
TU1 Reference
Manual

01991 John Fluke Mfg. Co., Inc.

All rights resewed. Lilho in U.S.A.

CUSTOMER NOTICE

THROUGHOUT THIS MANUAL, ALL INSTANCES OF 9100A
AND 9105A ALSO APPLY TO THE 91OOFT AND 9105FT.

Contents

Section Title Page

... Where Am 13 XI

. Overview ... 1 1

1 . 1 . INTRODUCTION ... 1-1
1.2. ORGANIZATION OF THIS MANUAL 1-2

TLI1 Language Conventions .. 2-1

NAME CONVENTIONS .. 2-2
File and Directory Names 2-3
Program Names .. 2-4
Device Names .. 2-4
Device List ... 2-6
Reference Designator Names 2-7
Ref Pin Names ... 2-7

DATA TYPES ... 2-8
Numeric ... 2-8
Floating-point .. 2-9
String .. 2-10

ARRAYS .. 2-11
OPERATORS ... 2-11

Arithmetic Operators ... 2-12
Relational Operators ... 2-12
Logical Operators ... 2-13
String Operators ... 2-14
String Functions ... 2-14
Bit Shifting Operators .. 2-15
Bit Mask Operators ... 2-15

Section Title Page

2.5. ORDER OF EVALUATION OF OPERATORS 2-16
................................... 2.6. CONDITIONAL EXPRESSIONS 2-17

2.7. FUNCTIONS ... 2-20
2.7.1. Special Functiops ... 2-20
2.7.2. Pod Functions ... 2-20
2.7.3. I10 Module and Probe Functions 2-20
2.7.4. Type Conversion Functions 2-21

............................. 2.8. TU1 STATEMENT CONVENTIONS 2-22

3 . TLI1 Alphabetical Reference .. 3-1

TU1 Commands are listed alphabetically

Append ices

A . ASCII Codes ... A-1

....... B . Control Codes for Monltor and Operator's Display B-1

ERASING ... B-1
CURSOR CONTROL SEQUENCES 8-2
DISPLAY ATTRIBUTES ... 8-2
DISPLAY MODE SEQUENCES 8-2
TAB STOPS ... 8-3
EDITING CONTROL .. 8-3
ANNUNCIATOR CONTROL ... 8-3
BEEPER CONTROL ... 8-4
SPECIAL DISPLAY CODES FOR THE
OPERATOR'S DISPLAY ... 8-4
DISPLAY CHARACTERS FOR THE MONITOR 8-5

C . Operator's Keypad Mapping to TLI I Input C-1

D . Programmer's Keyboard Mapping to TLI1 Input D-1

Section Title Page

E . I10 Module ClipIPin Mapping .. E-1

F . TL11 Reserved Words .. F-1

G . Handling Built-in Fault Conditions G-1

OVERVIEW .. G-1
ARGUMENT NAMES ... G-2
RAM TEST FAULT CONDITIONS G-4
ROM TEST FAULT CONDITIONS G-7
BUS TEST FAULT CONDITIONS G-8
MEMORY INTERFACE POD FAULT CONDITIONS G-9
GENERIC FAULT CONDITIONS G-10
PRIMITIVE FAULT CONDITIONS G-10
I10 FAULT CONDITIONS .. G-11
ARGUMENTS USED WITH
BUILT-IN TESTS ... G-12

Generating Bullt-In Fault Messages

.. H.1. OVERVIEW H-1
H.1.1. Symbols .. H-2
H . 1.2. Message Variables ... H-3
H.1.3. ArgumentNames ... H-3
H.2. HOW TO READ THE FAULT MESSAGE TABLES H-5
H.3. FAULT MESSAGE TABLES .. H-6

I . Pod-Related lnformatlon ... 1-1

1.1. POD CALIBRATION AND OFFSETS 1-1
1.2. POD INFORMATION FOR 9100Al9105A USERS 1-2
1.3. SUMMARY OF 80186 POD SUPPLEMENTAL

INFORMATION ... 1-4

J . 9100Al9105A ERROR NUMBERS J-1

J.1. INTRODUCTION ... J-1
J.2. ERROR NUMBERS ... J-1

Section Title

K . 9100 Series Software Error Report Form K-1

Index

Figures

Figure Title Page

3-1 : TU1 Metasyntax Notation .. 3-3
3-2: TU1 Syntax Notation ... 3-5

............................. 1-1 : Calibration and Offset Example Waveforms
...

1-3
J-1 : Error Numbers J-2

vii

Where Am I?

Getting
Started

Automated
Operations

Manual

Technical
User's

Mhnual

Applications
Manual

Programmer's
Manual

TL/1
Reference

Manual

A description of the parts of the
91 OOA/gI O5A, what they do, how to
connect them, and how to power up.

How to run pre-programmed
test or troubleshooting
procedures.

How to use the 9100A/9105A
keypad to test and troubleshoot your
Unit Under Test (UUT).

How to design test or troubleshooting
procedures for your Unit Under Test
(UUT).

How to use the programming station
with the 91 00A to create automated test
or troubleshooting procedures.

A description of all TU1 commands
arranged in alphabetical order for
quick reference.

Section 1
Overview

INTRODUCTION 1.1.

The TLII Reference Manual is one of a set of manuals that helps
you to program your 9 100A19105A productively using the TL11
programming language. You will find answers to questions
about specific TL/1 statements and functions most quickly in this
manual since the reference section is organized in alphabetical
order.

However, if you are learning TL11, or if you require more
general information about programming concepts, you will
probably want to first refer to the "Overview of TL/lU section of
the Programmer's Manual.

ORGANIZATION OF THIS MANUAL 1.2.

The remaining sections of this manual are organized in the
following order:

2. TLI1 Language Conventions -

Name Conventions: How to assign names that
denote variables, programs, files, directories, and
devices.

Data Types: Syntax, rules, and restrictions which
affect numeric, floating point, and string variables.

Arrays: Syntax, rules, and restrictions which apply
to tables and arrays of numeric and string variables.

Operators: A listing and description of symbols that
create a new value from one or more existing values
(operands).

Order of Evaluation: A description of how the
precedence of operators determines the order in
which the operators' actions are performed.

Conditional Expressions: How to construct condi-
tional expressions, which control execution of block
statements.

TLl1 Statement Conventions: General conventions
for TL11 statements. This section describes the
differences between simple statements and block
statements.

Functions: General conventions for TL11 built-in
functions.

3. TL/1 Alphabetical Reference - Each TL11 function
and statement in alphabetical order, provided with a
summary of the command, programming examples,
and references to additional explanations in the
Programmer's Manual.

The Appendices, which follow the previous sections, contain the
following information:

A. ASCII Codes - A table which provides ASCII
character codes in hexadecimal ,and decimal notation,
and their respective character representations.

B . Control Codes for Monitor and Operator's Display -
Character codes which perform cursor movement
and set video attributes on the monitor and the
operator's display.

C. Operator's Keypad Mapping to TL/1 Input - Cross-
listing of operator's keypad keys and the character
codes which represent them.

D. Programmer's Keyboard Mapping to TLI1 Input -
Cross-listing of non-standard programmer's
keyboard keys and the non-standard character codes
which represent them.

E. 110 Module Clippin Mapping - Tables which
indicate the correspondence between these sets of
pins.

F. TL11 Reserved Words - Alphabetized listing of TL/1
reserved words.

G. Handling Built-in Fault Messages in TLI1
Programs - Listings of built-in fault conditions and
their corresponding arguments.

H. Raising Built-in Fault Messages in TL11 Programs -
Tables which show the relationship of fault messages
to the arguments provided to fault condition
handlers.

I. Pod-Related Information - Provides a summary of
the pod-specific information available in the
Supplemental Pod Information for 91 00A191 O5A
User5 Manual.

/

J . 9100Al9105A Error Codes - Provides a listing of
possible errors the 9100Al9105A can encounter
during operation.

K. 9 100 Series Software Error Report Form.

Section 2
TLII Language

Conventions

A number of conventions apply to TL/1 language statements.
Variable and program names must follow a particular format,
operators are evaluated in a specific order, data types and arrays
are subject to certain restrictions, and all TLfl statements must
be entered in a consistent manner.

This section describes the following conventions:

Name Conventions.

Data Types.

Arrays.

Operators.

Order of Evaluation of Operators.

Conditional Expressions.

Functions.

TLf1 Statement Conventions.

NAME CONVENTIONS

TL11 rules require that you provide a name for each program,
variable, file, and directory that you create. The TW1 keywords
which appear in the "TL/1 Alphabetical Reference" section of
this manual follow the same convention.

This section describes the name conventions used in W 1 .

In TL/l, valid names meet the following requirements:

A name must begin with a letter (A-Z, a-z,) or the character
I@ 'I, or 'I-".

A name can contain letters, numbers, and the characters
"@" '1$'1, and "-".

A name must be distinguishable from reserved names
(key words).

A name must have 255 or fewer characters. However,
shorter name lengths are suggested as the debugger cannot
process long variable names.

Names are case-sensitive; the names WXYZ, Wxyz, and wxyz
denote different entities.

If a name is enclosed in single quote characters (I), it can be
spelled the same as a keyword; the single quotes distinguish the
name from the keyword. Single-quoted names can also contain
spaces or punctuation marks. For example, the following
variable names are valid:

'name containing spaces'
'name-containing-dashes'
'to' (a name spelled like a keyword)
'test. 101'

The single quotes are not part of the name (for example, foo and
'foot are the same).

File and Directory Names

Every file and directory has a name. A file or directory name
must meet the following requirements:

A name can have no more than 10 characters.

A name consists only of letters, numbers, underscore
characters "-", and periods ".".
A name must begin with either a letter or a number.

File and directory names are not case-sensitive; "TEST1" is the
same name as "testl". Two files or directories can have the
same name if they have different types. For example, a program
named TEST1 is distinct from a text document named TEST1.
Two files of the same type can have the same name if they are in
different directories. The program DEMO in the program library
does not conflict with the program DEMO in a UUT directory.
The names PARTLIB, PROGLIB, HELPLIB, and PODLIB can
only be given to a part library, program library, help library, and
pod library, respectively. You cannot name a program
PODLIB, for example.

The names of directories that are limited to one per user disk or
files that are limited to one per UUT directory are predetermined.
These items and their names are:

Items limited to one per user disk

File and directory names appear in TLII as
strings of characters surrounded by double-
quote (") characters.

Directory Name T Y P ~

user disk (hard drive) HDR USERDISK
user disk (floppy drive 1) DR1 USERDISK
user disk (floppy drive 2)' DR2 USERDISK
part library PARTLIB LIBRARY
program library PROGLIB LIBRARY
pod library PODLIB LIBRARY
help l i b rG HELPLIB LIBRARY

Items limited to one per UUT directory

File Name T Y P ~

reference designator list REFLIST REF
node list NODELIST NODE

On the 9105A only.

Program Names 2.1.2.

Because program names must match the name of the file that
stores the program, they are subject to the following additional
requirements:

A program name contains from 1 to 10 characters.

A program name consists of only letters, numbers,
underscore characters (-), and periods (.). If a period is
used, the program name must be enclosed in single quotes.
A program name cannot be the same as the name of a built-
in function.

TLIl requires that the program name be capitalized exactly
the same in the program statement that defines the program
and in every execute statement that invokes the program.
The capitalization of letters is ignored when a program is
looked up on the disk. Thus, it is not possible to define
two program names that differ only in case (such as
PROG 1 and prog 1).

User programs must not use the names of Fluke-provided
programs in the PODLIB.

Device Names 2.1.3.

TL11 is a language designed for testing and troubleshooting.
For this reason, it has built into it a convenient method for
referring to the probe, to an VO module, to a clip module (which
fits into an VO module), or to a component on a UUT (to which
a clip module is attached).

When TL/1 refers to a pod, it uses the following name:

"/pod"

When TL/1 refers to the probe, it uses the following name:

The 9100A/9105A can have up to four VO modules connected to
it. The following are the valid VO module names:

Name Description

"/mod 1 " I/O module 1
"lmod2" 110 module 2
"/mod3 " VO module 3
"lmod4" VO module 4

Each VO module can have up to two clip modules connected to
it. The clips are referred to as "A" or "B" depending on the side
of the VO module that they are connected to. The following are
valid clip module names:

Name Description

Clip module A of VO module 1
Clip module B of VO module 1
Clip module A of VO module 2
Clip module B of VO module 2
Clip module A of VO module 3
Clip module B of YO module 3
Clip module A of VO module 4
Clip module B of VO module 4

The 9100A/9105A can have an IEEE-488 interface installed to
be used as either a talkerPistener or as a controller. The IEEE-
488 interface is opened in one of two ways:

'Xeee" for the IEEE-488 interface
"heeeladdress list" for one or more devices attached

to the IEEE-488 interface
(controller only)

An address list is a list of comma-separated IEEE-488
addresses. Each address is either a single radix 10 number,
indicating the device address or a pair of numbers separated by a
colon character, indicating the primary and secondary address of
the device. For example:

'/ieee/l" for the device at ad@ess 1
"/ieee/2,4: 10" for the group consisting of the

device at address 2 and the device
with primary address 4 and
secondary address 10

The reference designator is another type of device name that is
often used with TL/1 commands. This reference designator is a
one to six character string that names a component on the UUT.
Some typical examples are shown below:

Device List 2.1.4.

Many of the probe and VO module commands allow a list of
devices to be specified. The device list has device names
separated by commas (no spaces are allowed). The following
are valid device lists:

Reference Designator Names 2.1.5.

A reference designator is another type of device name that is
often used with TIL/1 commands. ~eference designator names
must meet the following requirements:

A name consists only of letters, numbers, underscore
characters "-", and periods ".".
A name must begin with either a letter or a number.

A name can have no more than six characters.

Names are not case sensitive.

Some typical examples of reference designator names are shown
below:

Ref Pin Names 2.1.6.

A reference designator pin name (ref pin name) identifies a
unique pin on the UUT. The name combines a reference
designator name and a pin name, forming a name that is unique
to a single pin on the UUT.

Ref pin names are composed of three parts: a reference
designator name followed by a dash, followed by a pin name or
pin number. The first part of the ref pin name (the reference
designator name) must meet the requirements described in
paragraph 2.1.4. above. The last portion of the ref pin name
(the pin name or pin number) must meet the following
requirements:

Pin numbers can range from 1 to 255.

Pin names consist only of letters, numbers, underscore
characters "-", and periods ".".
Pin names must begin with either a letter or a number.

Pin names can have no more than eight characters.

Pin names are not case sensitive.

Some typical examples of ref pin names are shown below:

U22-3
u 17-40
conn 1 - b4

DATA TYPES

A TL/1 variable can represent one of three data types: numeric,
floating-point, or string. TL/1 also allows declaration of arrays
of any of these data types. However, arrays aren't considered a
separate data type.

Numeric 2.2.1.

The numeric type is the set of integers from +4,294,967,295 to
0. There are no negative numbers in TL11. Each integer can
represent a binary 32-bit data word as well as a numeric
quantity. If a numeric constant is preceded by a "$" character,
the digits are interpreted as hexadecimal (base 16) digits, and the
allowed digits are 0-9 and A-F. Numeric values not preceded by
a "$" character are interpreted as decimal, and the allowed digits
are 0-9.

The following numeric values represent the number seventeen or
the binary data word 10001 (left-most bit is most significant):

17 (decimal)
$1 1 (hexadecimal)

The following numeric values represent the number two hundred
and fifty-five or the binary data word 1 1 11 1 11 1 :

255 (decimal)
$FF (hexadecimal)

When you represent numbers in hex, you must use only the
digits 0-9 and the capital letters A-F. For example, $ABC
represents a hexadecimal number, but AbC represents a variable
name.

Floating-point 2.2.2.

The floating-point type uses the IEEE standard for double-
precision floating-point numbers. The full range of numbers is
supported; however, representations of the non-numeric entities
Infinity and NaN (not a number) are not implemented.

Floating constants can be represented in either fixed-point or
scientific format. The following are examples of valid floating-
point constants:

Fixed-point format:

Scientific format:

Note that minus signs are allowed for floating-point constants.
They are also allowed in front of any floating-point expression.

String

A string is a list of zero to 255 characters enclosed in double-
quote characters ("). All ASCII character codes are allowed.
Non-printing characters are represented by a backslash character
0) followed by a two-digit hexadecimal number. A backslash
followed by a double-quote character w) represents the double-
quote character. A backslash followed by a backslash O\)
represents the backslash character. Including a backslash
sequence in a string will allow the printing of the following
characters:

WH prints: character represented by HH
(where H represents any valid
hex-code digit:)

Y prints: I I

'A \
bl prints: new-line (a carriage return)

The following examples illustrate various strings and their
interpretations:

String Interpretation

I l l 1 the empty string

"hello world hello world

'T'hello world\"" "hello world

' W 9 hello" <TAB>aAB> hello

A string is manipulated as one entity. The area allocated to a
string variable changes with its value; a string variable does not
need to have dimensions as does an array.

ARRAYS

An may contains either numeric, floating-point, or string values
associated with one variable name. Each element (value) stored
in an array is identified uniquely by its subscript (number) or
sequence of subscripts. For example,

identifies a unique element in the array named X associated with
the subscript sequence 3 - 5 - 1.

An array may have one or more subscripts represented by
numeric expressions. For example,

are valid names of array elements.

Arrays must be declared before being used so that a sufficiently
large storage area will be reserved for array values; no implicit
declaration is possible. Using a subscript outside the
dimensions specified in the array declaration results in an error.

OPERATORS 2.4.

An operator is a symbol that creates a new value from one or
more existing values (operands). Operand values may be the
results of expressions, constants, or values of invocations.
Each operator is marked with the word operator in the upper
right comer of its description in Section 3.

Some operators have two forms; a symbol consisting of
punctuation characters, and a short name. The two forms denote
the same operator and may be used interchangeably.

The following sections summarize TL/1 operators.

Arithmetic Operators 2.4.1.

Arithmetic operators take numeric or floating-point operands and
produce a result of the same type. Both operands must be of
the same type.

Operator Description Comments

+ Produces an integer or
floating-point sum.

- Produces an integer or
floating-point difference.

* Produces an integer or
floating-point product.

1 Produces an integer Examples: 9/2 produces
or floating-point a quotient of 4.
quotient.

3.012.0 produces a
quotient of 1.5.

% Produces an integer Example: 9%2 produces
remainder. a remainder of 1.

- Multiplies the operand
by - 1.0 (floating-point
only).

Relational Operators 2.4.2.

Relational operators are used in conditional statements to
compare magnitudes of quantities. These operators take two
operands of the same type (two integer numbers, two floating-
point numbers, or two strings) and produce a logical numeric
result. If the condition is true, the result is a numeric 1, and if
the condition is false, the result is a numeric 0.

Operator Description Comments

<> Not equal to.

< Less than.

<= Less than or equal to.

> Greater than.

>= Greater than or equal
to.

not Negation of a Example: x = not y
logical expression.

Logical Operators 2.4.3.

Logical operators take numeric operands and produce numeric
results or take string operands representing binary numbers and
produce string results, which also represent binary numbers.
The operands cannot be floating-point numbers.

Operator Description

& Logical AND.
and

I Logical OR.
or

A Logical exclusive
xor OR.

- One's complement.
cpl

Comments

Example: 7 & 3 produces 3.

Example: 4 1 3 produces 7.

Example: 7 A 2 produces 5.

Each 1 in the operand is
changed to a 0, and each 0 is
changed to a 1

String Operators 2.4.4.

String operators are used to analyze or modify string operands.

Operator

+

fen

Description Comments

Appends a string For example, a + b is a string
expression to the where string b is appended
end of another string to the end of string a.
expression.

Counts the number See the fen operator in the
of characters in a "TL/1 Alphabetical Reference"
string operand. section of this manual.

String Functions 2.4.5.

String functions are used to analyze or extract substrings of
string arguments.

Function Description Comments

mid Copies a string of See the mid command in the
specified length and "TL/1 Alphabetical Reference"
position from the section of this manual.
string operand.

instr Returns the position See the instr command in the
at which a sub-string "TL/1 Alphabetical Reference"
is found in a string. section of this manual.

isval Determines if a string See the isval command in the
is a suitable argument "TL/1 Alphabetical Reference"
to val. section of this manual.

isjlt Determines if a string See the isft command in the
is a suitable argument "W1 Alphabetical Reference"
to fval. section of this manual.

token Extracts a token from Used for scanning fields in
a string. strings. See the token com-

mand in the "TLI1 Alphabeti-
cal Reference" section of this
manual.

Bit Shifting Operators 2.4.6.

The following operators shift the bits of a numeric operand
either to the right or to the left. The bit locations vacated by
shifted bits are filled with zeros.

Operator Description Comments

cc Shifts the operand See the shl command in the
shl left by one or more " W 1 Alphabetical Reference"

bits. section of this manual.

>> Shifts the operand See the shr command in the
shr right by one or " W 1 Alphabetical Reference"

more bits. section of this manual.

Bit Mask Operators 2.4.7.

These operators calculate a numeric value based on setting bits in
a bit mask or they provide information about bit mask operands.

Operator

bitmask

setbit

Description

Calculates a number
by setting all bits
from bit 0 through
the specified bit.

Calculates a number
by setting a specified
bit.

Comments

See the bitmask command in
the "TLI1 Alphabetical
Reference" section of this
manual.

See the setbit command in the
" W 1 Alphabetical Reference"
section of this manual.

