. Because of
this, vector files can be loaded between an “arm” and a
“readout” with no adverse effects as long as no qualified
clocks are received. This method works well when the
input section hardware’s sync mode is “pod”, “int”, or
“capture”. More care must be taken if the sync mode is
“ext”.

When executed, the vectorload command uses available
memory to transfer the vector file from disk to the I/O
Module. If the entire file fits into memory, only one disk
access is required and only about 3 seconds are required
to load an 8K vector file from hard disk, or 15 seconds
from floppy disk, to an I/O Module. If not enough RAM
is available, several passes may be required to load the
entire file, requiring more time. To reduce this time, the
user may consider purchasing additional RAM to in-
crease the available memory.

Related Commands:

vectordrive
load-2

For More Information:

• The “Overview Of TL/1” section of the Programmer’s
Manual.
vectorload-3

vector
load-4

Appendix B
I/O Module

Clip/Pin Mapping

Clip size = 14, module installed on "A" side

Clip I/O Mod Pin Clip I/O Mod Pin

 1 = 1 14 = 20
 2 = 2 13 = 19
 3 = 3 12 = 18
 4 = 4 11 = 17
 5 = 5 10 = 16
 6 = 6 9 = 15
 7 = 7 8 = 14

Clip size = 14, module installed on "B" side
Clip I/O Mod Pin Clip I/O Mod Pin

 1 = 21 14 = 40
 2 = 22 13 = 39
 3 = 23 12 = 38
 4 = 24 11 = 37
 5 = 25 10 = 36
 6 = 26 9 = 35
 7 = 27 8 = 34
B-1

9100A-017
Clip size = 16, module installed on "A" side

Clip I/O Mod Pin Clip I/O Mod Pin

 1 = 1 16 = 20
 2 = 2 15 = 19
 3 = 3 14 = 18
 4 = 4 13 = 17
 5 = 5 12 = 16
 6 = 6 11 = 15
 7 = 7 10 = 14
 8 = 8 9 = 13

Clip size = 16, module installed on "B" side

Clip I/O Mod Pin Clip I/O Mod Pin

 1 = 21 16 = 40
 2 = 22 15 = 39
 3 = 23 14 = 38
 4 = 24 13 = 37
 5 = 25 12 = 36
 6 = 26 11 = 35
 7 = 27 10 = 34
 8 = 28 9 = 33
B-2

9100A-017
Clip size = 18, module installed on "A" side

Clip I/O Mod Pin Clip I/O Mod Pin

 1 = 1 18 = 20
 2 = 2 17 = 19
 3 = 3 16 = 18
 4 = 4 15 = 17
 5 = 5 14 = 16
 6 = 6 13 = 15
 7 = 7 12 = 14
 8 = 8 11 = 13
 9 = 9 10 = 12

Clip size = 18, module installed on "B" side

Clip I/O Mod Pin Clip I/O Mod Pin

 1 = 21 18 = 40
 2 = 22 17 = 39
 3 = 23 16 = 38
 4 = 24 15 = 37
 5 = 25 14 = 36
 6 = 26 13 = 35
 7 = 27 12 = 34
 8 = 28 11 = 33
 9 = 29 10 = 32
B-3

9100A-017
Clip size = 20, module installed on "A" side

Clip I/O Mod Pin Clip I/O Mod Pin

 1 = 1 20 = 20
 2 = 2 19 = 19
 3 = 3 18 = 18
 4 = 4 17 = 17
 5 = 5 16 = 16
 6 = 6 15 = 15
 7 = 7 14 = 14
 8 = 8 13 = 13
 9 = 9 12 = 12
 10 = 10 11 = 11

Clip size = 20, module installed on "B" side

Clip I/O Mod Pin Clip I/O Mod Pin

 1 = 21 20 = 40
 2 = 22 19 = 39
 3 = 23 18 = 38
 4 = 24 17 = 37
 5 = 25 16 = 36
 6 = 26 15 = 35
 7 = 27 14 = 34
 8 = 28 13 = 33
 9 = 29 12 = 32
 10 = 30 11 = 31
B-4

9100A-017
Clip size = 24, module installed on "A" side

Clip I/O Mod Pin Clip I/O Mod Pin

 1 = 1 24 = 20
 2 = 2 23 = 19
 3 = 3 22 = 18
 4 = 4 21 = 17
 5 = 5 20 = 16
 6 = 6 19 = 15
 7 = 7 18 = 14
 8 = 8 17 = 13
 9 = 9 16 = 12
 10 = 10 15 = 11
 11 = 29 14 = 32
 12 = 30 13 = 31