Isb Returns the position See the Isb command in the
of the least- " W 1 Alphabetical Reference"
significant set bit in section of this manual.
the operand.

msb Returns the position See the msb command in the
of the most- " W 1 Alphabetical Reference"
significant set bit in section of this manual.
the operand.

ORDER OF EVALUATION OF OPERATORS 2.5.

The precedence of operators determines the order in which the
operators' actions are performed. Operators with higher
precedence are considered before operators with lower
precedence. From highest to lowest, the precedence of
operators in TL/1 is:

cpl, setbit, msb, lsb, bitmask, len, not, - (floating-
point only)

*, I, %

+, -

shl, shr

=, <>, <, >, <=, >=

and

or, xor

According to this order, the expression

a + b * m s b c

is equivalent to

(a + (b * (msb c))).

The value of "msb c" is evaluated first. Then the result is
multiplied by the value of b and this result is added to the value
of a.

Parentheses modify the order in which expressions are
evaluated, overriding the order of precedence. For example, in
the expression

"a + b" and "c - d" are evaluated before the multiplication is
performed.

If, after parentheses and the order of precedence are considered
in the evaluation of expressions, several expressions of the same
precedence exist, they are evaluated left-to-right. For example,
in the expression:

"b * c" is evaluated first. The result is added to the value of a,
then the value of d is subtracted from that sum.

CONDITIONAL EXPRESSIONS 2.6.

The if statement, if block, loop block, and for block execute
statements under control of a condition. This condition is a
logical expression that evaluates to either true (non-zero) or false
(zero). The examples below show that the conditional
expression can compare numeric expressions, floating-point, or
string expressions.

Example 1:

if a = $2E then print "SUCCESS!"

Example 2:

if ans = "yes" then
! Any statements here are executed
! only if the string variable is
! equal to yes

end if

Example 3:

i f b < 3.52 t h e n
! Any s t a t e m e n t s h e r e a r e e x e c u t e d
! o n l y i f t h e f l o a t i n g - p o i n t
! v a r i a b l e i s less t h a n 3 .52

e n d i f

Example 4:

i f f < > 0 .0 t h e n
! Any s t a t e m e n t s h e r e a r e e x e c u t e d
! o n l y i f t h e f l o a t i n g - p o i n t
! v a r i a b l e i s n o t e q u a l t o t h e
! f l o a t i n g - p o i n t v a l u e 0 .0

e n d i f

You can use both logical operators and relational'operators in a
single conditional expression as shown below. However, you
should be careful to check the order of evaluation of such an
expression to be sure that you have written it to do what you
want.

Example 5:

! l o o p u n t i l e i t h e r x = $2FE3 o r
! u n t i l y = 100

l o o p u n t i l x = $2FE3 o r y = 100

e n d l o o p

Example 6:

! t h i s d o e s n ' t AND b w i t h c
i f a < b and c < d t h e n

You should be careful to use the result of a logical comparison to
set flag variables as shown in the following example.

f l a g l = (a < b) ! The f l a g b i t i s l o c a t e d i n
f l a g 2 = (c < d) ! b i t 0 of b o t h operands
i f f l a g l and f l a g 2 t h e n x = 1

If different bits are used for flag values, incorrect results can
occur when doing logical operations. The example below
shows what you should not do.

i f a < b t h e n f l a g l = 1 ! B i t 0 i s a f f e c t e d .
i f c < d t h e n f l a g 2 = 2 1 B i t 1 i s a f f e c t e d .

! B i t 0 of f l a g l i s
! n o t ANDed w i t h
! b i t 1 of f l a g 2 .

i f f l a g l and f l a g 2 t h e n x = 1

Two of the most important operators used with TL11 are the
passes condition and the fails operators. Each of these is
described in detail in the "TL11 Alphabetical Reference" section
of this manual. The passes and fails operators test whether a test
function has completed without reporting any faults. An
example of each condition is shown below.

Example 1:

i f t e s t b u s f a i l s t h e n ! T e s t t h e t e r m i n a t i o n
y = O ! s t a t u s a f t e r u s i n g

else ! t h e t e s t b u s command,
y = l ! and set f l a g y t o

e n d i f ! z e r o i f t h e test
! f a i l s and t o one i f
! t h e tes t p a s s e s .

Example 2:

i f t e s t b u s p a s s e s t h e n
p r i n t "Wonderful"

else
p r i n t "It 's t r o u b l e s h o o t i n g t i m e "

e n d i f

FUNCTIONS

TLI1 provides over 130 built in functions to perform basic
operations on numbers and strings, to communicate with
displays, keyboards, and ports. Basic operations are also
performed to control the pod, 110 modules, and probe, to collect
measurements, and to test UUT circuits like busses, RAM, and
ROM.

Although each function has a different name and list of
arguments, they are all invoked using the same syntax. See the
execute statement for more information on how functions are
invoked. All functions are marked with the word function in the
upper right comer of their description in Section 3.

A function has zero or more arguments. Each argument is an
expression resulting in a number or string. Refer to "How
Programs and Functions are Invoked" in Section 3 of the 9100
Series Programmer's Manual for more information on calling
and returning data from functions.

Special Functions 2.7.1.

Special functions are functions with special restrictions on the
way they may be invoked. Special functions must be invoked
using the keyword notation, where the function name is
followed by a comma-separated list of the argument name
followed by an expression giving the value of the argument.

Pod Functions 2.7.2.

Pod functions control the microprocessor emulation pod to read
and write UUT data and perform tests on UUT circuits including
busses, RAM, and ROM.

Module and Probe Functions 2.7.3.

These functions control the parallel 110 modules and the probe to
read and write bit streams to the UUT and collect signatures.

m Type Conversion Functions 2.7.4.

The following functions perform conversions between various
data types.

Function

ascii

chr

Str

val

cflt

cnum

Description

Converts a single-
character smng into
its ASCII code
number.

Converts a number
from 0 through FF
(hexadecimal) or
from 0 through 255
(decimal) into a
single ASCII
character.

Converts a number
into its smng
representation.

Converts a string
representing a
number into the
appropriate numeric
value.

Converts a numeric
value to a floating-
point value.

Converts a floating-
point value to a
numeric value.

Comments

See the ascii function in the
"TL/1 Alphabetical Reference"
section of this manual.

See the chr function in the
"TL/1 Alphabetical Reference"
section of this manual.

See the str function in the
"TL/1 Alphabetical Reference"
section of this manual.

See the val function in the
"TLIl Alphabetical Reference"
section of this manual.

See the cj7t function in the
"TL/1 Alphabetical Reference"
section of this manual.

See the cnum function in the
"TL/1 Alphabetical Reference"
section of this manual.

fval Converts a string See thefval function in the
representing a "TL/1 Alphabetical Reference"
number into the section of this manual.
appropriate floating-
point value.

fsm Converts a floating- See the fstr function in the
point value into its "TL/1 Alphabetical Reference"
default string section of this manual.
representation.

TLII STATEMENT CONVENTIONS 2.8.

Statements control and modify the order-of execution in TL11.
The parts of each statement are separated by reserved keywords,
so each statement has a unique syntax.

TL/1 defines two types of statements: simple statements, and
block statements. A simple statement performs a single action.
Block statements delimit the beginning and end of blocks and
control the execution of the statements they enclose.

Block statements always come in pairs; a block beginning
statement that begins with a name (if, loop, program), and a
block ending statement that has the form 'end name' (end if, end
loop, end program). Statement lines between the block
beginning and ending statement are controlled by the block.

Simple statements and statements that delimit statement blocks
are marked with the word(s) statement or statement block in the
upper right comer of their description in Section 3.

In TW1, each line contains either a single block statement or one
or more simple statements separated by backslashes N. The
statements are executed in order from left to right. The line may
begin with an optional label, followed by a colon (:). The
statement may be followed by an optional comment, with an
exclamation point (!) separating the statement and comment.

Syntax Diagram:

L label: A L statement 1 L ! commentA

Arguments:

label The name of the labeled line.

statement Any valid program statement.

comment The text of a comment.

The label, statement, and comment are all optional; a blank line
may be labeled, and lines do not need to be labeled. Label names
follow the same conventions used for naming variables. See the
section, "Name Conventions," earlier in this section for
additional information. The number of labels available to the
programmer is limited only by available memory, however the
availability of powerful block-structured commands in TL/1
eliminates the need for most labels.

A label identifies a line for subsequent use. A labeled line
begins with a label followed by a colon (:). A label is unique for
the entire program. No more than one line can be labeled with a
particular name.

A comment begins with an exclamation mark (!) and continues
until the end of the line. TL/1 ignores comments. Comments
make the program easy to read and understand, and should be
used to point out an action that is implied or not obvious.

Example 1 :

! A line labeled jail
jail: if read addr a <> 0 then fault bad-value

Example 2:

! A simple statement.
write addr $1000, data $21

Example 3:

a = l \ b = 2 \ c = 3 ! A simple statement
! list.

Example 4:

i = l
loop while i <= 10 ! A block beginning

! statement.
write addr + i, data $A0 + i
i = i + l ! The loop block will

end loop ! be executed ten
! times .

Section 3
TL11 Alphabetical

Reference

Throughout this alphabetical reference section, the syntax of
various TL/1 statements is described in both textual (meta-
syntactic) and diagrammatic form.

The metasyntax notation follows these rules:

Words that are not enclosed in angle brackets (o) are
required words and are to be used literally.
Words that represent names and values you supply are
delimited by angle brackets (< >).

A word or group of symbols separated by one or more
solid vertical bars (I) indicates that one, and only one, of
the group should be chosen.

A word or group of symbols enclosed in square brackets
[] are optional. If the first character in the group is a
comma (,), this comma is included as a delimiter only
when another optional group precedes it.

NOTE

In the declare command, square brackets are
used literally to define array dimensions.

A word or group of symbols enclosed in braces () can be
repeated any number of times, separated by commas (,).
<device list> refers to one or more device names,
separated by commas (,).
<expression list> refers to one or more expressions,
separated by commas (,).
<variable list> refers to one or more variables, separated
by commas (,).
<statement list> refers to one or more TL11 statements,
separated by backslashes 0.

Refer to Figure 3-1 for an example of metasyntax notation.

Choose One

open [devlce <termlnal name, I 4 l e name*] [as <as>] [mode <mode>]

I

Figure 3-1 : TU1 Metasyntax Notation

The syntax diagrams follow these rules:

Keywords - Words to be used literally appear in boldface.

Arguments - Words that represent names and values you
supply appear in italics and are delimited by angle brackets
(o). For example, the word "filename" in a syntax
diagram represents the name of a file that you specify.
Solid lines - Solid lines connect keywords or symbols, and
programmer-supplied values. These lines represent the
syntax path, read from left to right. Vertical paths
represent options; horizontal paths with arrowheads
represent optional repeat loops.
Ellipses (...) are used to connect syntax diagrams which,
due to length, span multiple lines. The ellipses indicate
"continue to type."
<device list> refers to one or more device names,
separated by commas (,).
<expression list> refers to one or more expressions,
separated by commas (,).
<variable list> refers to one or more variables, separated
by commas (,).
<statement list> refers to one or more TL11 statements,
separated by backslashes 0).

Refer to Figure 3-2 for a description of the syntax diagrams.

open d e v ~ c e !;r;;~~ >

mode <mode D

I
I

Comma is Included Only if
Multiole Arouments are Used

1 Read syntax paths from lefl to right, unless an arrowhead
indcates a loop. Vertical paths represent options.

Figure 3-2: TU1 Syntax Notation

On the first page of each command in the upper right comer
below the command name, is the syntactic category for that 0 command. The categories (function, special function, statement,
statement block, and operator) are described in Section 2 of this
manual.

Each command within the alphabetical reference section contains
information under some or all of the following headings:

Syntax - a metasyntactic (textual) description of the syntax
for a particular TL11 function or command.
Syntax Diagram - a diagram which illustrates the syntax
for a particular TLl1 function or command.
Description - a description of the TLI1 function or
command.

Argument(s) - a description of the arguments which the
programmer provides to the TLI1 function. Some
arguments are optional, and have a default value if another
value is not specified.
Returns - the value returned by a function.

Example - one or more TLI1 programming examples.

Remarks - additional information about a command or
function.
Related Commands - other TLl1 commands which pertain
to the command discussed. Refer to these commands
within this section for related information.
For More Information - a reference to other materials that
contain additional information about this command.
References are to the "Overview of TLI1" section of the
Programmer's Manual, appendices within this manual, and
Fluke pod manuals.

abort
statement

Syntax:

a b o r t [<express ion>]

Syntax Diagram:

abort

< expression :.

Description:

Performs a multilevel return statement.

Example:

program c o n t r o l

f u n c t i o n tes t
handle ! any f a u l t r a i s e d w i th in func t ion

! test is handled he re
p r i n t " abo r t i ng t e s t " ! r e p r e s e n t s any o t h e r

! handler a c t i o n s
f a u l t ! prese rve ' f a i l s ' t e rmina t ion

! s t a t u s
a b o r t ! causes func t ion tes t t o t e rmina t e

end handle

i f (some-condition) t hen ! i f some f a u l t y
! behavior i s d e t e c t e d

f a u l t ' tes t f a u l t '
end i f

end f u n c t i o n

loop
i f tes t () passes t hen
p r i n t "Pass"

else

! o f t e n t h i s program has
! no knowledge t h a t t h e
! c a l l e d func t ion a b o r t s .
! only i n t e r e s t e d i n
! p a s s e s / f a i l s in format ion .

p r i n t "Fa i l "
end i f

end loop
end program

abort

In the example, program 'control' calls function 'test'
repeatedly. This is typical of a production test setup that calls
the test for each UUT. If the test fails, the procedure abandons
testing of that board and prints a failure message. The default
handler is invoked if any faults occur, and the fault statement
preserves the (failure) termination status of the test. The abort
statement returns control to the caller of function 'test', which in
this case is program 'control'. In actual examples, there are
likely to be many layers of function calls inside function 'test'.

Remarks:

The abort command may be used in two ways. First abort can
terminate execution of the entire test program when the decision
to terminate is made in a deeply nested subprogram. The
command can also terminate execution of a sub-test within a
program when a fault condition is handled. The second use
permits simple go/no-go tests to be written, and the command
makes decisions on continuing tests once certain faults are
detected.

When the abort command is executed in the main-line code,
TL/1 terminates execution. If the optional expression is
specified, the value of that expression is returned, as if by the
top-level program.

When the abort command is executed within a fault condition
handler, all invoked programs and functions are terminated, up
to the program or function that activated the handler. (This is the
program or function that contains the handler definition block.)

If the optional expression is specified, the value of that
expression is returned, as if by the program or function that
activated the handler.

When the abort command is executed within a fault condition
exerciser, the exerciser terminates as if a return statement had
been executed in the top-level exerciser block.

abort

If a program or function invocation returns a value, a value must
be supplied to all places the invocation returns, including all
abort commands that cause the invocation to return. The type of
value returned must be the same in all return and abort
commands.

The abort command does not affect the termination status (for
example, whether the program passes or fails). If the test has
failed, a fault command should precede the abort.

Related Commands:

fault, function, handle, program, refault, return

For More Information:

The "Overview of TL11" section of the Programmer's
Manual.

abort

acos
function

Syntax:

acos num <expression>

acos (<expression>)

Syntax Diagram:

acos n urn < expression z

Description:

Returns the inverse cosine function (in radians) of the floating-
point argument value.

Arguments:

expression The argument (cosine) value, which
must be in the range:

-1.0 I num I 1.0.

Returns:

A floating point number in radians.

Examples:

theta = acos (0.0)
theta = acos num f

Remarks:

An error is generated if the argument value is outside the
allowable range.

Related Commands:

COS

arm
function

Syntax:

arm device <device l i s t>

arm (<device l i s t>)

arm 0

Syntax Diagram:

Description:

Specifies the beginning of an arm . . . readout block. Arms the
response gathering hardware of the specified 110 modules or
probe to start capturing signatures, levels, and count
information. If the counter mode is "freq", a frequency meas-
urement occurs at the arm statement. The actual point at which
response gathering starts depends on UUT signals and on the
settings of start, stop, clock, and enable when the sync mode is
set to "ext" for the probe or an I/O module.

Arguments:

device list I/O module name, clip module name,
probe name, or combinations of these.
(Default = "/probeM)

Example 1:

mod = c l i p ref "u3" , pins 4 0

arm device mod
rampdata addr 0 , da ta 0 , mask SEE
rampdata addr 0 , da ta 0 , mask SEFOO

readout device mod

arm

Example 2:

arm dev ice " /mod1 , /mod2 "

readout dev i ce "/modl,/mod2"

Example 3:

arm 0

readout ()

! The probe i s t h e d e f a u l t dev i ce

! The probe i s t h e d e f a u l t dev ice

Example 4:

modl i s t = "/modl,/mod2,/mod3,/mod4"

arm dev ice mod l i s t

readout device mod l i s t

Example 5:

d e v l i s t = "/modln ! name t h e device
! set t h r e s h o l d l e v e l s

t h r e s h o l d device d e v l i s t , l e v e l "ttl"
! set coun te r mode

coun te r dev ice d e v l i s t , mode " t r a n s i t i o n "
! sync dev ice t o e x t e r n a l

sync dev ice d e v l i s t , mode "ext"
edge dev ice d e v l i s t , s t a r t "+", s t o p "+" , c lock "+"
connect dev ice d e v l i s t , s t a r t "U3-I", s t o p "U7-8",

c lock "U4-8"
! i gno re enab le l i n e

enab le device d e v l i s t , mode "always"

arm dev ice d e v l i s t ! s t a r t t h e response cap tu re
! apply t h e s t imu lus

rampdata addr $8FFF, d a t a 0, mask $FF

(example i s cont inued on t h e next page)

arm

! check t h a t response
! g a t h e r i n g i s complete

s t a t u s = checks t a tu s device d e v l i s t

i f s t a t u s <> SF t hen
i f (s t a t u s and 1) = 0 t hen

reason = "no v a l i d c lock seen"
else i f (s t a t u s and 2) = 0 t hen

reason = "no v a l i d enab le seen"
else i f (s t a t u s and 4) = 0 t hen

reason = "no v a l i d s t a r t seen"
else i f (s t a t u s and 8) = 0 t hen

reason = "no v a l i d s t o p seen"
end i f
f a u l t - f l a g = 1

else
f a u l t - f l a g = 0

end i f

readout

! t e rmina t e t h e response
! cap tu re

dev ice d e v l i s t

Remarks:

The arm . . . readout block begins with an arm command and
ends with a readout command. These commands control the 110
module or probe by activating and deactivating the response
gathering hardware.

The arm command clears the signature, level, and count registers
and starts the capture of new readings. The readout command
stops the capture of data and makes the results available. After
readout is executed, the captured response data is accessible
through the sig, count, and level functions until another arm . . .
readout block for the same device is executed.

When you use external sync, you use checkstatus to determine
when to exit the arm . . . readout block. You, the programmer,
are responsible for providing a means of exiting the block when
checkstatus indicates the response capture is complete and
successful. See the checkstatus command for more information.

arm

Incomplete response data may be caused by any of the
following:

An external stop line was specified, but the stop signal was
not active before readout was executed.
The programmable stop counter was activated (through the
edge and stopcount commands) but the specified number
of clock pulses had not been counted before readout was
executed.
An external start line was specified, but the start signal was
not active before readout was executed.
An external enable line was specified, but the enable signal
was not active before readout was executed.
An external clock line was specified, but a clock signal
was not received before readout was executed.

Related Commands:

checkstatus, count, counter, edge, enable, level, readout,
setoflset, sig, stopcount, strobeclock, sync

For More Information:

The "Overview of TL/ln section of the Programmer's
Manual.

ascii
function

Syntax:

a s c i i cha r <cha rac t e r>

a s c i i (<cha rac t e r>)

Syntax Diagram:

ascll char < character w

Description:

Finds the ASCII code number that represents the single character
in the operand string.

Arguments:

c h a m ter Any character; a string which consists
of a single character.

Returns:

The numeric value of the ASCII code number that represents the
single character in the operand string.

Example:

x = a s c i i ("A") ! t h e v a r i a b l e x i s set t o
! t h e hex va lue 4 1 (decimal 65)

ascii

Remarks:

An error is generated if the argument string is not exactly one
character long.

Related Commands:

asin
function

Syntax:

asin num <expression>

asin (<expression>)

Syntax Diagram:

a s h n urn < expression z

Description:

Returns the inverse sine function (in radians) of the floating-
point argument value.

The argument (sine) value, which must
be in the range:

-1.0 I num I 1.0

Returns:

A floating point number in radians.

Examples:

theta = asin (0.0)
theta = asin num f

Remarks:

An error is generated if the argument value is outside the
allowable range.

Related Commands:

sin

assign
function

Syntax:

assign device <I/O module name>

assign (<I/O module name>)

assign 0

Syntax Diagram:

()

asslgn devlce < VO module name r

Description:

Allocates a specific I/O module to the programmer, resets the
internal variables that store connection data for that module, and
returns an identifier associated with the I/O module.

Arguments:

I/O module name The 110 module name ("/modl",
"/mod2", "/mod3", or "/mod4").
(Default = "/mod 1 ")

Returns:

An identifier string for the I/O module.

Example 1:

mod2 = assign device "/mod2"

Example 2:

iomod = assign device "/mod4"

assign

Example 3:

stimulus = assign ("/mod3")

Remarks:

You use assign instead of clip in order to display your own
messages (rather than those displayed by clip), or to control
module selection (the clip function lets the user select the
module). This function returns a string which identifies the
selected module.

Related Commands:

clip

For More Information:

The "Overview of TL11" section of the Programmer's
Manual.

(assignment)
statement

a Syntax:

Syntax Diagram:

c variable r = < expression r

Description:

Assigns a value to a variable. The variable on the left of the
equal sign takes the value of the expression on the right side.
The data type of the expression must be the same as the data type
of the variable. A previously undeclared variable is declared
implicitly with the assignment statement to be a local variable of
the same type as the expression used.

a Arguments:

variable Assignment variable name.

expression Any valid expression.

Examples:

a = $15 ! v a r i a b l e a set t o hex 15

y = a + l ! v a r i a b l e y set t o va lue of
! v a r i a b l e a p l u s 1

z = 1 0 ! v a r i a b l e z set t o decimal 10

(assignment)

s = "Hello" ! variable s is set to the
! string value "Hello".

f = 3.2 ! variable f is set to the
! floating-point value 3.2

Remarks:

If the data type of the expression does not match the data type of
the variable, an error is generated.

Related Commands:

declare

For More Information:

The "Overview of TW1" section of the Programmer's
Manual.

assoc
function

Syntax:

a s s o c r e f < r e f e r e n c e de s igna to r> , p i n s <number o f
p in s> , d e v i c e <device l i s t>

a s s o c (< r e f e r e n c e d e s i g n a t o r > , <number of p in s> ,
<dev ice l i s t>)

Syntax Diagram:

essoc ref < reference designator > . . .

... , pins <number of pins > . devlce < device list >

Description:

Associates
component.
requires that the specified YO module or clip module already be
connected to the component.

an 110 module or clip module with a UUT
Unlike the clip command, the assoc command

Arguments:

reference designator Reference designator indicating the
name of the component to which the VO
module is already clipped.

number of pins Number of pins associated with this
reference designator. Valid range is any
even number between 2 and 254.

assoc

device list I/O module name, clip module name, or
combinations of these.

An 110 module name refers to a device
of 40 pins.

Example 1:

dev i ce l i s t = "/modl,/mod2B,/mod3A,/mod4B"
assoc ref " U l " , p ins 80 , device dev i ce l i s t
arm device dev i ce l i s t

readout device dev i ce l i s t
c r c = s i g device " U l " , pin 1

Example 2:

assoc ref "U23", p ins 1 4 , device "/mod4A1'

Remarks:

When using fixturing, the placement of the VO module clips is
preset so it is unnecessary and undesirable to press the ready
button on each of the clips (as required by the clip command). In
this case, the assoc command should be used.

The assoc command is functionally equivalent to the clip
command except that the device list is set in the TL/1 program by
the programmer rather than being determined by the I/O module
button that is pressed.

NOTE

The operator must position the clip(s) so that pin 1 of
the clip(s) is connected to pin 1 of the component
before the execution of the assoc command.

assoc

You should use the clip command instead of the assoc command
if you want to perform the following operations:

Suspend operations until a ready button is pressed on the
I/O module.

Display the standard clip messages.

Related Commands:

assign, clip

For More Information:

The "Overview of TL/l" section of the Programmer's
Manual.

atan
function
4 j +

Syntax:

atan num <expression>

atan (<expression>)

Syntax Diagram:

atan nu m < expression r

Description:

Returns the inverse tangent function (in radians) of the floating-
point argument value.

Arguments:

expression The argument (tangent) value.

Returns:

A floating-point value in radians.

Examples:

theta = atan (0.0)
theta = atan num f

Remarks:

Argument values of infinity are not supported, since the
implementation of floating-point does not support IEEE infinity.

Related Commands:

tan

bitmask
operator a

Syntax:

bitmask <expression>

Syntax Diagram:

bltrnask - < expression r

Description:

Generates a bitmask in which all the bits from bit 0 (the least-
significant bit) through the bit specified by the expression are
set.

Arguments:

expression An expression that yields a number
from 0 through 31 (decimal), or a
number from 1 through 1F (hexa-
decimal).

Returns:

A bitmask with all the bits set from bit 0 through the bit specified
by the expression.

Examples:

x = bitmask 3 ! the variable x is set to F
! (bits 0 through 3 are set)

bitmask- 1

bitmask

x = SF and bitmask 2 ! the var iable x i s set t o 7
! (b i t s 0 through 2 are set)

Remarks:

An error is generated if the argument is greater than 31
(decimal).

Related Commands:

setbit

cflt
function

Syntax:

cflt num <expression>

cf lt (<expression>)

Syntax Diagram:

cflt nu m < expression >

Description:

Converts the numeric argument to the equivalent floating-point
value. The argument can be any valid numeric value.

The numeric argument value.

Returns:

A floating-point number equivalent of the value of the argument.

Examples:

f = cflt ($32)
f = cflt num 109

Related Commands:

cnum

cflt

checkstatus
function
@m+

Syntax:

c h e c k s t a t u s d e v i c e < d e v i c e l i s t >

c h e c k s t a t u s (< d e v i c e l i s t >)

c h e c k s t a t u s ()

Syntax Diagram:

Description:

a Checks whether response gathering is complete within an arm
. . . readout block. The return value of checkstatus indicates the
result of this check.

Arguments:

device list

Returns:

I/O module name, clip module name,
probe name, or combinations of these.
(Default = "/probeM)

A code indicating whether response gathering is complete (see
Remarks).

checkstatus

Example:

! This example u se s checks t a tu s t o check
! f o r an incomplete responses e r r o r .

sync dev ice "/modlW, mode "ext"

arm dev ice "/modlW
c n t = 0
loop while ((c h e c k s t a t u s device "/modlW) <> SF

and c n t < 100)
! Remember precedence of <>
! o p e r a t o r

c n t = c n t + 1
end loop
i f c n t = 100 then

! response g a t h e r i n g incomplete
n = checks t a tu s device "/modl"

else ! response g a t h e r i n g i s complete
n = $FF

end i f
readout device "/modlW

Remarks:

The checkstatus function usually appears on the right side of an
assignment statement (=), or within the context of a more
complex expression.

The checkstatus function has real meaning only for external
sync. In this case, the returned value is comprised of 32 bits
with the 4 least-significant bits containing the status of response
gathering. (Bit 0 is the least-significant bit.)

Bit Signal Value

4-3 1 none (always 0)
3 Stopreceived (l = y e s , O = n o)
2 Start received (1 = yes, 0 = no)
1 Enable received (1 = yes, 0 = no)
0 Data clocked (1 =yes, 0 =no)

checkstatus

For the other sync modes, (internal, pod, and freerun), the
returned value will always be the number F (hexadecimal).

Related Commands:

arm, readout, sync

For More Information:

The "Overview of TL/lM section of the Programmer's
Manual.

checkstatus

chr
function

Syntax:

c h r num <expression>

c h r (<express ion>)

Syntax Diagram:

chr nu rn < expression >

Description:

Returns a string consisting of the single ASCII character that
corres~onds to the numeric o~erand.

Arguments:

expression A numeric expression that yields a
value from 0 through FF (hexadecimal)
or 0 through 255 (decimal).

Returns:

A string consisting of the single ASCII character that
corresponds to the numeric operand.

Examples:

x = c h r (7) ! x i s s e t t o C t r l - G (b e l l)

x = chr(S23) ! x i s s e t t o ASCII c h a r a c t e r "#"

x = c h r (3 5) ! x i s s e t t o ASCII c h a r a c t e r "# "

chr

Remarks:

An error is generated if the numeric expression is greater than
decimal 255.

Related Commands:

ascii

clearoutputs
function
@m#

Syntax:

c l e a r o u t p u t s dev i ce <device l i s t>

c l e a r o u t p u t s (<device l i s t>)

c l e a r o u t p u t s ()

Syntax Diagram:

clearoutputs dovlco <devicelist>

Description:

Turns off the I/O module output drivers.

Arguments:

device list I/O module name, clip module name, or
reference designator.
(Default = "/mod 1 ")

Example:

iomod = c l i p r e f "u2l" ,p ins 40

s t o r e p a t t dev i ce "u2l" ,p in 1, p a t t "01010101"

w r i t e p a t t dev i ce "u2 lW, mode " l a t c h "

c l e a r o u t p u t s device "u21"

clearoutputs

Remarks:

Using clearoutputs is functionally equivalent to using both
storepatt and writepatt to 3-state all pins. Devices can be cleared
through specification of an I/O module, a clip on an I/O module,
or a reference designator.

Related Commands:

clearpatt, storepatt, writepatt

For More Information:

The "Overview of TL11 " section of the Programmer's
Manual.

clearpatt
function

Syntax:

c l ea rpa t t device <device l i s t>

c l ea rpa t t (<device l is t>)

c l ea rpa t t ()

Syntax Diagram:

Description:

Discards the output patterns previously saved with the storepatt
command.

Arguments:

device list I/O module name, clip module name,
reference designator.
(Default = "/mod 1 ")

Example:

c l ea rpa t t device "/mod4"

Related Commands:

clearoutputs, storepatt, writepatt

clearpatt

For More Information:

The "Overview of TL11" section of the Programmer's
Manual.

clearpersvars
function

clearpersvars ()

Syntax Diagram:

clearperevare ()

Description:

Clears the values of currently active persistent variables. The
term "currently active" means the subset of the set of persistent
variables that is known so far by the TL/1 program executing the
clearpersvars command. The value received as a result depends
on the variable type:

numeric 0
floating 0.0
string 1111

Example:

For each of the following example programs, assume that the
persistent variable set initially contains:

Name Type Value

P V ~ numeric 3
P V ~ string rrfoorr
P V ~ string "barrr

clearpersvars

After executing the following program:

program itis
declare persistent numeric pvl
declare persistent string pv2
clearpersvars ()

end program

the persistent variable set contains:

Name Type Value

Pvl numeric 0
P V ~ string 11 11

P V ~ string "bar

After executing the following program:

program mobility
declare persistent string pv3
function foober

declare persistent string pv2
end function
clearpersvars 0

end program

the persistent variable set contains:

Name Type Value

P V ~ numeric 3
P V ~ string "foo"
P V ~ string 11 11

clearpersvars

Remarks:

The clearpersvars command only affects the values associated
with variables in the persistent variable set, and not whether a
variable is a member of the set.

Note that it is stated that the clearpersvars command only affects
the set of persistent variables known so far by the currently
executing TL11 program. If the program contains a declaration
for a persistent variable, but has not processed it, the variable
will not be cleared.

Related Commands:

clip
function
4-*

Syntax:

clip ref <reference designator>, pins <number of
pins>

clip (<reference designator>, <number of pins>)

Syntax Diagram:

clip ref < reference designator > - , plns < number of pins > -

Description:

Prompts the user with a message to clip over the specified
component and to press the button on the clip module when
ready. After the button is pressed, the clip command returns a
string identifying the VO module and the clip module that were
selected.

Arguments:

reference designator Reference designator indicating the
name of the component to which the VO
module should be clipped.

number of pins Number of pins associated with this
reference designator. Valid range is any
even number between 2 and decimal
254.

clip

Returns:

A string that identifies the selected module(s) and clip
module(s).

Example 1:

iomod = clip ref "ul" , pins 24

Example 2:

iomod = clip ("ul", 24)

Remarks:

The clip command prompts the operator to select a clip module,
clip it to a specific component and press the ready button on the
clip module. The clip command determines which clip module
the operator has selected by returning a string which identifies
the module name and button (A or B) pressed. You use this
name as an argument in TLJ1 function calls to the VO module.

This command allows you to specify the component to which an
VO module should be clipped. The 9100Al9105A software
remembers that the VO module is clipped to this component.

NOTE

The operator must position the clip so that pin 1 of
the clip is connected to pin I of the component.

You should use the assign command instead of the clip
command if you do not want to perform any of the following
actions:

Prompt the operator.

Suspend operations until a ready button is pressed on the
VO module.
Display the standard clip messages.

clip

Related Commands:

assign

For More Information:

The "Overview of TLI1" section of the Programmer's
Manual.

clip

close
function

Syntax:

c l o s e channel <channel express ion>

c l o s e (<channel express ion>)

Syntax Diagram:

close - channel c channelexpression z

Description:

Closes the VO channel whose channel number matches the value
of an expression.

Arguments:

channel expression Numeric expression which evaluates to
a valid channel number.

Example 1:

c l o s e channel n

Example 2:

kp = open dev ice " f i l e l " , mode "unbuffered"

c l o s e (kp)

close

Remarks:

In large programs, it is important to close each file channel once
the program has executed. The total number of channels that
may be open at one time is limited.

Related Commands:

input, input using, open, poll, print, print using

For More Information:

The "Overview of TL/l" section of the Programmer's
Manual.

cnum
function
4 j f p

Syntax:

cnum num <expression>

cnum (<expression>)

Syntax Diagram:

cnum nu rn < expression >

Description:

Converts the floating-point argument to the nearest numeric
value (by rounding).

The floating-point argument value,
which must be within the range
0.0 I expression 1 232 - 1.

Returns:

A numeric value.

Examples:

n = cnum (32.0) ! n is set to 32
n = cnum (100.6) ! n is set to 101
n = cnum num 10E2 ! n is set to 1000
n = cnum num -33.0 ! this results in an error

Related Commands:

cnum

compare
function

Syntax:

compare [device <device name>] [, p a t t < p a t t e r n
s t r i n g >] [, s t a t e < s t a t e s t r i n g >]

compare (<device name>, < p a t t e r n s t r i n g > , < s t a t e
s t r ing>)

compare ()

Syntax Diagram:

compare devlce<devicename> 1
p att < pattern string > -
state < state string > -

Description:

Monitors pins on an I/O module for the occurrence of the
specified pattern and generates a "iomod-dce" fault condition
when a match occurs.

Arguments:

device name I/O module name, or clip module name.
(Default = "/mod 1 ")

pattern string

state string

String expression for the comparison
pattern. The left-most character in the
pattern string corresponds to pin 1.
(Default = " 1 ")

"enable" or "disable" comparison.
(Default = "enable")

compare

Example 1:

compare dev ice "/mod2", p a t t "1011100XXXXllX",
s t a t e "enable"

Example 2:

compare ("/modlAn, "1111111111111111", "disable")

Example 3:

program t e s t 9

handle iomod-dce ! Thi s -hand le r i s c a l l e d
! whenever t h e b i t
! p a t t e r n s p e c i f i e d i n a

p r i n t " succes s fu l DCE"! compare command
! matches t h e p a t t e r n on
! p i n s be ing monitored
! by an I/O module

end handle

compare dev ice "/modlW, p a t t "10111XXX001"

end program

Remarks:

A fault condition is generated when the specified bit pattern is
detected. The compare command might be used to generate a
fault condition when a particular UUT address is accessed or
when particular data is on the data bus.

The pattern is specified as a single string that may contain the
following characters:

1 : high
0: low (or invalid levels)
x or X: don't care

Note that both low levels and invalid levels are considered to be
low when making comparisons.

compare

The characters in the string are mapped onto pins with the left-
mast character corresponding to pin 1. For example, if you
want to detect when pins l , 2 , and 3 are high and when pins 12,
13, and 14 are low (and you do not care about the state of pins
4-1 I), you specify the pattern "1 1 lXXXXXXXX000".

You can specify the pattern in terms of clip pins or 110 module
pins. If the device has more pins than the pattern, the excess
pins are ignored.

The compare command may be used to compare a pattern string
with up to 40 pins if they are all on the same VO module and
depending on what clip module is used.

The data compare equal (DCE) condition is detected as soon as it
occurs, but the resulting DCE fault condition is raised only when
an VO module or probe function is executed or when a pod-
access function is executed.

For More Information:

The "Overview of TL/1 " section of the Programmer's
Manual.

compare

connect
function

Syntax:

connect [device <device l i s t>] [, s t a r t
< re f p i n 1>] [, s t o p < re f p i n 2>] [, c lock
< re f p i n 3>] [, enable < re f p i n 4>] [, common
<re f p i n 5>] [, c l e a r < c l e a r s t a t e >]

connect (<device l i s t> , < re f p i n I>, <re f p i n 2>,
< re f p i n 3>, < re f p i n 4>, < re f p i n 5>,
< c l e a r s t a t e >)

connect (1

Syntax Diagram:

connect device <device list z I
start <refpin 1 z -
stop < ref pin 2 z -
clock <refpin32 -
enable <re fp in4z ,

common <ref pin 5 z -

clear < clear state z-

Description:

Prompts the operator to connect the external lines (START,
STOP, CLOCK, ENABLE, and COMMON) for the probe or an
I/O module.

Arguments:

device list

ref pin 1

I/O module name, clip module name,
probe name, or combinations of these.
(Default = "/probew)

Pin to which external start should be
connected.
(Default = "not used")

connect

ref pin 2 Pin to which external stop should be
connected.
(Default = "not used)

ref pin 3 Pin to which external clock should be
connected.
(Default = "not used")

ref pin 4 Pin to which external enable should be
connected.
(Default = "not used")

ref pin 5 Pin where the common lead should be
connected.
(Default = "not used")

clear "yes" or "no"
(Default = "no")

Example 1:

mod = clip ref "U22",pins 40
connect device mod, start "U33-I", stop "U18-2",
enable "U44-2", clock "U4-5", common "U5-7"

Example 2:

connect device "/mod3", start "U2-7", stop "U22-8"

Example 3:

connect ("/modlW, "~3-6", "~12-lo", "~15-6",
"U2-16", "TPll', "no")

! This connect command prompts the operator
! to connect the external lines of 1/0 module
! #1 as follows:
!
! START to U3 pin 6
! STOP to U12 pin 10
! CLOCK to U15 pin 6
! ENABLE to U2 pin 16
! COMMON to test point 1

connect

@ Example: 4

connect device "/mod3", c l e a r "yes"

! Resets a l l connect ion d a t a t o "not used"

Remarks:

The connect command prompts the operator to connect the
external lines (START, STOP, CLOCK, ENABLE, and
COMMON) for the probe or an VO module and press the ready
button on the probe or VO module adapter. Program execution
is suspended until a Ready button is pressed.

If all the external lines are already positioned correctly, the
operator is not required to press the ready button. The current
positions are displayed on the operator's display. The connect
command also causes the system to update its internal table of
the UUT locations of the external lines.

The clear argument for the connect command can be used to
reset all connection data for the specified device list. If the clear
argument is "yes", all connection data is reset to default values
("not used"). If the clear argument is "no", the other arguments
in the connect command are used to set connection data. If any
changes in connection data result from a connect command, the
operator is prompted to make the connections.

Related Commands:

sync

For More Information:

The "Overview of TLI1" section of the Programmer's
Manual.

connect

cos
function

Syntax:

cos angle <expression>

cos (<expression>)

Syntax Diagram:

Description:

Returns the cosine function of the floating-point argument value.

Arguments:

expression A floating-point value, expressed in
radians.

Returns:

A floating-point value between - 1.0 and 1 .O.

Examples:

f = cos (0.0)
f = cos angle theta

Related Commands:

acos, natural

COS

count
function
4 j W

Syntax:

count [device <device name>] [, pin <pin number>]
[, refpin <refpin name>]

count (<device name>, <pin number>, <refpin name>)

count ()

Syntax Diagram:

count do v l c o < device name r

p l n < pln number r
rofpln <refpinname>

Description:

Reads the count or frequency data for one pin. This command
will return useful information only after an arm . . . readout
block has taken a measurement.

Arguments:

device name VO module name, clip module name,
probe name, or reference designator.
(Default = "/proben)

pin number Pin number.
(Default = 1)

refpin name Specifies the device and pin in string
format. The refpin argument is used to
override the device and pin values.
(Default = "")

count

Returns:

The count or frequency (a number). Bit 31 (decimal) is set high
if the count overflows.

Example 1:

arm dev ice " /probew

readout dev i ce " /proben

probecount = count device " /probew

Example 2:

arm dev ice "/modlW

readout dev i ce "/modlW

count1 = count device "/modlW, p i n 1
count2 = count device "/modlW, p i n 2
count3 = count dev ice "/modlW, p i n 3

Example 3:

mod = c l i p r e f "U3", p i n s 24

arm dev ice mod
execute s t i m g r o g
loop while checks t a tu s (mod) <> SF
end loop

readout device mod

modcount = count device "U3" , p i n 22

count

Example 4:

mod = c l i p r e f "U1" , p i n s 20

arm device mod

readout device mod

modcount = count r e f p i n "Ul-A"
! r e f p i n i s used because
! t h e p i n name i s a s t r i n g
! value , no t a number.

Remarks:

The count function returns the count or frequency for one pin.
The data can be requested in terms of an 110 module pin or a
component pin.

The count or frequency can be requested for a specific pin of an
VO module by specifying the module name ("/modl", "/mod2",
etc.) as the device argument. The pin argument is interpreted as
an VO module pin. Refer to Appendix E for tables that show
what VO module pin numbers to use for every possible clip
module.

If a component name ("Ul", "U2", etc.) is specified as the
device argument, the pin argument is interpreted as a component
pin. The count function determines the VO module and pin
number that corresponds to the specified component pin. The
indicated component must have been previously named in a clip
command.

If the string value for refpin is not a null string (""), the values
of the device and pin arguments are ignored.

The count function should be used only after the execution of an
arm . . . readout block.

The counter mode to be used by the count function is set by the
counter command.

count

Related Commands:

a m , counter, level, readout, sig

For More Information:

The "Overview of TLf1" section of the Programmer's
Manual.

counter
function
4,i*

Syntax:

c o u n t e r [d e v i c e < d e v i c e l i s t >] [, mode <mode name>]

c o u n t e r (< d e v i c e l i s t> , <mode name>)

c o u n t e r ()

Syntax Diagram:

counter devlce < devicelist>

mode <modename>

Description:

Sets the counter mode for the probe or an 110 module.
Allowable modes are transition count or frequency.