Clip size = 24, module installed on "B" side

Clip I/O Mod Pin Clip I/O Mod Pin

 1 = 21 24 = 40
 2 = 22 23 = 39
 3 = 23 22 = 38
 4 = 24 21 = 37
 5 = 25 20 = 36
 6 = 26 19 = 35
 7 = 27 18 = 34
 8 = 28 17 = 33
 9 = 29 16 = 32
 10 = 30 15 = 31
 11 = 9 14 = 12
 12 = 10 13 = 11
B-5

9100A-017
Clip size = 28

Clip I/O Mod Pin Clip I/O Mod Pin

 1 = 1 28 = 40
 2 = 2 27 = 39
 3 = 3 26 = 38
 4 = 4 25 = 37
 5 = 5 24 = 36
 6 = 6 23 = 35
 7 = 7 22 = 34
 8 = 8 21 = 33
 9 = 9 20 = 32
 10 = 10 19 = 31
 11 = 11 18 = 30
 12 = 12 17 = 29
 13 = 13 16 = 28
 14 = 14 15 = 27

Clip size = 40

Clip I/O Mod Pin Clip I/O Mod Pin

 1 = 1 40 = 40
 2 = 2 39 = 39
 3 = 3 38 = 38
 4 = 4 37 = 37
 5 = 5 36 = 36
 6 = 6 35 = 35
 7 = 7 34 = 34
 8 = 8 33 = 33
 9 = 9 32 = 32
 10 = 10 31 = 31
 11 = 11 30 = 30
 12 = 12 29 = 29
 13 = 13 28 = 28
 14 = 14 27 = 27
 15 = 15 26 = 26
 16 = 16 25 = 25
 17 = 17 24 = 24
 18 = 18 23 = 23
 19 = 19 22 = 22
 20 = 20 21 = 21
B-6

Appendix C
Keypad

Reference Changes

This appendix lists the changes made to the keypad reference
syntax to accommodate the 9100A-017 Vector Output I/O
Module. Only the MAIN MENU key and the SYNC key are
changed.
C-1

9100A-017
C-2

9100A-017
C-3

9100A-017
C-4

Index

68000 video applications, 7-12

arm, 4-14, 5-3
Asynchronous level history register, 4-14

Block diagram overview, 4-3
Block reads, 7-3
Bus emulation, 7-2

Cable length, 4-9
Calibrating the module, 4-6
Calibration module, 4-8
Capture, 4-7, 6-12
Capture mode, 4-15
Card edge fixture kit, 4-10
Card edge interface module, 4-10
CGA Mapping, 7-5
CGA Program Example, 7-11
CGA Video Card, 7-4
Changing the WAIT edge, 7-18
Clip modules, 4-1, 4-9
CLOCK, 4-1
Clock selection, 3-1
Clocked level history register, 4-12
clockfreq, 3-1, 5-1, Appendix A
Comment lines, 6-6
COMMON, 4-1, 4-3
compare, 4-3
Completion status, 3-5
Connecting the module to the mainframe, 4-5
Connecting the module to the UUT, 4-9
Control phrases, 6-11
CRC signature register, 4-12
Creating a new vector file, 6-1
INDEX-1

9100A-017
CTS, 7-18
Cyclic redundancy check, 7-3

Data Compare Equal, 7-3
Data fields, 6-6
DCE, 4-3
Determining bus cycles, 7-14
Determining the read cycle, 7-16
Determining the write cycle, 7-14
Display line, 6-5
DR CLK, 4-2, 4-16
drivepoll, 5-1, Appendix A

edgeoutput, 5-2, Appendix A
ENABLE, 4-1
enableoutput, 5-3, Appendix A
Endloop, 6-11
External, I/O Module to, 4-7
External lines, 4-10
External sync mode, 4-11

Fixture, 4-10, 7-5, 7-13
Flying lead set, 4-10
Freerun sync mode, 4-14
Fuse, 4-3

Groups line, 6-4

Handshake input, 4-2
Handshake status, Appendix A
Handshaking, 3-2

I/O Module to external, 4-7
I/O Module clip/pin mapping, Appendix B
I/O Module to pod, 4-8
INT CLK, 4-3, 4-16, 7-3
Internal clock delay, 4-7
Internal sync mode, 4-14

Keypad reference changes, Appendix C

Loop, 6-11, 7-19
Loop control, 3-2

MC6845 bus cycles, 7-7
INDEX-2

9100A-017
Operating temperature, 2-4
Output section, 4-3
Overdrive, 1-3

Physical specifications, 2-4
Pod, I/O Module to, 4-8
Pod sync mode, 4-13
Program example, 7-2