Arguments:

device list

mode name

Example 1:

40 module name, clip module name,
probe name, or combinations of these.
(Default = "/probew)

"transition", or "freq".
(Default = "transition")

mod = c l i p r e f "u l " , p i n s 40
c o u n t e r d e v i c e mod, mode " t r a n s i t i o n "

counter

Example 2:

coun te r ("/modlW, "f req")

Example 3:

coun te r dev i ce "/probe,/modl", mode " t r a n s i t i o n "
! t h e whole l i s t of dev i ces u s e s
! t h e s p e c i f i e d mode

Related Commands:

arm, count, readout

For More Information:

The "Overview of TLl1" section of the Programmer's
Manual.

cwd
function
4-4

Syntax:

Syntax Diagram:

Description:

Returns the current working directory as a string.

Returns:

The current working directory is returned as a string. If program
execution began in a UUT directory, cwd returns a string of the
form "/userdiskname/uutname" as in "IHDWABC". If execution
began in the podlib, cwd returns a string of the form
"/userdiskname/PODLIB/podname" a s i n
"IHDR/PODLIB/80286". If execution began in the proglib, cwd
returns a string in the form "/userdiskname/PROGLIB", as in
"/DRl/PROGLIB".

Example:

d = cwd()
i f i n s t r (d , "PODLIB") o r i n s t r (d , "PROGLIB") t h e n

p r i n t "Cur ren t d i r e c t o r y i s n o t a UUT".
e n d i f

Remarks:

The current working directory is the directory from which
program execution began, not the directory of the program
currently being executed. This distinction is important for
programs in the proglib and podlib.

The string returned by cwd can be useful when constructing
absolute file names for text files.

cwd

Related Commands:

filestat, open, close

For More Information:

The "Overview of TL/ln section of the Programmer's
Manual.

dbquery
special function

Syntax:

dbquery dbname

dbquery exp re sp < r e f p i n name>, response <response
f i l e name>

dbquery i n p u t s < r e f p i n name>

dbquery node < r e f p i n name>

dbquery np ins < r e f >

dbquery p in type < r e f p i n name>

dbquery programs < r e f p i n name>

Syntax Diagram:
dbquery 7k dbname >

expresp < relpinname > . response <response name >

Inputs crelplnnamez

nod 0 < relpln name >

nplns <ref>

plnt y po < relpin name >

programs < relpin name >

Description:

The dbquery commands allow a TL/1 program to retrieve
information from the Compiled UUT Database.

Options:

dbnarne (Has no argument value)

This option returns a string containing
the name of the UUT compiled database
("GFIDATA" or "UFIDATA"). If the
UUT does not contain a compiled
database, an empty string is returned.

dbquery- 1

dbquery

expresp

inputs

node

npins

u-efpin name>, response <response
file name>

This option returns the expected
response data for the named pin and
stimulus program. The data is returned
as a comma-separated list of
"type=value" pairs, where type is "sig",
"alvl", "clvl", or "count", and value is
the data that appears in the response
file. The list will only contain the types
of response data that will be used to
compare.

aefpin name>

This option returns a string containing a
comma-separated list of related input
pins for the named pins. An empty
string is returned if the database does
not contain the named pin or it has zero
related inputs.

aefpin name>

This option returns a string containing a
comma-separated list of pins that are
members of the same node as the
named pin. If the database is for UFI
(which does not use a nodelist), an
empty string is returned. If the
database is for GFI and the named pin
did not appear in the nodelist, an empty
string is returned.

This option returns a string containing
the number of pins on the named
reference designator. If the database
does not contain the named reference
designator, an empty string is returned.

dbquery

programs

aefpin name>

This option returns a string identifying
the pin type of the named pin ("INP",
"OUT", "BID", "PWR", "GND", or
"UNU"). An empty string is returned
if the database does not contain the
named pin.

This option returns a comma-separated
list of TL11 stimulus programs that will
be used to test the named pin. This
includes programs that test the pin as an
input and programs that test it as an
output. If the database does not contain
the named pin, or if the database does
not describe how to test the named pin,
an empty string is returned.

Example 1:

! p r i n t t h e l i s t of p i n s t h a t a r e on t h e same
! node a s U1-25

p r i n t "node = ", (dbquery node "Ul-25")

Example 2:

! p r i n t t h e number of p i n s on R33
n = dbquery np ins "R33"
p r i n t "R33 has ", n, " p ins"

Example 3:

! This example p r i n t s t h e l i s t of programs
! t h a t a r e used t o test U1-b4

l i s t = dbquery programs "Ul-b4"
p r i n t "Ul-b4 i s t e s t e d by t h e fo l lowing programs: ", l i s t

dbquery

Remarks:

The compiled UUT database is used by the resident GFI
software. The 9100N9105A will automatically load the database
off disk and into memory the first time a dbquery command is
executed. However, you must use the gfi clear command to
unload the database when you are finished accessing it. Failure
to do so will decrease the amount of memory available to the
9100N9105A.

Refer to the Programmer's Manual for a description of GFI and
for information on how to create a UUT database for GFI.

Related Commands:

g f i clear

For More Information:

The "Guided Fault Isolation (GFI)" section of the
Programmer's Manual.

declare (block form)
statement block

Syntax:

declare

Syntax Diagram:

Description:

Specifies the beginning of a declaration block.

Example 1:

declare
numeric u ! local numeric
string v ! local string
numeric w = 0 ! local numeric with default

! value zero
floating f = 1.3 ! local floating with default

end declare

Example 2:

declare
global numeric 'last-address'
persistent string lastmsg

end declare

Remarks:

Declarations take effect for the entire block that encloses them.
All declarations must appear before any executable statements in
the enclosing block.

Persistent variables may not be declared as arrays.

Arguments to the enclosing block may not be declared as global
or persistent variables.

declare (block form)-1

declare (block form)

Related Commands:

declare (statement form), end, exercise, function, handle,
program

For More Information:

The "Overview of TLI1" section of the Programmer's
Manual.

declare (block form)-2

declare (statement form)
statement

declare [globallpersistent] numericlstringlfloating
<name> [=<default value>]

declare [globallpersistent] numericlstringlfloating
array [<array dimensions>] <name>

Syntax Diagram:

declare

Description:

Declares the scope, data type, and name of a single variable.
Also defines the dimensions of an array.

Arguments:

name

default value

Name of the variable being declared.

An explicit value initially assigned to
the variable. (Optional.)

declare (statment form)-1

declare (statement form)

array dimensions Specification of the dimensions of the
array. Each dimension gives the first
and last permitted value of the
corresponding subscript expression.

Example 1:

declare numeric array [I: 10,l: 101 x
! variable x is a 10x10 array with 100 cells
! and has the numeric data type.

Example 2:

declare numeric nano
! nano is declared as a numeric variable

Example 3:

declare global string hi-all
! the name hi-all is a string variable with
! global scope

Example 4:

declare floating f = 7.99
! f is declared as a floating-point variable
! with a default valve of 7.99

Example 5:

declare persistent numeric perseus
! perseus is declared as a
! persistent numeric variable

Remarks:

Declarations take effect for the entire block that encloses them.
All declarations must appear before any executable statements in
the enclosing block.

Persistent variables may not be declared as arrays.

Arguments to the enclosing block may not be declared as global
or persistent variables.

declare (statment form)-2

declare (statement form)

Related Commands:

declare (block form), exercise, function, handle, program

For More Information:

The "Overview of TLI1" section of the Programmer's
Manual.

declare (statement form)-3

declare (statement form)

declare (statment form)-4

define menu

Syntax:
special function

d e f i n e menu <menu name>, [, l a b e l < l a b e l >] [, key <key>]
[, submenu <submenu name>]

Syntax Diagram:

deflne menu <menu name > ...
I , label <label> 1

...
L, key <key> A L , submenu <submenu name > 1

Description:

Defines a menu or menu item.

Arguments:

menu name

label

Name of the menu or menu item being
defined. If the menu already exists, the
arguments included in the define menu
command are modified. If the menu
does not exist, a new one is created.

Label to be displayed for the menu
item. If not specified, and a new menu
item is being created, it will default to
the menu identifier.

The key to be associated with the menu
item. Only the first character is
significant. If there is no key code, that
menu item can only be selected using
cursor or button controls.

define menu-1

define menu

submenu name The submenu points to another menu
(the MMMM part of the identifier). If
this item is selected, the menu defined
becomes the new menu.

Example:

! d e f i n e two menus, one c a l l e d M 1 and one
! c a l l e d M2. M 1 a l lows t h e keys 1, 2, and 3
! t o be used t o select menu i t e m s . Menu M2
! does no t u se key e n t r y . I f i t e m Ml-C i s
! s e l e c t e d , menu M2 becomes a c t i v e .

d e f i n e menu "Ml-A", l a b e l "RAM test", key "1"
d e f i n e menu "Ml-B", l a b e l "ROM test", key "2"
d e f i n e menu "Ml-C", submenu "M2", l a b e l "o ther

tests", key "3"
d e f i n e menu "M2-A", l a b e l "BUS test"
d e f i n e menu "M2-B", l a b e l " I / O test"

Remarks:

Menu definitions are used by the readmenu command when
displaying to or reading from a menu on the monitor.

Menu entry identifiers are strings of the form "MMMM-1111".
The characters in front of the first "-" are considered to be the
menu name. All menu entries with the same menu name are
collected together into the same menu. The menu items are listed
in the order they are defined for that menu. The entry 1111 is the
item name for the menu. This is significant when using
readmenu. When readmenu returns a menu selection, it returns
"MMMM-1111" as it was defined by the define menu command.
That is, the identifier is used to indicate which selection was
made on the menu.

define menu-2

define menu

Passing an identifier such as "MMMM" with no item causes a
menu to be created with no items if none exists, and does
nothing if the menu already exists.

If a menu item already exists, specifying it will cause the
elements of the menu item to be modified. Only the items
included in the define menu command will be modified.

Once a TL/1 invocation has started, the menu definitions are
global and remain in force until explicitly removed using the
remove command, or until TL/1 is restarted. TL/1 is restarted
whenever you press the REPEAT or EXEC keys on the
operator's keypad, by pressing the INIT softkey when in the
debugger, or by pressing the EXECUTE softkey when in the
debugger if a program is not currently executing.

Note that each definition uses a small increment of memory.
That increment is typically 10 to 30 bytes of memory for book
keeping plus one byte for each character in the smng or smngs
associated with this definition. If many menu definitions are to
be made (and the program is intended to be run indefinitely), it is
good practice to remove menu definitions using the remove
command. This practice will prevent memory from being
consumed by unused or obsolete definitions.

Related Commands:

readmenu, remove

For More Information:

The "Overview of TL/lW section of the Programmer's
Manual.

define menu-3

define menu

define menu-4

define mode

Syntax:
special function

d e f i n e mode <mode name>, a t t r i b u t e < a t t r l i s t >

Syntax Diagram:

deflne mode <modename> - , attribute <atirlisr>

Description:

Used to define the way a reference designator mode is displayed
in a window.

Arguments:

mode name A name you select to refer to this mode
definition. Recommended names are
"testing", "passed", "failed",
"untested", and "partial".

attrlist "normal", "blink", "bold", and
"inverse". Combinations are also
allowed, if separated by commas but
including no spaces.

If "normal" appears in the cornma-
separated list, the attributes preceding
"normal" in attrlist are ignored.

Example:

d e f i n e mode " t e s t i ng" , a t t r i b u t e "bl ink"
d e f i n e mode "passed", a t t r i b u t e "b l ink ,bold"
d e f i n e mode " f a i l ed" , a t t r i b u t e " inverse"

! Drawing a r e f i n t e s t i n g mode r e s u l t s i n a
! b l i n k i n g p a r t , passed mode r e s u l t s i n
! b l i n k i n g bold, and f a i l e d mode r e s u l t s i n
! i n v e r s e video.

define mode-1

define mode

Remarks:

Mode definitions are used by the draw ref command to draw the
parts of a UUT and to display the status of testing for that UUT
in a window on the monitor.

The modes "testing", "passed", "failed", "partial" (partially
passed, not completely tested) and "untested" are the set of
recommended modes. There is however no enforced restriction
on mode names.

Once a TL11 invocation has started, the mode definitions are
global and remain in force until explicitly removed using the
remove command, or until TL/1 is restarted. TL11 is restarted
whenever you press the REPEAT or EXEC keys on the
operator's keypad, by pressing the INIT softkey when in the
debugger, or by pressing the EXECUTE softkey when in the
debugger if a program is not currently executing.

Note that each definition uses a small increment of memory.
That increment is typically 10 to 30 bytes of memory for book
keeping plus one byte for each character in the string or strings
associated with this definition. If many mode definitions are to
be made (and the program is intended to be run indefinitely), it is
good practice to remove mode definitions using the remove
command. This practice will prevent memory from being
consumed by unused or obsolete definitions.

Related Commands:

draw, draw ref, remove

For More Information:

The "Overview of TL11" section of the Programmer's
Manual.

define mode-2

define part
special function

d e f i n e p a r t < p a r t name>, xdim <xs ize>, ydim <ys ize>
[, xdot <h loca t ion> , ydot <vloca t ion>]

Syntax Diagram:

deflne part <partname> - . xdlm <xsize> , ydlm <yslze> ...

L , xdot < hlocafion > - , ydot < vlocation >

Description:

Used to define a part shape and size for the draw commands.
Defining a part causes no action to take place on the monitor.

Arguments:

part name

xsize

y size

hlocation

vlocation

A name you select to refer to this part
definition.

Horizontal size of the part to be
displayed in scaled window coordinates
(see the open command).

Vertical size of the part to be displayed
in scaled window coordinates (see the
open command).

Horizontal location of the alignment dot
within the part in scaled window
coordinates. If xdot and ydot are not
specified, there is no dot displayed.

Vertical location of the alignment dot
within the part in scaled window
coordinates. If xdot and ydot are not
specified, there is no dot displayed.

define part-1

define Dart

Example 1:

d e f i n e p a r t "dip" , xdim 3, ydim 10, xdot 0, ydot 0

! A p a r t name "dip" w i l l be c r e a t e d wi th
! s c a l e d window dimensions of (3,lO) and a
! dot l o c a t e d i n t h e upper le f t -hand co rne r .

Example 2:

d e f i n e p a r t "box", xdim 10, ydim 10

! A p a r t named box wi th no do t w i l l be
! c r e a t e d with s c a l e d window dimensions of
! (1 0 , l O) .

Remarks:

Part definitions are used by the draw ref command to draw a
UUT in a window on the monitor. To display a part, you first
define its shape and size with the define part command, then you
give it a reference designator name and a location with the &fine
ref command, and finally draw the part on a window of the
monitor with the drawref command. Doing a define part on an
existing part causes the information to be replaced with the new
information.

Once a TL11 invocation has started, the part definitions are
global and remain in force until explicitly removed using the
remove command, or until TL11 is restarted. TL11 is restarted
whenever you press the REPEAT or EXEC keys on the
operator's keypad, by pressing the INIT softkey when in the
debugger, or by pressing the EXECUTE softkey when in the
debugger if a program is not currently executing.

define part-2

define part

Note that each definition uses a small increment of memory.
That increment is typically 10 to 30 bytes of memory for book
keeping plus one byte for each character in the string or strings
associated with this definition. If many definitions are to be
made (and the program is intended to be run indefinitely), it is
good practice to remove part definitions using the remove
command. This practice will prevent memory from being
consumed by unused or obsolete definitions.

Related Commands:

define ref, draw, draw ref, open, remove

For More Information:

"The Overview of TL/lW section of the Programmer's
Manual.

define part-3

define part

define part-4

define ref

Syntax:
special function

d e f i n e r e f < r e f name> [, x o r g < x l o c a t i o n > l 1, y o r g
< y l o c a t i o n >] [, p a r t < p a r t name>] [, mode
<mode name>]

Syntax Diagram:

deflne ref <ref name > ...
I , xorg < x~ocation > I

I , mode < mode name > 1

Description:

Used to define a reference designator. It associates a reference
designator name with a location in a window and a part shape
previously defined by the define part command. To display the
reference designator, use a draw command.

Arguments:

ref name A reference designator name you select.

xlocation

ylocation

A numeric expression for the horizontal
location (in scaled window coordinates)
of the upper left-hand corner of the ref.

If xorg is not specified, the old
horizontal location is unchanged. If
xorg was never specified, it defaults to
0.

A numeric expression for the vertical
location (in scaled window coordinates)
of the upper left-hand corner of the ref.

define ref-1

define ref

If yorg is not specified, the old vertical
location is unchanged. If yorg was
never specified, it defaults to 0.

part name

mode name

Part name of a akjine part definition. (If
not specified, the part shape is
unchanged).

The name of the current display mode
for the component. (If not specified,
the mode is unchanged).

Example:

define ref "U3" , xorg 1, yorg 1, part "dipn, mode
"untested"

! A ref defined as U3 will be at location 1,l
! drawn with the part shape and size
! specified in the part definition named
! ''dip" . The display mode will be that

! specified for untested components.

Remarks:

Reference designator definitions are used (along with define part
commands) by a draw command to draw UUT components in a
window on the monitor.

Once a TL/1 invocation has started, the ref definitions are global
and remain in force until explicitly removed using the remove
command, or until TL/1 is restarted. TW1 is restarted whenever
you press the REPEAT or EXEC keys on the operator's keypad,
by pressing the INIT softkey when in the debugger, or by
pressing the EXECUTE softkey when in the debugger if a
program is not currently executing.

Note that each definition uses a small increment of memory.
That increment is typically 10 to 30 bytes of memory for book
keeping plus one byte for each character in the string or strings
associated with this definition. If many definitions are to be
made (and the program is intended to be run indefinitely), it is
good practice to remove reference designator definitions using

define ref-2

define ref

the remove command. This practice will prevent memory from
being consumed by unused or obsolete definitions.

A run-time error is caused by attempting to draw a ref with no
part defined or with no mode defined for the part.

Related Commands:

define part, draw, draw ref, open, remove

For More Information:

The "Overview of TL/lW section of the Programmer's
Manual.

define ref3

define ref

define ref4

define text
special function

Syntax:

d e f i n e t e x t < t e x t name>, l a b e l < l a b e l > , xorg
<xloca t ion>, yorg <y loca t ion> [, a t t r i b u t e
< a t t r l i s t >]

Syntax Diagram:

deflne text < texTname > , label <label> ...
... , xorg < xkxatlon > , yorg <ykcation> - ...

Description:

Used to define text to be displayed in a window using the scaled
location coordinates of a draw command. A piece of text is
associated with attributes and a location in the window.

Arguments:

text name A string expression for the name of the
text to be defined.

label The text to be displayed.

xlocation

ylocation

A numeric expression for the horizontal
location (in scaled window coordinates)
of the upper left-hand corner of the text.

A numeric expression for the vertical
location (in scaled window coordinates)
of the upper left hand comer of the text.

define text-1

define text

attrlist "normal", "blink", "bold", and
"inverse". Combinations are also
allowed, if separated by commas but
including no spaces.

If "normal" appears in the comma-
separated list, the attributes preceding
"normal" in attrlist are ignored.

Example:

! Create a l a b e l named U 1 s t a r t i n g a t
! l o c a t i o n 1 0 , l O t o i d e n t i f y U 1 a s a 68000
! c h i p . Note t h a t t h e t e x t name and r e f name
! do not need t o be t h e same. It i s done i n
! t h i s example f o r convenience.

d e f i n e t e x t " U l " , l a b e l "6800OW, xorg 1 0 , yorg 1 0 ,
a t t r i b u t e "bold"

Remarks:

Text definitions are used by a draw command to draw labels in a
window on the monitor.

Once a TL/1 invocation has started, the text definitions are global
and remain in force until explicitly removed using the remove
command, or until TL/1 is restarted. TL/1 is restarted whenever
you press the REPEAT or EXEC keys on the operator's keypad,
by pressing the INIT softkey when in the debugger, or by
pressing the EXECUTE softkey when in the debugger if a
program is not currently executing.

Note that each definition uses a small increment of memory.
That increment is typically 10 to 30 bytes of memory for book
keeping plus one byte for each character in the string or strings
associated with this definition. If many definitions are to be
made (and the program is intended to be run indefinitely), it is
good practice to remove reference designator definitions using
the remove command. This practice will prevent memory from
being consumed by unused or obsolete definitions.

define text-2

define text

Related Commands:

draw, draw ref, open, remove

For More Information:

"The Overview of TL11" section of the Programmer's
Manual.

define text3

define text

define text-4

delete
function

Syntax:

delete f i l e < f i l e name>

delete (< f i l e name>)

Syntax Diagram:

delete flle <file name z

Description:

Deletes a text file from the userdisk or from a UUT directory.

Arguments:
-. .

file name A string which specifies the path of the
text file to be deleted. If a full
pathname is not used, the text file will
be deleted from the current UUT
directory.

Example 1:

delete f i l e " t e s t l " ! deletes a UUT text f i l e

Example 2:

testdata = " / H ~ ~ / t e s t "
delete testdata ! deletes a userdisk text f i l e

Remarks:

The delete command performs the same function as the
REMOVE softkey in the editor, with the exception that the delete
command removes only files of the type TEXT.

delete

Related Commands:

open, print

For More Information:

The "Overview of TLI1" section of the Programmer's
Manual.

diagnoseram
function
+m*

Syntax:

diagnoseram addr <addr>, upto <upto>, mask <mask>,
fault-addr <faultaddr>, data-expected
<expdata>, data <data>

diagnoseram (<addr>, <upto>, <mask>, <faultaddr>,
<expdata>, <data>

Syntax Diagram:

dlagnoseram - addr <addr> , , upto <upto> - , mask <mask> - ...
... , fault-addr < faultaddrr ...

... - , data-expected < expdata > - , data <data > -

Description:

Used with your customized RAM tests or with Pod Quick Tests
to provide diagnostics and fault conditions which are consistent
with those of the testramfast and testramfull RAM tests.

Arguments:

addr

upto

Starting address.

Ending address.

mask Bit mask for data bits to test.

faultaddr Address of detected fault.

expdata Data expected from fault address.

data Data actually read from fault address.

diagnoserarn-l

diagnoseram

Example:

diagnoseram addr 0, upto SFFFE, mask $7F,
fault - addr $lODA, data-expected $AA, data $ ~ 8

Remarks:

The diagnoseram command is an aid for using Pod Quick tests,
or for using customer-designed tests such as a downloaded
RUN UUT test. The diagnoseram command supplies the same
9 lOOA/9l O5A diagnostics and fault conditions that would result
from the testramfast and testramfull commands.

Related Commands:

pretestram, testrmfast, testramfull

For More Information:

The "Overview of TL11" section of the Programmer's
Manual.

diagnoserom
function

Syntax:

diagnoserom addr <addr>, upto <upto> [, mask
<mask>], addrstep <addrstep>

diagnoserom (<addr>, <upto>, <mask>, <addrstep>)

Syntax Diagram:

dlagnoserom - addr <addr> , up10 < upto> ..,

L, m a s k < m a s k > l

... , addrstep < addrslep>

Description:

Used with your customized ROM tests or with Pod Quick Tests
to preform data and address diagnostics on a range of ROM. The
diagnostics and fault conditions are consistent with those of the
tes6omfill ROM test.

Arguments:

addr

upto

mask

addrstep

Starting address.

Ending address.

Bit mask of valid data bits.
(Default = $FFFFFFFF)

Address increment.

Example 1:

diagnoserom addr SE000, upto SEFFF, mask SFOFO,
addrstep 2

diagnoserom

Example 2:

diagnoserom addr a d s t a r t , up to (a d s t a r t + SOFFF),
add r s t ep 1

Remarks:

The diagnoserom command is similar to testromfull in
functionality and results. The major difference is testromfull
performs both a test of the ROM (by comparing the ROM
signature with an expected signature), and diagnostics if the
signatures do not match. The diagnoserom command does not
test the ROM (so it does not require a valid ROM signature) and
goes right into the diagnostics.

Another difference with diagnoserom is it tests for address line
faults first, while testromfull tests for data line faults first. If
there are both address faults and data faults, the two tests will
report different results.

The diagnoserom command is intended for use with your
customized ROM tests, or when a Pod Quick Test indicates that
the ROM signature is incorrect.

Related Commands:

For More Information:

The "Overview of TL/lW section of the Programmer's
Manual .

draw

Syntax:
special function

draw channel <channel express ion> [, xoff <xof f se t>
[, yof f <yof f s e t >]

Syntax Diagram:

draw channel < channel expressim r ...

Description:

Draws all of the previously defined UUT components and then
all of the defined text on a window in the monitor.

Arguments:

channel expression A numeric expression for a channel
opened to write on the desired window.
Remember that /term1 and /term2 are
also considered windows.

xoffset

yoffset

A numeric expression to define the
horizontal offset used when drawing
the ref and text. This value is subtracted
from the value of xorg defined by the
define ref and define text commands.

A numeric expression to define the
vertical offset used when drawing the
ref and text. This value is subtracted
from the value of yorg defined by the
define ref and define text commands.

draw

Example:

draw channel ch3

! Display a l l d e f i n e d UUT components and a l l
! d e f i n e d t e x t on t h e window opened f o r
! w r i t i n g through a channel named ch3.

Related Commands:

define mode, define part, define ref, define text, open

For More Information:

The "Overview of TL/l" section of the Programmer's
Manual.

draw ref
special function

Syntax:

draw r e f <list of r e f s > , channel <channel
express ion>, [, xof f <xof f set>] [, yof f
<yof f s e t >]

Syntax Diagram:

draw ref <list of refs r , channel < channel expressbn r ...

Description:

Draw previously defined UUT components on a window in the
monitor. This command can also be used to change the display
mode of a component or list of components.

Arguments:

list of refs A list of reference designators defined
by define ref commands. When more
than one reference designator is
included in the list, the reference
designators are separated by commas
(but no spaces are used). If this
argument is an empty string, all defined
refs are drawn.

channel expression A numeric expression to define a
channel opened to write on the desired
window. Remember that /term1 and
/term2 are also considered windows.

draw ref-1

draw ref

xoffset

yoffset

A numeric expression to define the
horizontal offset used when drawing
the ref. This value is subtracted from
the value of xorg defined by the define
ref command.

A numeric expression to define the
vertical offset used when drawing the
ref. This value is subtracted from the
value of yorg defined by the define ref
command.

Example:

draw r e f "U3, US, U22, U l " , channel ch2
! Display t h e s p e c i f i e d group of UUT
! components on a window w r i t t e n t o by a
! channel named ch2

Related Commands:

define mode, define part, define ref, draw, open

For More Information:

"The Overview of TLI1" section of the Programmer's
Manual.

draw ref-2

draw text
special function

Syntax:

draw t e x t < t e x t name l i s t> , channel <channel
exp re s s ion> [, xoff < x o f f s e t >] [, yoff
<yof f s e t >]

Syntax Diagram:

draw text c text name list > - , channel c &annel expression > ...
...

L , xoii c x o ~ e t > A I, , xoii c y ~ s e t > 1

Description:

Displays the text at the scaled location indicated.

Arguments:

text name list

channel expression

xoffset

A list of text names created by define
text commands. When more than one
text name is included in the list, the
names are separated with commas, but
no spaces are used. If this argument is
the null string (""), all defined text is
shown.

A numeric expression to define a
channel opened to write on the desired
window. Remember that /term1 and
/term2 are also considered windows.

A numeric expression to define the
horizontal offset used when drawing
the text. This value is subtracted from
the value of xorg defined by the define
text command.

draw text-1

draw text

yoffset A numeric expression to define the
vertical offset used when drawing the
text. This value is subtracted from the
value of yorg defined by the define text
command.

Example 1:

draw t e x t " labl , lab2", channel chanl
! draw only lab1 and lab2 on a window opened
! f o r wri t ing through a channel named chanl

Example 2:

draw t e x t "", channel chanl
! draw a l l def ined t e x t on a window opened
! f o r wri t ing through a channel named chanl

Related Commands:

define text, draw, open

For More Information:

The "Overview of TL/l" section of the Programmer's
Manual.

draw text9

edge
function

Syntax:

edge [device <device l i s t >] [, s t a r t < s t a r t edge>]
[, s t o p < s t o p c o n d i t i o n >] [, c lock <clock
edge>]

edge (<device l i s t> , < s t a r t edge>, < s t o p
condi t ion>, <clock edge>)

Syntax Diagram:

devlce < devim list>
start -Z start edge >

clock < clock edge >

Description:

Specifies the active edge of the external START, STOP, and
CLOCK lines for the probe or an VO module. Allowable edges
are rising ("+") or falling ("-"); "count" is also allowed for the
stop condition.

Arguments:

device list

start edge

I/O module name, clip module name,
probe name, or combinations of these.
(Default = "/probe")

VO module external start edge "+", "-",
or "at-arm".
(Default = "+")

edge

Probe external start edge "+" or "-".
(Default = "+")

stop condition External stop edge "+" or "-", or
"count" condition (value determined by
the TL/1 stopcount function).
(Default = "+")

clock edge External clock edge "+" or "-".
(Default = "+")

Example:

mod = c l i p ref " ~ 5 4 " ~ pins 1 6
edge device mod, start "+" , stop clock "+"

Related Commands:

a m , readout, stopcount

For More Information:

The "Overview of TL/1" section of the Programmer's
Manual.

special function

Syntax:

edisk load <uut name> [, vectorload <vector mode>]
[, programload <program mode>]
[, objprogload <objprog mode>] [, s i ze <kbytes>l

edisk de le te

Syntax Diagram:

edisk load < uut name >

T
...

1 , vectorload < vector mode > 1 L , programload <program mode > J
delete ...

...
L , oblprogload < objpmg moder J 1 , alzo < kbytes > 1

Description:

Creates or deletes the E-disk, a temporary RAM cache. TL/1
programs and TL11 compiled programs are optionally loaded
into the E-disk to increase their execution speed. The load
operation loads all the GFI database and optionally, the test
vectors (VECTOR), the compiled programs (OBJPROG), and
the source programs (PROGRAM), in the specified UUT
directory into the E-disk. If a pod is specified by SETUP POD
NAME, all the TL11 programs in the specified POD directory are
also loaded.

Arguments:

uut name A string which specifies the path of the
UUT to be loaded. If a full path is not
used, the UUT is loaded from the
current user disk.

vector mode "ON - test vectors are to be loaded.
"OFF" - test vectors are not to be
loaded. (Default = "OFF")

edisk

program mode " O N - programs (PROGRAM) are to
be loaded.
"OFF" - programs are not to be loaded.
(Default = "ON)

objprog mode " O N - compiled programs (OBJPROG)
are to be loaded.
"OFF" - compiled programs are not to
be loaded.
(Default = "ON")

kbytes Size of the E-disk in kilobytes.
(Default = 500K bytes)

Example 1:

! create an E - d i s k of s i z e 1 0 0 0 k b y t e s and
! load it f r o m u s e r d i s k DR1 , u u t DEMO,
! i n c l u d i n g t h e test vectors, PROGRAMS, and
! O B J P R O G s

e d i s k load m/DR1/DEMO", vectorload "ON" , s i z e 1 0 0 0

Example 2:

! create an E - d i s k of s i z e 5 0 0 k b y t e s and load
! it f r o m u s e r d i s k HDR, u u t T K 8 0 w i t h o u t t h e
! test vectors, w i t h o u t PROGRAMS, bu t
! i n c l u d i n g O B J P R O G s .

e d i s k load " / H D R / t k 8 O W , p r o g r a m l o a d "OFF"

Example 3:

! delete t h e E - d i s k

e d i s k delete

edisk

Remarks:

To delete the E-disk, use the delete form of the E-disk function.
The E-disk is also automatically deleted when the EDIT key is
pressed on the 9100A. Either procedure releases the previously
allocated E-disk memory for use with other operations.

To create the E-disk, you must ascertain that sufficient memory
is available in RAM. Once the E-disk is created, you may also
have to adjust RAM allocations so that there is enough left for
other functions. Insufficient RAM before and after the creation
of the E-disk results in error messages. Adjustments to RAM to
create a balance of available memory are made with the kbytes
argument.

To adjust the size of the E-disk, reduce the number of kbytes
until an error message no longer occurs. Another way to make
memory available is to turn off VECTORS, PROGRAMS, or
OB JPROGs.

If an E-disk currently exists when this statement is issued, one
of the following occurs:

If the UUT directory name of the current E-disk does not
match the specified UUT directory name, the original files
are deleted and the new files loaded.
If the UUT directory name of the current E-disk matches
the newly specified UUT directory, a merge copy takes
place.

edisk

enable
function

Syntax:

enab le [device <device l i s t >] [, mode <mode name>]

enab le (<device l i s t> , <mode name>)

enab le ()

Syntax Diagram:

dovlce < devicelist>
mode <modename>

Description:

Sets the enable mode of the response gathering hardware for the
probe or an 110 module. Used only when the sync mode is
ffext".

Arguments:

device list I/O module name, clip module name,
probe name, or combinations of these.
(Default = "/probe")

mode name I/O module enable modes: "always",
"high", "low", or "pod".

Probe enable modes: "always", "high",
"low", "pod", "pod*enOW, "pod*en 1 ".
(Default = "always")

Example 1:

mod = c l i p r e f "U22", p i n s 28
enab le device mod, mode "high"

enable

Example 2:

enable device "/probew, mode "pod"

Remarks:

The enable mode is one of the following:

"high"

"low"

"always"

"pod"

"pod*enOn

"pod*en 1 "

Enable condition is true when the external
enable line is high.

Enable condition is true when the external
enable line is low.

Enable condition is always true.

Enable condition is generated by the pod
sync pulse.

Enable condition is generated by the pod
sync pulse ANDed with the enable signal.
The enable condition is true if the pod's
PodSync line is active and the clock module
enable line is low. This mode is valid only
for the probe.

Enable condition is generated by the pod
sync pulse ANDed with the enable signal.
The enable condition is true if the pod's
PodSync line is active and the clock module
enable line is high. This mode is valid only
for the probe.

Related Commands:

arm, readout, sync

For More Information:

The "Overview of TL/lW section of the Programmer's
Manual.

end
statement

end
end
end
end
end
end
end
end
end
end
end

d e c l a r e
e x e r c i s e
< f a u l t cond i t i on>
f u n c t i o n
< func t ion name>
handle
< f a u l t cond i t i on>
i f
loop
program
<program name>

Syntax Diagram:

end

c fault condition > 6 Ir--I c program name >

Description:

Defines the end of a block.

Arguments:

fault con& tion

function name

The fault condition used to call an
exerciser block or a handler block.

The function name used to call the
function block.

end

program name The program name used to call the
program block.

Examples:

end d e c l a r e ! ends a v a r i a b l e d e c l a r a t i o n block

end i f ! ends an i f . . . t hen o r an
! i f . . . t hen . . . else
! block

end loop ! ends a loop block

end my-exer ! ends an e x e r c i s e r block, where t h e
! f a u l t name g iven i n t h e
! e x e r c i s e s ta tement i s my-exer

end my-func ! ends a func t ion , where t h e func t ion
! name given i n t h e func t ion
! s ta tement i s my-func

end my-hand1 ! ends a f au l t -hand le r block, where
! t h e f a u l t name
! given i n t h e handle s ta tement
! i s my-hand1

end m y s r o g ! ends a program, where t h e program
! name g iven i n t h e program s ta tement
! is m y g r o g

Related Commands:

declare (block form), exercise, function, handle, if, loop,
program

For More Information:

The "Overview of TL/ln section of the Programmer's
Manual.

endif
statement

Syntax:

endif

Syntax Diagram:

Description:

Specifies the end of an if block.

Example:

if a < 4 then
b = O
c = l

endif

Remarks:

In TL11 endif is functionally equivalent to end i f . This form of
the end i f statement is provided for ANSI compatibility, but is
not the recommended W 1 syntax.

Related Commands:

if, end

For More Information:

The "Overview of TL/1" section of the Programmer's
Manual.

endif

execute
statement

Syntax:

[execute] <name> <argname> <argvalue> { , <argname>
<argvalue>)

[execute] <name> (<argvalue> { , <argvalue>))

[execute] <name> ()

Syntax Diagram:

I

L execute J < argname > - < argva~ue >
A A -

Description:

Causes the named program or function to be executed. The
execute keyword is optional.

Arguments:

name Valid program or function name.

argname Name of an argument.

argvalue An expression which provides the value
for an argument.

Example 1:

! Suppose you have written a function called
! send which requires two arguments:
! addr and data. This is an example of
! calling send using keyword notation.

execute send addr a, data d

execute

Example 2:

! This i s equivalent t o Example 1, but t h e
! argument l i s t i s wr i t t en i n p o s i t i o n a l
! no ta t ion .

execute send (a , d)

Example 3:

program test4
funct ion f l ! def ines t h e funct ion •’1

c h l = open device "/term2", a s "output"
p r i n t on c h l "Executed funct ion f l "
c l o s e channel ch l

end f 1

execute f l 0 ! c a l l s t h e funct ion f l

execute •’1 () ! c a l l s t h e funct ion f l

execute t e s t 3 (1 ! c a l l s another program
! s ince t h i s name i s not
! def ined a s a funct ion i n
! t h i s program

end program

Remarks:

The argument list for the execute command has two forms:

Keyword notation - where argument name and argument
value pairs are listed with each pair separated by commas.

execute

Positional notation - where only the argument values are
listed in order separated by commas. The order of
argument values must be the same as the order in the
program or function command called by the execute
command.

The value returned by a function may be used as the argument to
another function, as in the statement z = f(g(x),y). When the
functions use keyword notation, it may be difficult to interpret
the resulting statement. In the following invocation:

z = f f-argl g g-argl x, arg2 y

it is not obvious whether arg2 belongs to g's argument list or f s
argument list. Therefore, when a function invocation using
keyword notation is an argument to another function, the
argument function invocation must be surrounded by
parentheses to remove ambiguity as shown in the following:

Related Commands:

function, program, return

For More Information:

The "Overview of TL11" section of the Programmer's
Manual.

execute

exercise
statement block

Syntax:

exercise <fault condition> [(<argname>
{ , <argname>)) 1

Syntax Diagram:

Description:

Specifies the beginning of a fault condition exerciser.

Arguments:

fault condition Name of the fault condition to be
exercised. (See Appendix G ,
"Handling Built-in Fault Messages in
TL11 Programs," in this manual.)

Name of an argument for this exerciser
block.

Example:

exercise my-exerciser (a,b,c)

declare
numeric e,f

end declare

end my-exerciser

exercise

Remarks:

A fault condition exerciser is a sequence of statements that
detects a particular, previously discovered fault condition.
When a fault condition occurs, an operator can execute the
exerciser continually (controlled through the operator's display)
while attempting to repair the UUT fault. A program or function
can provide exercisers for fault conditions that are raised during
execution.

You may write your own exercisers in TL/1 or use the built-in
exercisers provided by the built-in tests.

The fault name must be the same in both the exercise command
and the end command. A fault exerciser has the name of the
fault condition it is intended to exercise.

The argument list consists of argument names separated by
commas. If any arguments have default values, these values are
assigned in the declarations. The exercise command must
include all arguments named in the corresponding faul t
command, but it can include additional arguments as well.

Unlike the scope of a variable name, which is static based upon
the block structure of a TL/1 program, the scope of an exerciser
is dynamic. The scope of an exerciser extends from the time at
which the containing block is entered until the containing block
is exited. If the block invokes another function, the exerciser
remains "active", unless another exerciser with the same name is
activated in the invoked block.

Variables declared inside an exerciser are local unless explicitly
declared to be global.

Any fault condition that is exercised causes the program to
indicate that the UUT fails if the last full iteration of the exerciser
detected a fault and allows the program to indicate a "passes" if
the last full iteration of the exerciser did not detect a fault.

exercise

Related Commands:

declare, end, execute, fails, handle, passes, refault, return

For More Information:

The "Overview of TL/1" section of the Programmer's Manual.

exercise

fabs
function

Syntax:

f a b s num <expression>

f abs (<express ion>)

Syntax Diagram:

tabs n urn < expression r

Description:

Returns the absolute value (floating-point) of the argument
value.

Arguments:

expression The floating-point argument value.

Returns:

A floating-point value.

Examples:

f = f a b s (f) ! Convert f t o i t s a b s o l u t e
! va lue .

f = f a b s num (s i n ang le f)

Remarks:

If fabs returns

fabs

Syntax:

fails
operator

<invocation> fails

Syntax Diagram:

<name D - falls

Description:

Tests the termination status of a called program or function. The
fails operator evaluates as true if the called function or program
ends with a fail status and as false otherwise.

Arguments:

invocation

Example 1:

Program or function call.

if testramfull ($1000,$1FFF,2) fails then x = 0

Example 2:

if testbus ($FFFF) fails then y = 0

Remarks:

Termination status indicates whether or not a UUT passes
functional tests. Termination status is revised for every invoked
program or function.

fails

Termination status can be:

passes represents completion of a test without any
unhandled fault conditions. The UUT is free
from any faults that the test can detect.

fails represents the existence of one or more
unrepaired faults at the end of test execution.

A program that runs to completion without detecting any faults
indicates that the UUT passes. Detection of a fault by the
program (or any programs it calls) affects the termination status
of the program. Any unhandled, unexercised fault condition
causes the program to indicate that the UUT fails. Any fault
condition that is exercised causes the program to indicate that the
UUT fails if the last full iteration of the exerciser detected a fault
and allows the program to indicate a "passes" if the last full
iteration of the exerciser did not detect a fault. The termination
status of a program is accumulated in the program that called it,
so that if any called programs indicated a failure, the calling
program also indicates that the UUT fails.

A fault condition can be handled by a block of statements called
a fault condition handler. The fault condition handler has access
to the arguments of the fault and the global variables of the test
program. When a fault condition handler encounters either a
return statement or its last statement the handler terminates, and
execution resumes at the statement following the fault command

If the handler does not execute a fault command, the fault
condition is handled and disappears. In this case, the termi-
nation status is "passes".

A fault command with no fault name or arguments
unconditionally sets the termination status to "fails."

When a refault or a fault command with a fault name is executed,
the termination status is affected by the presence of other
handlers or exercisers for the fault condition.

fails

Related Commands:

execute, exercise, fault, handle, i f , passes, refault, while

For More Information:

The "Overview of TL/l" section of the Programmer's
Manual.

fails

fault
statement

Syntax:

fault [<fault condition> <argname> <argvalue>
{ , <argname> <argvalue>) 1

Syntax Diagram:

fault
L < fault condition >

< argname r - < argvalue r -
A 1 -

Description:

Raises a fault condition and provides a list of arguments that
describe details of the fault condition.