Read cycle, 7-3
readout, 4-14
Ready button, 4-1
Receive section, 4-3

Self test, 4-6
Softkey operations, 6-2
Special characters, 6-9
Specifications, 2-1
START, 4-1, 5-2
STOP, 3-3, 4-1, 5-2, 6-11
Stopping vector driving, 3-3
Storage/shipping temperature, 2-4
strobeoutclock, 5-3, Appendix A
sync, 4-13, 4-14
Synchronized data gathering, 3-2
Synchronizing multiple module vectors, 4-16
Synchronizing the module to the UUT, 4-11
Synchronizing the UUT, 3-1
Synchronizing the Vector Output I/O Module, 3-1
syncoutput, 3-1, 5-3, 7-21, Appendix A

Testing the video board, 7-12
TL/1 commands, Appendix A
TL/1 vector file generation, 7-21
Timing sets, 7-19
Transition counter, 4-13
TRISTATE, 4-2, 4-10
Tri-state control, 3-4

VECTOR, 6-1
Vector drive status, 5-1, Appendix A
Vector driving, 3-2
Vector file generation, 7-10, 7-21
Vector file programming, 7-6
INDEX-3

9100A-017
Vector loading, 3-2
Vector output clock source, Appendix A
Vector output operation, 3-1
vectordrive, 5-3, 6-7, 6-12, Appendix A
vectorload, 5-3, Appendix A
Video RAM bus cycles, 7-9

WAIT, 3-2, 4-2, 5-1, 6-12
WAIT application, 7-18
Working with the vector file, 6-4
writepin, 3-2, 5-3
writeword, 3-2, 5-3
INDEX-4

	Introduction
	THE VECTOR OUTPUT I/O MODULE 1.1.
	HIGH SPEED PARALLEL STIMULUS 1.2.
	BUS EMULATION 1.3.
	TEST VECTOR PATTERN GENERATION 1.4.
	USER OPERATIONS 1.5.

	Specifications
	SPECIFICATIONS 2.1.

	Vector Output Operation
	INTRODUCTlON 3.1.
	CLOCK SELECTION 3.2.
	VECTOR LOADING 3.3.
	VECTOR DRIVING 3.4.
	LOOP CONTROL 3.5.
	HANDSHAKING 3.6.
	STOPPING VECTOR DRIVING 3.7.
	TRISTATE CONTROL 3.8.
	COMPLETION STATUS 3.9.

	Hardware
	PHYSICAL DESCRIPTION 4.1.
	CONNECTING THE MODULE TO THE MAINFRAME 4.2.
	PERFORMING THE MODULE SELF TEST 4.3.
	CALIBRATING THE MODULE 4.4.
	I/O Module to External and Capture 4.5.
	I/O Module to Pod 4.6.

	CONNECTING THE MODULE TO THE UUT 4.7.
	Using the Clip Modules 4.8.
	Connecting the External Lines 4.9.
	Using the Card Edge Fixture Kit 4.10.

	SYNCHRONIZING THE MODULE TO THE UUT 4.11.
	External Sync Mode 4.12.
	Pod Sync Mode 4.13.
	Freerun Sync Mode 4.14.
	Internal Sync Mode 4.15.
	Capture Mode 4.16.

	SYNCHRONIZING MULTIPLE MODULE VECTORS 4.17.

	TL/1 Functions
	INTRODUCTION 5.1.
	CLOCKFREQ 5.2.
	DRIVEPOLL 5.3.
	EDGEOUTPUT 5.4.
	ENABLEOUTPUT 5.5.
	STROBEOUTCLOCK 5.6.
	SYNCOUTPUT 5.7.
	VECTORDRIVE 5.8.
	VECTORLOAD 5.9.

	Using the Vector Editor
	INTRODUCTION 6.1.
	CREATING A NEW VECTOR FILE 6.2.
	SOFTKEY OPERATIONS 6.3.
	WORKING WITH THE VECTOR FILE 6.4.
	The Groups Line 6.5.
	The Display Line 6.6.
	Comment Lines 6.7.
	Data Fields 6.8.
	Control Phrases in Data Fields 6.9.

	Applications
	USING THE VECTOR OUTPUT I/O MODULE 7.1.
	BUS EMULATION 7.2.
	TESTING THE IBM CGA VIDEO CARD 7.3.
	Fixturing the CGA Interface 7.4.
	Fixturing Considerations 7.5.
	Vector File Programming 7.6.
	Vector File Generation 7.9.
	CGA Write/Read Program Example 7.10.

	68000 BUS VIDEO APPLICATION 7.11.
	Testing The Video Board 7.12.
	Fixturing the Video Board Interface 7.13.
	Determining Bus Cycles 7.14.
	Determining the Write Cycle 7.15.
	Determining the Read Cycle 7.16.

	WAIT APPLICATION 7.17.
	TIMING SETS 7.18.
	TL/1 VECTOR FILE GENERATION 7.19.

	New TL/1 Commands
	I/O Module Clip/Pin Mapping
	Keypad Reference Changes