Arguments:

fault condition Name of the fault condition to be
raised.

argname Name of an argument.

argvalue An expression which provides the value
for an argument.

Example 1:

if errors > 10 then fault ! termination status
! is set to "fails"

Example 2:

fault pod-data-tied mask mask, access-attempted
"write", addr adr2, data d

fault

Remarks:

A fault condition occurs during execution when the UUT does
not respond as expected. When faulty UUT behavior is detected
by a test program, a fault condition describing the behavior is
raised with a fault command. The fault command consists of a
fault name and a list of arguments that describe details of the
fault condition.

When a fault command is executed, program execution is
suspended. If the current invocation contains a handler for the
raised fault condition, the handler is executed. If the current
invocation does not contain a handler for the raised fault
condition, each invocation in the calling chain is checked until a
handler is found. If no invocation has a handler for the raised
fault condition, the system issues the fault message on the
operator's display.

A program that runs to completion without detecting any faults
indicates that the UUT passes. Detection of a fault by the
program (or any programs it calls) affects the termination status
of the program. Any unhandled, unexercised fault condition
causes the program to indicate that the UUT fails. Any fault
condition that is exercised causes the program to indicate that the
UUT fails if the last full iteration of the exerciser detected a fault
and allows the program to indicate a "passes" if the last full
iteration of the exerciser did not detect a fault. The termination
status of a program is accumulated in the program that called it,
so that if any called programs indicated a failure, the calling
program also indicates that the UUT fails.

A fault condition can be handled by a block of statements called
a fault condition handler. The fault condition handler has access
to the arguments of the fault and the global variables of the test
program. When a fault condition handler encounters either a
return statement or its last statement the handler terminates, and
execution resumes at the statement following the fault command.

If the handler does not execute a fault command, the fault
condition is handled and disappears. In this case, the terrni-
nation status is "passes".

fault

A fault command with no fault name or arguments
unconditionally sets the termination status to "fails."

When a refault or a fault command with a fault name is executed,
the termination status is affected by the presence of other
handlers or exercisers for the fault condition.

Related Commands:

execute, exercise, fault, handle, if, passes, refault, while

For More Information:

The "Overview of TL/l" section of the Programmer's
Manual.
Appendix H, "Raising Built-in Fault Messages in TL/1
Programs," in this manual.

fault

f ilestat
function

Syntax:

f i l e s t a t f i l e < f i l e name s t r i n g >

f i l e s t a t (< f i l e name s t r i n g >)

Syntax Diagram:

fllostat fllr < file name string >

Description:

Returns information about the existence, readability, and
writeability of a text file.

Arguments:

file A string containing a relative or
absolute file path name.

Returns:

A three character string if the file exists, or the empty string if
the file does not exist.

The first character of the string is "r" if the file is readable and
"-" otherwise.

The second character of the string is "w" if the file is writable
and is "-" otherwise.

The third character of the string is "-".

filestat

Example:

The example prints "DEMO--rw-" if the text file DEMO in the
current UUT exists and is not write protected.

Remarks:

Filestat returns information about the status of the file. It cannot
tell if a floppy disk write-protect tab is in the protected position.

Related Commands:

cwd, open, close

For More Information:

The "Overview of TL/1" section of the Programmer's
Manual.

for
statement block

for <variable> = <expression 1, to <expression 2>
[step <expression 3>]

Syntax Diagram:

for - < variable > = < expression 1 > to < expression 2 > . . .

Description:

Executes a series of statements repeatedly for each value of a
control variable within a specified range.

0 Arguments:
variable Any numeric variable; used as an index.

expression 1 An integer expression for the lowest
value in the range.

expression 2 An integer expression for the highest
value in the range.

expression 3 An integer expression which specifies
the increment after each loop iteration.
(Default = 1)

for

Example:

f o r n = 1 t o 5 s t e p 2

! i f n i s 5 o r less, perform
! t h e s t a t emen t s w i th in t h e
! " fo r " b lock . Since t h e
! "s tep" v a r i a b l e i s 2 , t h e
! s t a t emen t s wi th in t h e
! block a r e executed t h r e e
! t i m e s .

next

Remarks:

The for . . . next block repeats the controlled statements for each
value of an index variable within a specified range, after which
execution continues at the line following the end of the block.
The for . . . next block ends with a next statement.

The optional step expression indicates how much to add to the
block control variable after each iteration of the block.

The f o r . . . next block is provided for ANSI compatibility, but
the recommended TL/l structure is the loop for . . . end loop
block.

Related Commands:

loop, next

For More Information:

The "Overview of TL/l" section of the Programmer's
Manual.

fstr
function

Syntax:

f s t r num <expression>

f s t r (<expression>)

Syntax Diagram:

fstr nu m c expression z

Description:

Produces a string representation of the floating argument value.

Arguments:

expression A floating-point argument value.

Returns:

The default string representation of the floating argument value.

Examples:

s = "The answer is" + f s t r (f)
s = f s t r num f

Remarks:

The returned string is in scientific format, with six digits of
precision following the decimal point. For example, the
following are strings produced by the fstr command:

fstr

Related Commands:

fvar

function
statement block

Syntax:

f u n c t i o n < func t ion name> [(<argname>
{ , <argname>))]

Syntax Diagram:

lunctlon - <function name r
(TI a r g y r

Description:

Specifies the beginning of a function definition block.

Arguments:

function name Name of the function that is defined in
the lines between the function and end
statements.

argname Name of an argument for this function.

Example:

program tes t4

f u n c t i o n max (x, y)

! Defines a f u n c t i o n c a l l e d max
! Suppose you wrote t h i s func t ion t o t a k e two
! numeric va lues a s i npu t and r e t u r n t h e
! g r e a t e r va lue (o r t h e second va lue i f t hey
! a r e e q u a l) .

(example i s cont inued on t h e next page)

function

d e c l a r e
numeric x
numeric y

end d e c l a r e
i f (x>y) t hen

r e t u r n x
else

r e t u r n y
end i f

end max

a = max (1 6 , da tawid th) ! c a l l s t h e f u n c t i o n max
! d e f i n e d a t t h e beginning
! of t h e program

end program

Remarks:

A function is a sequence of TL/1 statements called by a single
name. A function is syntactically identical to a program except
that it begins with a function statement rather than a program
statement.

The only difference between the program and function definition
block is that the scope of a function name extends only within
the block (usually a program block) that encloses it. The scope
of a program name is every program in the same UUT and every
program in the program library.

The function name used in the function statement, the end
statement, and all invocations of the function must be the same.
Function names are case-sensitive; "add" is not the same as
"aDd." A function name cannot be the same as the name of a
built-in function.

The argument list consists of one or more argument names
separated by commas. The list is enclosed in parentheses. The
order of the names in this list is the same order in which the
values for these arguments must be listed in positional notation
calls to this function. If any arguments have default values,
these values are assigned in the subsequent declaration blocks.

function

Function arguments may not be declared as arrays, nor as global
or persistent variables.

Function definition blocks may contain any or all of the
following: declaration blocks, handler definition blocks, and
exerciser definition blocks.

Related Commands:

declare, end, execute, exercise, handle, program, return

For More Information:

The "Overview of TL/lM section of the Programmer's
Manual.

function

fval
function

Syntax:

fval str <expression>

fval (<expression>)

Syntax Diagram:

fval str < expression >

Description:

Calculates the floating-point value of the string argument.

Argument:

expression A valid string expression which
represents a floating-point number.

Returns:

The floating-point value obtained by interpreting the string.

Examples:

f = fval ("1.0") ! f is set to the value 1.0

f = fval str "-3E2" ! f is set to the value
! -300.0

f = fval ("2") ! f is set to the value 2.0
! Note that a decimal point
! is not necessary here.

fval

Remarks:

Any string which can be interpreted as a decimal floating-point
number is acceptable. Decimal points are not required. In
addition, the first character of the string can be a minus sign,
indicating that the number is negative.

Related Commands:

fstr, isflt

getoffset
function

Syntax:

getoffset [device <device name>] [, pin
<pin number>]

getoffset (<device name>, <pin number>)

getof f set ()

Syntax Diagram:

getoffset d e v 1 c e < device name z I
p l n < pin number z

Description:

Returns the current calibration delay offset for the specified
device. The value returned is biased by 1000000 (decimal).
This value can be changed via calibration, restoring caldata, or
using the setoffset command. Each sync mode (such as pod
addr, pod data, or ext) has a separate offset associated with it.
Thus, changing sync modes also changes the offset.

Arguments:

device name VO module name or probe name.
(Default = "/probew)

pin number (Default = 1)

Returns:

The current calibration delay offset for the specified device.

getoffset

Example 1:

! This example looks at the current offset for
! external sync in the probe

sync device "/probew, mode "ext"
offset = getoffset device "/probew

Example 2:

! This example looks at the current offset for
! pod address sync in 1/0 module 2

sync device "/mod2", mode "pod"
sync device "/podm, mode "addr"
offset = getoffset device "/mod2"

Remarks:

The getoffset command is valid only when the sync mode is
"pod" or "ext".

The value returned is biased by 1000000 (decimal). This means
that a returned value of 1000000 represents an offset of 0
nanoseconds, a returned value of 1000020 represents an offset
of 20 nanoseconds, and a returned value of 999970 represents
an offset of -30 nanoseconds.

The offset value can be changed by calibration, by restoring
caldata, or by using the setoffset command. In addition, each
sync mode (such as pod addr, pod data, or ext) has a separate
offset associated with it. Thus, changing sync modes also
changes the offset.

The getoffset function will not necessarily return exactly the
same value that setoffset passed. This is because the hardware
delay line provides delay increments of about 15 nanoseconds.

getoffset

Related Commands:

For More Information:

The "Overview of TL11" section of the Programmer's
Manual.
The "Offset Command" section of the Programmer's
Manual for information on using offsets with GFI.

getoffset

getpod
function

Syntax:

getpod podname

Syntax Diagram:

Description:

Returns information about the current pod.

Arguments:

podname Return the name of the currently
connected pod.

Returns:

The name of the current pod.

Example:

i f i n s t r ((getpod podname), "M") = 1 then
p r i n t "9132A pod i n use"

end i f

Remarks:

There is a current pod name (called "32BIT") when no pod is
plugged in. 9132A pod names all begin with "M", so getpod is
useful to determine the type of pod.

Related Commands:

podinfo, podsetup

getpod

For More Information:

The "Overview of TLI1" section of the Programmer's
Manual.

getromsig
function
4 j *

Syntax:

getromsig addr <address I>, upto <address 2>
[, mask <mask>], addrstep <addrstep>

getromsig (<address I>, <address 2>, <mask>,
addrstep>)

Syntax Diagram:

... , addrstep < addrstep >
, mask <mask>

Description:

Returns the signature gathered from one or more ROMs using a
mask to select which data bits will be used to form the signature.

Arguments:

address 1 Starting address.

address 2 Ending address.

mask Bit mask of data bits to be used to form
the signature.
(Default = $FFFFFFFF)

addrstep Address increment.

Returns:

The signature measured.

getromsig

Example 1:

measured-sig = getromsig addr 0, upto $7FF,
addrstep 2

Example 2:

measured-sig = getromsig (first, last, $7C, 4)

Remarks:

The ROM signature is a CRC word calculated from the data
contained in the ROM. The ROM data is considered to be
composed of bit streams consisting of data bit k of addresses
(addr, addr + addrstep, addr + 2*addrstep; addr + 3*addrestep,
etc.). These bit streams are concatenated with the most
significant set bit in mask first, followed by less significant set
bits, with the CRC result being taken from the concatenated bit
stream. Therefore, if mask has only one set bit, the CRC
returned by getromsig is the same as the signature that would be
returned if the probe were placed on the same data bit, and reads
were done at addresses (addr, addr + addrstep, addr +
2*addrstep, addr + 3"addrstep etc.).

Related Commands:

For More Information:

The "Overview of TL/l" section of the Programmer's
Manual.
Supplemental Pod Information for 91 00Al91 O5A Users
Manual.
The Fluke pod manual for the microprocessor you are
using.

getspace
function -

Syntax:

getspace <argname> <argvalue> { <argname>
<argvalue>)

getspace (<argvalue> I , <argvalue>))

Syntax Diagram:

getspace < argname r , < argvalue r
1 A - -

Description:

Converts a list of specified address parameter values to a number
suitable as an argument for the setspace command. This number
depends on the specified parameter values and on the pod which
is currently connected.

Arguments:

argname

argvalue

Returns:

Address parameter name (refer to the
Supplemental Pod Information for
9100A/9105A Users Manual for the
microprocessor you are using).

The address parameter string value you
select (refer to Supplemental Pod
Information for 91 00AI91 O5A Users
Manual for the microprocessor you are
using).

The selected address space as a number.

getspace

Example:

program test 6
s = getspace space "memory", size "word"

! an 80286 address space
setspace space s

end program

Remarks:

Microprocessor address lines usually have multiple addressing
modes. These are often referred to as address spaces. For
example, in the Z80 microprocessor, two address spaces are
available: memory space and 1/0 space. More powerful
microprocessors have a correspondingly larger number of
address spaces that can be used. When testing a
microprocessor-based UUT, you must select an address space
and any other addressing parameters that are needed to test the
UUT in the desired address space.

The 9100A19105A provides a convenient means to select the
address space and other addressing parameters. When a pod is
connected to the 9100A/9105A and the power is turned on (or
the RESET key is pressed), the addressing parameters possible
for this pod are made available to the 9100A/9105A in the form
of a list of strings representing all legal combinations of
addressing options. These options are shown on the operator's
display when appropriate commands are selected from the
operator's keypad.

These options are also selectable by TU1 through the use of the
getspace function used along with the setspace command. With
the getspace function, you specify both a name and a selected
string value for each address parameter. No parameters may be
left out. The getspace function then checks the list of address
parameter combinations and returns a number related to the
position in the list where the specified combination was found.
The Supplemental Pod Information for 91 OOA/9I 05A Users
Manual shows the appropriate parameter names and all legal
combinations of parameter values that can be used for each
supported microprocessor.

getspace

For example, when you refer to The Supplemental Pod
Information for 9IOOA/9105A Users Manual, you would find
the information on the 80186 microprocessor to write the
following getspace command. (A summary of this information
for the 80186 microprocessor is also shown in Appendix I of
this manual.)

s = getspace mode "normal", space "memory", s i z e
g lw~rdg '

This command would request the number of the address
parameter string which has "normal" as the choice for the mode
parameter, "memory" as the choice for the space parameter, and
"word" as the choice for the size parameter.

The number returned by getspace is then used with the setspace
command to set the pod to operate with the requested addressing
parameters. For example, you might use the following
command to set the pod to use the number returned by the
getspace command above:

s e t s p a c e space s

Related Commands:

setspace, sysspace

For More Information:

The "Overview of TL/l" section of the Programmer's
Manual.
Appendix I, "Pod-Related Information," in this manual.

The Supplemental Pod Information for 91 OOA/91 O5A
Users Manual.
The Fluke pod manual for the microprocessor you are
using.

getspace

gfi
special function

Syntax:

g f i
g f i
g f i
gf i
g f i
g f i
g f i
g f i
g f i
g f i
g f i
g f i
gf i
gf i

accuse
a u t o s t a r t < a u t o s t a r t mode>
c l e a r
c o n t r o l
dev i ce
f a i l < r e f p i n name>
f a i l < r e f name>
h i n t < r e f p i n name>
pas s < r e f p i n name>
p a s s < r e f name>
r e f
s t a t u s < r e f p i n name>
sugges t
test < r e f p i n name> [, autoprompt <autoprompt

s t a t e >]

Syntax Diagram:

control
device

c rebin name r
c ref name r

hint c mfpin name r

c rewn name r
c ref name r

ref
status - c re/pin name r
suggest
test - c dpin name r

, autoprompt c autoprompt state r

Description:

The gfi commands allow TL/1 to interact with the resident GFI
software. The gfi status and gfi test commands can be used as
the heart of functional testing using the probe and VO module.
Using these commands to perform functional tests has the
advantage of using the learned responses (response files) which
characterize the known-good UUT rather than including
response information in TL/1 functional test programs.

gfi

Options:

accuse

autostart

clear

(Has no argument value.)

This option returns a string that
describes the current GFI accusation, or
conclusion ("Ul is BAD or OUTPUT
U1-24 is LOADED", for example). If
GFI currently has no accusations, an
empty string is returned.

This option enables or disables an
automatic transition from a TL11
functional test to GFI.

The autostart mode can be "enable" or
"disable". If the mode is "enable", GFI
automatically starts after a TL/1
program that generates GFI hints has
finished running. If the mode is
"disable", a message is displayed
informing the operator that GFI hints
are available.

(Has no argument value.)

This option erases the GFI summary
and GFI suggestion list. It also forces
the UUT's GFI database out of
memory. An empty string is returned.
An error will be reported if a stimulus
program attempts to clear GFI. This
command should be executed before
troubleshooting of a new UUT is
begun.

gfi

control

device

fail

(Has no argument value.)

This option determines whether the
program is being executed under GFI
control. A value of "yes" or "no" is
returned.

(Has no argument value.)

This option returns a string containing
the name of the measurement device
("/probe", "/mod 1 ", "/mod2", "/mod3",
"/mod4", etc.) that is being used.
Typically, the device list returned is
passed to other TL/1 functions which
accept device lists and affect the 110
module and probe.

This option is used only in stimulus
programs, which are executed under
control of the GFI program. If the
program is not being executed under
GFI control, an error is reported.

aefpin name>

This option is used in a GFI stimulus
program to force GFI to fail the
specified pin, independent of the actual
measured response.

The FAIL applies only to the single
program that this statement appears in.

The specified pin must be a pin that is
currently being tested by GFI. The
name of the current pin or ref being
tested can be obtained using the 'gfi ref
option.

gfi

a-ef name>

hint

pass

If a reference designator name is
specified, it will force GFI to fail all the
pins on that ref that are tested by the
stimulus program.

This option adds the specxied pin name
to the end of the GFI suggestion list.
This option is used in functional tests to
identify nodes that are suspected to be
faulty.

a-efpin name>

This option is used in a GFI stimulus
program to force GFI to pass the
specified pin, independent of the actual
measured response.

The PASS applies only to the single
program that this statement appears in.
(If a pin is tested by several stimulus
programs, the cumulative status of the
pin can still be BAD if the pin fails one
or more of those other programs).

The specified pin must be a pin that is
currently being tested by GFI. The
name of the current pin or ref being
tested can be obtained using the 'gfi ref
option.

a e f name>

If a reference designator name is
specified, it will force GFI to pass all
the pins on that ref that are tested by the
stimulus program.

gfi

ref (Has no argument value.)

status

suggest

test

This option returns a string containing
the name of the reference designator or
pin that is being tested by GFI.

This option is used only in stimulus
programs, which are executed under
control of the GFI program. If the
program is not being executed under
GFI control, an error is reported.

This options returns a string describing
the status of the named pin. It returns:
"good" if the pin has been tested and
was good, "bad" if the pin has been
tested and was bad, and "untested" if
the pin has not been tested or no such
pin exists.

(Has no argument value.)

This option returns a string containing
the first (highest priority) suggestion on
the GFI suggestion list. The string has
the form "ref-pin". If the suggestion
list is empty, an empty string is
returned.

<refpin name>, [autoprompt
<au topromp t state>]

This option tests the named pin by
executing all stimulus programs
associated with it. If the named pin is
tested with the VO module, GFI will
test all the pins on the component.

gfi

The TL/1 "passes" or "fails" condition
will be set according to the status of the
component (not just the named pin). It
will be set to "fails" if any pin on the
component is bad. It will be set to
"passes" if all the pins on the
component are good or untested:

The autoprompt state can be "yes" or
"no". (Default = "yes".) If it is "yes",
then the necessary operator prompts to
clip or probe the component will be
automatically generated. If it is "no",
the system assumes that the
programmer has already prompted the
operator. Prompting for the UO module
must be done with the TL/1 clip
command. This function updates the
system connection data for the module,
which is used by GFI.

This option cannot be used in a GFI
stimulus program.

Example 1:

! This program performs t h e equ iva l en t of RUN G F I
! from t h e o p e r a t o r ' s keypad and d i s p l a y . The only
! d i f f e r e n c e i s t h a t no g raph ic s w i l l be gene ra t ed
! f o r t h e p a r t .

program auto-gfi
loop whi le (((g f i accuse) = "") and

((g f i sugges t) <> " "))
p i n = g f i sugges t
g f i test p i n

end loop
end auto-gf i

gfi

Example 2:

g f i a u t o s t a r t "enable"
g f i h i n t "U25-15"

! enab le a u t o s t a r t and add U25-15 t o t h e G F I
! sugges t ion l i s t

Example 3:

! tes t a l l p i n s on U l (i f U 1 i s t e s t e d with
! t h e 1/0 module)

i f g f i tes t " U l - 1 " pa s se s t hen
p r i n t " U 1 i s good"

else
p r i n t "U1 i s badw
p r i n t " U l - 1 i s ", (g f i s t a t u s " U l - 1 ")
p r i n t "Ul-2 i s ", (g f i s t a t u s "Ul-2")
p r i n t "Ul-3 i s ", (g f i s t a t u s "Ul-3")

end i f

Example 4:

! This s t imu lus r o u t i n e wiggles t h e d a t a p i n s out
! t o t h e i n p u t s of a l l components d i r e c t l y
! connected t o t h e microprocessor bus b u f f e r .

program micro-data

! I f t e s t i n g wi th GFI t hen
I g e t dev i ce name from G F I

! else not t e s t i n g wi th GFI
I s o s p e c i f y device name

i f (g f i c o n t r o l) = "yes" t hen
d e v l i s t = g f i dev ice

else
d e v l i s t = w/modlm

end i f

gfi

! Setup measurement and
! stimulus devices.

x = getspace space "memory", size "word"
setspace (x)

! Reset device to known state
! then configure devices as desired

reset device devlist
sync device devlist, mode "pod"
sync device "/podw, mode "data"
threshold device devlist, mode "ttl"
counter device devlist, mode "transition"
arm device devlist ! Begin measurement

! Perform stimulus to UUT
rampdata addr $20000,
rampdata addr $20000,
rampdata addr $20000,
rampdata addr $20000,

readout device devlist !

data 0,mask $1F
data 0,mask $IF0
data 0,mask $IF00
data 0,mask $IF000
End measurement

end micro-data

Remarks:

The gfi accuse, gfi suggest, and gfi test commands can be
combined to perform the equivalent RUN GFI from the
operator's keypad and display (see example 1). You can also
drive an autoprober by modifying example 1; position the
autoprober before performing the gfi test command.

The gfi test and gfi status commands can be used as the heart of
functional testing. Once the UUT has been divided into
sections, functional test programs can be written for each
section. These functional tests can use the gfi test command to
test the components generating output signals for each section.

For example, assume a section has two ICs, U21 and U33, that
provide the output signals for that section. In this case, gfi test
"U21-1" and gfi test "U33-1" can be used to test these two
components and therefore, the output of the section. (There is
an additional assumption that the VO module is being used to test

gfi

U21 and U33. When the 110 module is used, gfi test will test all
pins on the IC, not just the specified pin.) If one or more of the
gfi test commands fails, the gfi status command can be used to
find out which pins on the components failed. The failing pins
can be entered in the suggestion list using the gfi hint command.

Stimulus programs can be executed from the operator's keypad
and display, from the debugger, and from GFI. The gfi control
command and gfi device command are used to identify when
GFI is running, and if it is, to get the testing device from GFI
(see example 4).

Refer to the Programmer's Manual for a description of the GFI
program and information on how to create a UUT database for
GFI.

For More Information:

The "Overview of TL11" section of the Programmer's
Manual.
The "Guided Fault Isolation (GFI)" section of the
Programmer's Manual.

gfi

got0
statement

Syntax Diagram:

goto < label r

Description:

Causes program execution to jump to the beginning of the line
labeled by <label>.

The goto command should be avoided where possible (see the
Remarks section for this command).

Arguments:

label A statement label which exists in the
program. A label is always followed
by a colon (": ").

Example:

program test7

if y <> 24 then goto finish ! skips the lines
! from here to

a = a + l ! the label
b = b + l ! finish unless y
c = c + l ! is equal to
finish: ! decimal 24

end program

Remarks:

Normal execution of statements in a program proceeds in order
from one statement to the following statement. But the goto
command causes program execution to jump to the line with the
specified label.

In the preceding example, if y is not equal to 24, the statements
between the ifcommand and the label "finish" are not executed,
the goto command transfers program execution to the line
beginning with thefinish label.

No more than one line can be labelled with a particular name.
Labels must meet the requirements for variable names as
outlined in Section 2 of this manual, "Name Conventions." A
colon separates the label from the rest of the line, but is not part
of the label name.

The goto command should be avoided where possible; it is
provided as a last-choice alternative to other control statements.
A more orderly and logical flow of instructions can be achieved
by using loop . . . end loop blocks and if. . . end if blocks.

Several restrictions and caveats apply to the goto command:

The label specified by a goto command must mark an
executable command line somewhere in the current
definition block (program, function, handler, or exerciser).
A goto command cannot jump from one definition block to
another or from a program into an enclosed definition
block.

A goto command cannot jump to a line contained in a
loop for . . . end loop block.

A goto command cannot jump out of a loop for . . . end
loop block.

Related Commands:

if, loop

For More Information:

The "Overview of TL/1" section of the Programmer's
Manual.

haltuut
function

Syntax:

h a l t u u t ()

Syntax Diagram:

Description:

Terminates normal runuut operation, if it is active, and displays
any fault conditions that occurred during the runuut execution.

Example:

h a l t u u t (1

Remarks:

After executing runuut, you must invoke either haltuut or
waituut to regain control of the pod before executing other
statements that send commands to the pod. A haltuut command
is equivalent to waituut (0).

Related Commands:

runuut, waituut

For More Information:

The "Overview of TLI1" section of the Programmer's
Manual.

haltuut

handle

Syntax:
statement block

handle < f a u l t cond i t i on> [(<argname>
, <argname>))]

Syntax Diagram:

Description:

Specifies the beginning of a fault condition handler block.

Arguments:

fault condition Name of the fault condition to be
handled. (See Appendix G, "Handling
Built-in Fault Messages in TL/1
Programs," in this manual for a list of
built-in fault messages.)

argname Name of an argument for this handler
block.

Example:

handle my-handler (a , b, c)

end my-handler
! o r t h i s l i n e cou ld be simply end handle

handle

Remarks:

A fault condition handler is a sequence of statements which is
executed when a fault condition occurs. Fault condition handlers
localize the statements that deal with or respond to the
occurrence of a particular fault condition; without handlers, these
same statements would require duplication anywhere the fault
condition could occur (in some cases, almost anywhere in a
program). Handlers are used to acknowledge the presence of
fault conditions, inspect data about fault conditions, and make
decisions regarding fault conditions. A program or function can
provide handlers for fault conditions that may be raised during
execution. When a handler exists for a raised fault condition, the
normal execution of the program is temporarily suspended and
the handler is invoked.

You may write your own handlers in TL11 for any fault
conditions raised by built-in tests or Wl fault commands.

The fault name must be the same in both the handle statement
and the end statement. A fault handler has the name of the fault
condition it is intended to handle.

The argument list consists of argument names separated by
commas. If any arguments have default values, these values are
assigned in the declarations. The handle statement must include
all arguments named in the corresponding fault command, but it
can include additional arguments as well.

Unlike the scope of a variable name, which is static based upon
the block structure of a TL/1 program, the scope of a handler is
dynamic. The scope of a handler extends fiom the time at which
the containing block is entered until the containing block is
exited. If the block invokes another function, the handler
remains "active."

handle

Variables declared inside a handler are local unless explicitly
declared to be global.

When a fault condition handler encounters either a return
statement or its last statement the handler terminates, and
execution resumes at the statement following the fault command.
If the handler does not execute a fault command, the fault
condition is handled and disappears. In this case, the
termination status is "passes".

Related Commands:

abort, declare, end, execute, exercise, fails, fault, passes,
re$ault, return

For More Information:

The "Overview of TL/lM section of the Programmer's
Manual.
Appendix G , "Handling Built-in Fault Messages in TL/1
Programs," in this manual.

handle

special function
Syntax:

ieee channel <channel>
[, t imeout <t imeout i n t e r v a l >]
[, s t a t u s < s t a t u s b y t e va lue> I
[, e o i < e o i a s s e r t i o n f l a g > I
[, message < i n t e r f a c e message> I

Syntax Diagram:
Iwe channel < channel r . . .

.
, theout < timeout interval r

. . . *talus c stat- byte value r

, ool < eoi assertion /lag r I
. . .

, mowage < intertam message r

Description:

When the 9100A/9105A is configured as an IEEE-488
talkerfiistener, the ieee command is used to:

Setlclear the most significant bit of the serial poll status
byte.

When the 9100419105A is configured as an IEEE-488
controller, the ieee command is used to:

Issue IFC (Interface Clear).

Send DCL (Device Clear) to all bus devices or SDC
(Selected Device Clear) to all devices in a group.
Assert REN (Remote Enable), optionally addressing a
group of devices to listen, putting them in Remote State.
De-assert REN.

Send GTL (Go To Local) to a group of devices to put them
in Local State.

Send GET (Group Execute Trigger) to a group of devices
to trigger them.

ieee

For both configurations of the 9100A/9105A, the ieee command
is used to:

set the EOI Enable flag associated with an IEEE-488
channel, controlling EOI assertion on the last output byte
of any print command on the channel.
set the timeout interval associated with a channel.

If an UO error occurs while attempting to process an ieee
command (for example, a timeout error occurs), then the
io-error fault is raised, with numeric argument err-num
containing the error number and string argument err-msg. For
example, the following is a TL11 code fragment for an io-error
fault handler:

handle io-error (err-num, err-msg)
declare numeric err-num
declare string err-msg
print using "Error ?# : ? # l l , err-num, err-msg

end handle

Some of the operations described below are susceptible to
termination by timeout, while others are not. The former are
explicitly noted as being susceptible to timeout. If no mention is
made of timeout susceptibility, the operation is not susceptible.
When a timeout error occurs, the io-error fault is raised with the
ercnum and err-msg fault arguments set to indicate a timeout.

Arguments:

channel A mandatory numeric argument, which
must be a channel number returned by
the open command. The channel will
optionally have an IEEE-488 address
list associated with it. (See the
description of the open function for
details.) If so, the channel is said to be
open on a group of bus devices. If not,
the channel is said to be open on the
IEEE-488 interface.

ieee

status

message

An optional numeric argument, which
specifies the timeout interval to use for
any IEEE-488 bus operation on this
channel, in milliseconds. A value of
zero specifies an infinite timeout
interval; i.e., tirneouts are disabled.

An optional numeric argument, which
specifies the value to assign to the serial
poll status byte. Only the most
significant bit (bit 7) can be set from
TLI1. If bit 7 is setlcleared in this
argument, bit 7 in the serial poll status
byte is seth1eare-d. All other bits in the
argument are ignored.

This argument is applicable only when
the 9100Al9105A is configured as a
talkerllistener. If it is configured as a
controller, the status argument is
ignored.

An optional string argument, which
specifies whether EOI (End or Identify)
assertion on the last output byte of any
print command on this channel is
enabled (the argument value is "on") or
disabled (the argument value is "off').
The argument value is case-insensitive.

Even if last byte EOI assertion is
disabled, EOI is still asserted on any
termination character associated with
the channel when it was opened (see the
open command, described in this
manual for details).

An optional string argument, which
specfies a special-purpose interface
message or operation. This argument is
only applicable if the 9100A/9105A is
configured as a controller; if it is
configured as a talkerllistener, use of
this argument causes an error.

ieee

The message argument takes one of the following values. These
are interpreted case-insensitively:

ifc

clear

local

remote

The IFC line (Interface Clear) is
momentarily asserted for at least 100
microseconds.

If the channel is opened on the IEEE-
488 interface, UNT (Untalk), UNL
(Unlisten), and DCL (Device Clear) are
issued.

If the channel is opened on a group of
devices, UNT and UNL are issued
first, then each device in the group is
addressed to listen, then SDC (Selected
Device Clear) is issued.

Both forms of this operation are
susceptible to tirneout.

If the channel is opened on the IEEE-
488 interface, REN (Remote Enable) is
de-asserted.

If the channel is opened on a group of
devices, UNT and UNL are issued
first, then each device in the group is
addressed to listen, then GTL (Go To
Local) is issued.

Only the latter form of this operation is
susceptible to tirneout.

First, REN is asserted. If the channel
is opened on a group of devices, UNT
and UNL are issued and each device in
the group is addressed to listen.

If the latter step is performed, this
operation is susceptible to tirneout.

ieee

trigger If the channel is opened on a group of
devices, first UNT and UNL are
issued, then each device in the group is
addressed to listen, then GET (Group
Execute Trigger) is issued.

This operation is susceptible to timeout.

If more than one of the optional arguments are supplied, they all
take effect in the following order: eoi, timeout, status, and
message. If none of the optional arguments are supplied, the
ieee command does nothing.

The default initial values for a channel are zero for timeout and
off for eoi. The default initial value for the serial poll status byte
is the current value of the byte; that is, changes to the serial poll
status byte survive the execution of a TLJ1 program.

Example 1:

These examples illustrate operation as a talker~listener.

The following TLJ1 fragment sets, then clears, bit 7 in the serial
poll status byte:

ieee-chan = open device "/ieeem
ieee channel ieee-chan, status $80
ieee channel ieee-chan, status 0

The following W 1 fragment opens the IEEE-488 interface with
the termination character set to "nothing", then prints a single
record to the interface with three separate print using commands.
EOI assertion is disabled for the first two print using commands,
and turned on for the last one; as a result, EOI is asserted on the
last byte of the last print using command.

ieee-chan = open device "/ieeeW, term ""
ieee channel ieee-chan, eoi "off"
print on ieee-chan, using "?#", vl
print on ieee-chan, using "?#" , v2
ieee channel ieee-chan, eoi "on"
print on ieee-chan, using "?#" , v3

ieee

The following TU1 fragment opens the IEEE-488 interface with
the termination character set to linefeed, then perpetually inputs a
single line from the interface and echoes it back:

declare string s
ieee-chan = open device "/ieeeW, term "\OAW
loop

input on ieee-chan, s
print on ieee-chan, s

end loop

Example 2:

These examples illustrate operation as a controller.

The following TL11 fragment momentarily asserts IFC for at
least 100 microseconds:

ieee-chan = open device "/ieeeW
ieee channel ieee-chan, message "ifc"

The following TL11 fragments illustrate the two uses of the
"clear" message. The first one sends DCL to all devices on the
bus, while the second one sends SDC to a particular group of
devices:

! send DCL
ieee-chan = open device "/ieeeW
ieee channel ieee-chan, message "clear"

! send SDC to addresses 2, 3, and 4:10
! (primary address 4, secondary address 10)
ieee-chan = open device "/ieee/2,3,4:10m
ieee channel ieee-chan, message "clear"

The following TLI1 fragment asserts REN:

ieee-chan = open device "/ieeeW
ieee channel ieee-chan, message "remote"

The following TL11 function sends a hypothetical voltmeter a
command requesting a measurement, inputs the measurement,
strips the measurement of whitespace, verifies that the
measurement string represents a floating-point value, and returns

ieee

the value. If any I/O errors which result in the io-error fault
occur, they are handled locally.

Note that with this fragment a global variable is used to flag
whether I/O failed. In an application that uses this function, the
caller would examine this flag before attempting to use the return
value from get-rdg for anything. Also, note that the io-error
handler doesn't do much about the 110 error. In a real
application, the I/O error handling would be more sophisticated,
and have provision for retries, clearing the IEEE-488 bus, etc.

function get-rdg

handle io-error (err-num, err-msg)
declare
numeric err-num ! 1/0 error number
string err-msg ! 1/0 error message

global numeric term-chan ! terminal channel
global numeric io-failed ! 1/0 failed flag
end declare

io-failed=l
print on term-chan, using "Error ? # : ?#",
err-num, err-msg

end handle

declare
global numeric io-failed
global numeric term-chan
numeric d x c h a n
st ring dv-eas-string

end declare

io-failed = 0
! clear the "I/O failed" flag
term-chan = open device "/terml"
! open the error message channel

! open a channel to the DVM, which has IEEE-488
! address 1,
! using a linefeed character as the terminator
d x c h a n = open device "/ieee/lW, term "\OA1'
if (io-failed) then return (0.0)

ieee

! set the timeout on the DVM channel to 4
! seconds
ieee channel dxchan, timeout 4000
if (io-failed) then return (0.0)

! send the reading request to the DVM
print on dxchan, "rdg?"
if (io - failed) then return (0.0)

! input the measurement string
input on dxchan, dv-eas string
if (io - failed) then return (0 .O)

! this hypothetical DVM terminates readings with a
! carriage return, linefeed combination. The
! linefeed will have been removed, since it was
! specified as the termination character; however,
! dvm-meas-string will still have the carriage
! return. Strip it and any other whitespace via
! the 'tokenv function.
dv-eas-string = token str dv-eas-string, from 1
! verify that the measurement string is a
! floating-point number
if (isflt (dv-eas-string)) then
return (fval (d~m-meas~string))

else
io-failed = 1
return (0.0)

end if

end function

Related Commands:

open, print, input, poll

For More Information:

The "IEEE-488, 9100A-015" section of the Technical
User's Manual".
The "9100 Series Error Numbers" appendix in this
manual.

if (block form)
statement block

Syntax:

i f <condi t ion> then

Syntax Diagram:

If - c condition z - then

Description:

Specifies the beginning of an if block.

Arguments:

condition A logical expression.

Example 1:

! i f t h e v a r i a b l e " i n i t i a l i z e d " has t h e
! va lue 0, t hen . . .

i f no t i n i t i a l i z e d then
i = O
s t a r t = 0
s t o p = 255
i n c r = address-increment

end i f

Example 2:

i f b 0 t hen
i f a / b > 10 then ! b i g t e s t i s executed

execute b i g t e s t ! only i f bo th b <> 0
! and a / b > 10

end i f
end i f

if (block form)-1

if (block form)

Example 3:

! if the value of the variable "lower" is
! less than the value of the variable
! "upper", then perform the program/
! function "rangetest", using "lower" and
! "upper" as arguments.

if (lower <= upper) then
range-test (lower , upper)

! else perform the program/function
! "range-error" using "lower" and "upper"
! as arguments.

else
range-error (lower , upper)

end if

Example 4:

if lbit < 4 then
b = O

else if lbit = 4 then
b = l

else if lbit = 5 then
b = 2

else ! (if lbit > 5 then)
b = 3

end if

Remarks:

An if block executes a list of statement lines if a condition in the
if statement is true (non-zero). If the condition is true, execution
begins on the line immediately following the if statement. When
the controlled statements have been completed, execution
continues at the line following the end if statement.

If the condition is false, the condition of the first else i f statement
(if one exists) is evaluated, if the condition is true, the statements
controlled by the else if block are executed, then execution
continues at the line after the end i f statement. I f the condition of
the else i f statement is false, the condition of each following
else i f statement is evaluated in the same way.

if (block form)

If the condition of the if statement and all of the else if statements
are false, the statements controlled by the else block (if one
exists) are executed. If no else block exists, execution continues
at the statement following the end if.

NOTE

You may nest if statements within other i f
statements. TLII does not limit the number of i f
levels used.

Related Commands:

end, if (statement form)

For More Information:

The "Conditional Expressions" section in Section 2 of this
manual.
The "Overview of TL11" section of the Programmer's
Manual.

if (block form) -3

if (block form)

if (block form)-4

Syntax:

if (statement form)
statement

i f <condi t ion> then <statement l i s t>

Syntax Diagram:

I f - c condition > - then < stalemenl lisl>

Description:

Executes statement(s) under control of a condition.

Arguments:

condition A logical expression.

statement list One or more W1 statements, separated
by backslashes fi), all appearing on one
line.

Example 1:

i f x = 10 then a = a + 1

Example 2:

i f x = l O t h e n a = a + l \ b = b + l

Example 3:

i f x = 10 then a = a + 1 \ i f a = 11 then b = 3

if (statement form)-1

if (statement form)

Remarks:

A single-line if statement controls only the statements which
appear on a single line. The statements on the line are executed if
the condition is true; after the controlled statements have been
executed, execution continues on the following line. If the
condition is false, the controlled statements are not executed.

An if statement may appear within another if statement. In this
case, execution continues throughout the entire statement line,
until either the last statement on the line is executed, or one of
the conditions evaluates to false.

You may structure conditions so that under certain circumstances
they are not fully evaluated. For example, in the statement:

if (b <> 0) and (a/b > 10) t h e n x=l

the second condition must not be evaluated when b is equal to
zero, because it would cause a divide-by-zero error. To avoid
the potential error, you write:

if (b <> 0) t h e n if (a/b > 10) t h e n x=l

The first if statement controls all statements to its right. If the
first condition is false, the second condition is not evaluated.

Related commands:

i f (block form)

For More Information:

The "Conditional Expressions" section in Section 2 of this
manual.
The "Overview of TL/lW section of the Programmer's
Manual.

if (statement form)-2

input
statement

Syntax:

i n p u t [on <channel>,] < v a r i a b l e l i s t>

Syntax Diagram:

Input , c variable list z
L on cchannelz, 1

Description:

Reads data from the text file, serial port, keyboard, or other
interface associated with a specified channel, and stores it into
specified variables. The input command waits for characters to
be input.

Arguments: -
channel A numeric expression that identifies a

device open for input. (Default = the
first channel opened for "input" or
"update")

variable list List of variables in which to store input
data values.

Example 1:

i npu t on ichan, a , b, c
! reads i n t h r e e va lues from device on k h a n
! when en t e r ed , t h e s e va lues must be s e p a r a t e d
! by space c h a r a c t e r s

Example 2:

input startaddr, endaddr, addrincr
! reads in three values from
! operator's keypad
! provided a channel has been opened

Remarks:

Before using the input statement, the input variables must be
declared and the input device must be opened for input. The
input statement performs the following actions:

Suspends program execution until data appears on the
specified channel.
Reads data from the specified channel.

Stores the data in the specified variables.

If the channel is buffered, the input statement reads data from the
channel until it encounters the channel's termination character,
which usually defaults to a new-line character (OD hexadecimal
on most keyboards, the ENTER key on the operator's keypad).
If the channel is not buffered, the input statement suspends
execution until it reads a single character (any key code).

Space characters must be used to separate multiple input values
entered with an input command.

To input hexadecimal numeric data, use the input using
command.

input

If an 110 error occurs while attempting to process an input
command (for example, a timeout error while attempting to input
from an IEEE-488 device), the 'io-error' fault is raised, with
numeric argument 'err-num" containing the 9 1 OON9 1 O5A error
number and smng argument ' e r~msg ' containing a description
of the error. For example, the following is a TL/1 code
fragment for an io-error fault handler:

handle io-error (err-num, err-msg)
declare numeric err-num
declare string err-msg
print using "Error ? # : ?#", err-num, err-msg

end handle

If the input is obtained from a channel opened on either the
IEEE-488 interface or a device connected to the IEEE-488
interface, then buffered input can be terminated by either the
termination character associated with the channel or by the
assertion of EOI on the last input character. If input is
terminated by EOI assertion and the associated character is not
the termination character, then that character is included in the
input value.

Related Commands:

input using, open, print, poll, ieee

For More Information:

The "Overview of TLI1" section of the Programmer's
Manual.
The "Operator's Keypad Mapping to TL/1 Input,"
appendix in this manual.
The "Programmer's Keyboard Mapping to TL/1 Input,"
appendix in this manual.
The"9 100A/9 lO5A Error Numbers" appendix in this
manual.
The "IEEE-488, 9 100A-015" section of the Technical
User's Manual".

input using
statement

Syntax:

input using <format string> [, on <channel>],
<variable list>

Syntax Diagram:

input using cformatstringz , c variable list z -
L , on cdrannelz J

Description:

Reads data from a specified channel, compares it with an
expected format, and stores it in specified variables.

0 Arguments:

format string

channel

variable list

The string that defines the input format.
("buffered mode only.)

A numeric expression that identifies a
device open for input. (Default = the
first channel opened for "input" or
"update".)

List of variables in which to store input
data values.

Example 1:

input using "TITLE: # # # # # # # WR.PROT: ###",t,wp

! the input data:
! TITLE: prog 1 WR.PROT: YES
! produces the values:
! t = "prog 1 ", wp = "YES"

input using-1

input using

Example 2:

i n p u t u s i n g "& @ % #", a , b, c, d
! The i n p u t d a t a :
! 1 2 3 4
! p r o d u c e s t h e v a l u e s :
! a = l , b = 2 , c = 3 , d 5 4
! The f o l l o w i n g i n p u t d a t a p r o d u c e s a n e r r o r :
! 4 3 2 1
! b e c a u s e "4" i s n o t ma tched b y t h e " & "
! p i c t u r e , which e x p e c t s o n l y "1" o r "0"

Example 3:

i n p u t u s i n g " : # # # % # % # % # % # % # % # % # % # % # % " , a d d r , a , b ,
c, d, e, f , g , h , chksum

! The i n p u t d a t a :
! :100000010203040506078F
! p r o d u c e s t h e v a l u e s
! a d d r = 1000, a = 0, b = 1, c = 2,
! d = 3 , e = 4 , f = 5 , g = 6 , h = 7 ,
! chksum = 8F

Example 4:

i n p u t u s i n g " ? & ? @ ? % ? # ?^", a , b, c, d, f

! The i n p u t d a t a :
! 0101 100 100 32 1 .97
! p r o d u c e s t h e d e c i m a l v a l u e s
! a = 5, b = 100, c = 256
! d = 32, f = (f l o a t i n g) 1 .97
! The i n p u t d a t a :
! 011 2 5 11 9999 2.OE30
! p r o d u c e s t h e d e c i m a l v a l u e s
! a = 3, b = 25, c = 17,
! d = 9999, f = (f l o a t i n g) 2.OE+30

input using-2

input using

@ Example 5:

/

input using " # # ^ ^ ^ ###^^EEEEE", •’1, f2

! The input data:
! 3.2 32.33+100
! produces the floating-point values
! •’1 = 3.2, •’2 = 3.233+101

Remarks:

The input using statement requires that the input variables be
previously declared and that the input device has already opened
for input. The input using statement performs the following
actions:

Suspends program execution until data appears on the
specified channel.
Reads data from the specified channel.

Stores the data in the specified variables.

If an VO error occurs while attempting to process an input using
command (for example, a timeout error while attempting to input
from an IEEE-488 device), then the io-error fault is raised, with
numeric argument err-num containing the 9 lOOA/9 lO5A error
number and string argument err-msg containing a description of
the error. For example, the following is a TL/1 code fragment
for an io-error fault handler:

handle io-error (err-num, err-msg)
declare numeric err-num
declare string err-msg
print using "Error ? # : ?#", err-num, err-msg

end handle

input using-3

input using

If the input is obtained from a channel opened on either the
IEEE-488 interface or a device connected to the IEEE-488
interface, buffered input can be terminated by either the
termination character associated with the channel or by the
assertion of EOI on the last input character. If input is
terminated by EOI assertion and the associated character is not
the termination character, then that character is included in the
input value.

The input using statement is an extended form of the input
statement which uses format specifications which are provided
in format strings. Through format specifications, you can set
the expected number of characters of digits for each data value,
and the radix (hexadecimal, decimal, or binary) for numeric
data. You can also specify other data that must appear in the
input but is not actually required for storage into variables. An
error occurs when the number of input values does not match the
number of format pictures in the format specification.

A format string contains zero or more format pictures. A format
picture is a string that describes the format for a single data
value. Format pictures are one of two types: fixed-width and
variable-width. Fixed-width format pictures match each input
character with a format picture character, while variable-width
format pictures match as many input characters as possible in the
context of the data type for the format picture.

input using-4

input using

Fixed-width Formatted Input

A fixed-width format picture consists of zero or more "#"
characters (floating digit places), followed by one or more "%", tt@tt, It&tt, tt#tl, or ttAtt characters (fixed digit places,) which also
describe the radix. The format picture characters are defined
below:

Symbol Description

A floating digit or character place. If this
symbol is in the right-most place in a
numeric input format picture, the input is
interpreted in decimal radix. Otherwise,
this symbol is interpreted as a floating digit,
matching digit, or a space. For string
input, this symbol matches with any
character.

Required digit place for hexadecimal
numbers. This symbol, and any "#"
symbols to its left matches with a
hexadecimal digit.

Required digit place for decimal numbers.
This symbol, and any "#" symbols to its
left matches with a decimal digit.

Required digit place for binary numbers.
This character and any "#" symbols to its
left matches with a binary digit.

Required digit place for floating-point
numbers. A sequence of """ characters
may optionally be followed by a fixed
sequence of five "E" characters. For output
format pictures, this represents the
exponent field; here, it is provided merely
for symmetry with output format pictures.

input using5

input using

If the value is to contain more than one digit or character, the
picture must be extended to the left by "#" characters, one for
each additional digit or character. For example, the picture "@ "
represents a single-digit decimal number; the picture "###@"
represents a four-digit decimal number. The picture "#######"
represents a seven-character suing or a seven-digit decimal
number. The picture "%%%%" represents a four-digit
hexadecimal number with required leading zeros (OOFF).

If numbers in the input smng are not separated by non-numeric
characters, one of the required digit characters must appear as
the last character of the format picture. The two format pictures,
"####" and "###@", when combined, yield a format picture,
"#######@", which is interpreted as an eight-digit decimal
picture, not two four-digit pictures. If two pictures are needed,
use a space ("#### ####"), use the fixed digit characters
("###Yo###%"), or use two consecutive input statements.

Fixed-width input format checking for floating-point numbers is
less smct then it is for other data types. The number of input
characters implied by the width of the format pictures are
collected and checked to make sure that they represent a valid
smng representation of a floating-point number.

Variable-Width Formatted Input

Like a fixed-width format picture, a variable-width format
picture describes the format for a single data value. The
difference is that a variable-width format picture accepts as many
input characters as it can use to match the picture's data type. A
variable-width format picture consists of a single "?" character,
followed by a single character denoting the picture type. The
following special picture type characters are defined:

Match a variable-width string or decimal number.

% Match a variable-width hexadecimal number.

@ Match a variable-width decimal number.

input using-6

input using

& Match a variable-width binary number.

A Match a variable-width floating-point number

? Match a single "?" character.

If the picture type character is not one of the above, then the
format picture means "match one or more of the literal
character". For example, the input picturen?X" will match one
or more "Xu characters in the input. For variable-width literal
character matches, no assignment to input variables is
performed.

Note that it is not possible to match a variable number of "?"
characters; that is, the picture "??" implies a match of exactly one
"?" character.

Related Commands:

input, open, print using

For More Information:

The "Overview of TL/lM section of the Programmer's
Manual.
Appendix J "9100A/9105A Error Numbers".

The"9100A/9105A Error Numbers" appendix in this
manual.
The "IEEE-488, 9100A-015" section of the Technical
User> Manual".

input using-7

input using

input using-8

instr
function

Syntax:

i n s t r (< s t r i n g > , < s u b s t r i n g >)

i n s t r s tr < s t r i n g > , key < s u b s t r i n g >

Syntax Diagram:

lns t r e t r < string z , key < substring >

Description:

Returns the index number at which a sub-string appears in a
string; returns zero if the sub-string does not appear in the
string.

Arguments:

string String to be searched.

subsmng Sub-string to be searched for.

Returns:

The index number if the substring is found; zero if the sub-smng
is not found.

Example:

x = i n s t r (" e n t e r d a t a and address" , " d a t a ")
! t h e v a r i a b l e x i s set t o 7 .

instr

Remarks:

An index number is the number corresponding to a particular
character position within a character string. For example, the
index of "r" in "America" is 4.

isflt
function

Syntax:

isflt str <expression>

isflt (<expression>)

Syntax Diagram:

Description:

The isflt command is used to pre-test an expression for validity
as an argument to thefval co&and.

Arguments:

expression The string expression that is to be
tested.

Returns:

1 if the expression is a valid argument to fval, implying
thatfval will not report an error with the expression as its
argument

0 if the expression is not a valid argument tofval

Examples:

isflt ("~oo")
isflt ("1.0")

! returns 0
! returns 1

isflt

Remarks:

The isflt command is particularly useful for strings obtained by
the input command, which may be expected to be strings
representing valid floating-point numbers, but are not guaranteed
to be.

Related Commands:

fval, isval, token

isval
function

Syntax:

isval str <expression> [, radix <radix>]
isval (<expression>, <radix>)

Syntax Diagram:

lsval slr <expression >

,radix <radix>

Description:

The isval command is used to pre-test a set of arguments for
validity as arguments to the val command.

radix

The string expression which is to be
tested for representation of a valid
number in the indicated radix.

A numeric expression for the radix of
the interpreted number. Allowable
values for radix are 2, 8, 10 (default),
and 16.

Returns:

1 if the arguments are a valid set to val (implying that val
will not report an error with the given argument set).

0 if the arguments are not a valid argument set to val.

isval

Remarks:

The isval command is useful for strings obtained by the input
command, which may be expected to be strings representing
valid numbers, but are not guaranteed to be.

Examples:

isval ("f 00") ! returns 0
isval ("l", 2) ! returns 1
isval ("3", 2) ! returns 0
isval ("3", 10) ! returns 1

Related Commands:

val, isflt, token

Syntax:

len
operator

l e n < s t r i n g >

Syntax Diagram:

len c string r

Description:

Counts the number of characters in the string operand.

Arguments:

string String or string expression whose
length is to be determined.

Returns:

The number of characters in the string.

Example 1:

x = l e n "I/O f i n i shed" ! t h e v a r i a b l e x is
! s e t t o C (hex)

Example 2:

a = "Hello"
x = l e n a ! t h e v a r i a b l e x is

! s e t t o 5

len

level
function

Syntax:

l e v e l [device <device name>] [, p i n <p in number>]
[, t ype < type name>] [, r e f p i n < r e f p i n name>]

l e v e l (<device name>, <pin number>, < type name>,
< r e f p i n name>)

l e v e l ()

Syntax Diagram:

devlce < devicenamew

p l n < pin number w
type < type name w

Description:

Returns the synchronous level history or asynchronous level
history for one pin. The data can be requested either in terms of
an 110 module pin, a component pin, or the probe. This
command will return useful information only after an arm . . .
readout block has taken a measurement.

Arguments:

device name

pin number

type name

I/O module name, clip module name,
probe name, or reference designator.
(Default = "/probew)

Pin number.
(Default = 1)

"clocked" or "async".
(Default = "clocked)

level

refpin name Specify the device and pin in string
format. The refpin argument is used to
override the device and pin values.
(Default = "")

Returns:

A number that represents the level history:

0 - No levels clocked.
1 - Low.
2 - Invalid.
3 - Invalid, low.
4 - High.
5 - High, low.
6 - High, invalid.
7 - High, invalid, low.

Example 1:

mod = c l i p ref "u3", pins 40

arm device mod
execute s t i m g r o g
loop while ((checkstatus (mod) <> SF))
end loop

readout device mod

modlevel = l e v e l device "u3", pin 3, type
"clocked"

Example 2:

arm device "/probew

readout device "/probew
probelevel = l e v e l device "/probew, type "clocked"

level

Remarks:

The level function returns the synchronous level history or
asynchronous level history for one pin. The data can be
requested either in terms of an VO module pin or a component
pin.

The level can be requested for a specific pin of an VO module by
specifying the module name ("/modlW, "/mod2", etc.) as the
device argument. The pin argument is interpreted as an VO
module pin. Refer to Appendix E for tables that show what VO
module pin numbers to use for every possible clip module.

If a component name ("Ul", "U2", etc.) is specified as the
device argument, the pin argument is interpreted as a component
pin. The level function determines the 110 module and pin
number that corresponds to the specified component pin. The
named component must have been previously named in a clip
command.

If the smng value for refpin is not a null string (""), the values
of the device and pin arguments are ignored.

The level function should be called only after the execution of an
arm . . . readout block.

Related Commands:

arm, count, readout, sig

For More Information:

The "Overview of TLI1" section of the Programmer's
Manual.

level

loadblock
function

Syntax:

loadblock file <file name> [, format <format name>,
off set <exp>l

loadblock (<file name>, <format name> , <offset
expression>)

Syntax Diagram:

loadblock - flle < flle name r

- format - < formal name r ,

- offset - < expression r -
1 1 - -

Description:

Loads the contents of a file in a standard ASCII form (Motorola
S-Record format or Intel Hex format) into UUT or pod overlay
RAM. The file contains information about the starting address
and number of data bytes.

The value of the offset expression is interpreted as a 32-bit 2's
complement value and added to the address in each record of the
data file, to obtain the load address.

Arguments:

file name The name of the file containing the
required data.

format name The ASCII format in which the data
was previously stored. Either "intel" or
"motorola".
(Default = "motorola".)

offset This value is added to each address in
the data file to obtain the load address.
(Default = 0.)

loadblock

Examples:

loadblock file "test-lcd", format "motorola"

loadblock ("pgml", "motorola", $10000)

Related Commands:

readblock, writeblock

For More Information:

The "Overview of TL/lM section of the Programmer's
Manuul.

log
function

Syntax:

log base <expression I>, num <expression 2>

log (<expression I>, <expression 2>)

Syntax Diagram:

log - base < expression 1 > , num <expresslon2r

Description:

Computes the logarithm of the floating-point number argument
value in the base specified by the floating-point base argument
value.

Arguments:

expression 1 The floating-point value to use as the
base while computing the logarithm.

expression 2 The principal argument (the floating-
point value) to the logarithm
computation.

Returns:

The floating-point logarithm of expression 2 in the specified
base (expression 1).

Examples:

f = log base 10.0, num 100.0 ! result is 2.0
f = log (2.0, 64.0) ! result is 6.0

Remarks:

If any of the following is true, an error will result:

the base argument value is less than or equal to 0.0.

the num argument value is less than or equal to 0.0.

the base argument value is equal to 1 .O.

Related Commands:

pow, natural

loop
statement

@ Syntax:

loop while <condition>

loop until <condition>

loop for <variable> = <expression 1> to
<expression 2> [step <expression 3>]

loop

Syntax Diagram:

loop

to <expression 2 >

step <expression 3 >

Description:

Specifies the beginning of a loop block.

Arguments:

condition A logical expression which controls
loop termination.

variable A variable; used as an index.

expression 1 An integer expression for the lowest
value in the range.

expression 2 An integer expression for the highest
value in the range.

expression 3 An integer expression which specifies
the increment after each loop iteration.
(Default = 1)

Example 1:

E s t a b l i s h a loop us ing t h e v a r i a b l e "a" f o r
c o n t r o l . The s ta tement w i th in t h e loop
block, i n t h i s example "a = r ead (p o r t a) " i s
r epea t ed u n t i l t h e v a r i a b l e "a" has a non-
ze ro v a l u e . I n t h e "a = read (p o r t a) l1

s t a tement , "a" i s set t o t h e va lue of t h e
d a t a read from t h e add re s s s p e c i f i e d i n t h e
v a r i a b l e "por ta" .

loop while a = 0
a = read (p o r t a)

end loop

Example 2:

b = O
loop u n t i l (a = $FF)

a = r ead (b)
b = b + l

end loop

! "b" i s set t o zero .
! "a" i s set t o d a t a read

! from addres s "b".
! b i s incremented by 1.
! t h e loop r e p e a t s u n t i l
! "a" (which i s read
! from b) o b t a i n s t h e
! va lue FF.

loop

Example 3:

l o o p f o r i = 1 t o 5 s t e p 2

end l o o p

! e s t a b l i s h l o o p c o n t r o l w i t h
! v a r i a b l e i. Each t i m e t h a t
! e n d l o o p i s reached , t h e
! v a r i a b l e i i s inc remented by
! 2 . T h i s p r o c e s s c o n t i n u e s
! u n t i l i i s g r e a t e r t h a n 5 .
! Then, l o o p t e r m i n a t e s .

Remarks:

The loop block executes a list of statement lines repeatedly under
control of a condition. The condition controls one of the
following:

Continuation.

Termination.

Number of iterations.

The loop . . . while block repeats the controlled statements as
long as a condition is true. The condition is evaluated first. If it
is true, the block is executed and the condition is evaluated
again. If the condition is false at any time it is evaluated,
execution continues with the statement on the line following the
end loop statement.

The loop . . . until block repeats the controlled statements until
an exit condition becomes true. The condition is evaluated first.
If it is false, the block is executed, and the condition is evaluated
again. If the condition is true at any time it is evaluated,
execution continues with the statement on the line following the
end loop statement.

The loop . . .for block repeats the controlled statements for each
value of an index variable within a specified range, after which

loop

execution continues at the line following the end loop statement.
The index variable must be a numeric (integer).

The step expression is an optional segment of the loop . . .for
block which indicates how much to add to the loop control
variable after each iteration of the loop.

The value of the index variable is undefined outside of the block.

A loop block with no termination condition repeats the controlled
statements indefinitely.

Related Commands:

end

For More Information:

The "Overview of TLI1" section of the Programmer's
Manual.

Isb
operator

Syntax:

lsb <numeric expression>

Syntax Diagram:

Isb < numeric ex~ression r

Description:

Returns the index of the least-significant set bit in the operand.

Arguments:

numeric expression Operand from which to determine the
least-significant bit.

Returns:

An index number which ranges from 0 to 3 1 (where an index of
0 corresponds to the least-significant bit).

Example:

v = $FA ! sets the variable v to hexadecimal FA
x = lsb v ! the variable x is set to 1

Remarks:

A numeric expression that evaluates to zero causes an error since
no bits are set.

Related Commands:

msb

Isb

mid
function

Syntax:

mid s t r < s t r i n g > , from < s t a r t pos i t i on> ,
l e n g t h < length>

mid (< s t r i n g > , < s t a r t p o s i t i o n > , < length>)

Syntax Diagram:

mld - str <string > , from <staflposirion > , length <length > -

Description:

Extracts a new string of the specified length from the given
string beginning with the character at the specified index. The
sum of the start position and the length number cannot exceed
the number of characters in the string plus 1.

Arguments:

string String or string expression from which
to perform extraction.

start position Integer expression. The left-most
character of the string is position
number 1.

length

Returns:

The extracted string .

Integer expression.

mid

Example:

x = m i d s t r "data 56" , f r o m 6 , l e n g t h 2
! t h e var iable x i s set
! t o "56"

Syntax:

msb
operator

msb <numeric expression>

Syntax Diagram:

msb < numeric expresshm >

Description:

Returns the index of the most-significant set bit in the operand.

Arguments:

numeric expression Operand from which to determine the
most-significant set bit.

Returns:

An index number which rages from 0 to 31 (where an index of 0
corresponds to the least-significant bit).

Example:

x = msb $A ! the variable x is set to 3

Remarks:

A numeric expression that evaluates to zero causes an error since
no bits are set.

Related Commands:

lsb

msb

natural
special function -

Syntax:

n a t u r a l e

n a t u r a l p i

Syntax Diagram:

natural I.: I
Description:

Returns the floating-point value of a selected natural constant.

Argument:

The natural function takes a single symbolic argument,
specifying which natural constant is aesireh. This arg;ment is
actually an argument name that does not take an associated
value. This means you will usually need to surround the natural
command with parentheses to avoid accidentally associating a
value with it, as demonstrated in the examples below.

Choose one of the arguments:

e Specifies the value of e (for use with the log function to
compute natural logarithms).

pi Specifies the value of pi.

Examples:

t h e t a = n a t u r a l p i ! t h e t a i s set t o p i
t h e t a = (n a t u r a l p i) /2 .0 ! t h e t a i s s e t t o p i / 2
f = l o g base (n a t u r a l e),num 3.0

! f i s s e t t o n a t u r a l logar i thm of 3.0

natural

Remarks:

The natural function allows access to useful natural constants to
maximum precision, without having to look them up and type
them in by hand.

Related Commands:

log, sin, cos, tan

next
statement

Syntax:

n e x t

Syntax Diagram:

next

Description:

Terminates a for . . . next block.

Example:

f o r k = 1 t o 100 ! b e g i n s a f o r ... n e x t b l o c k

n e x t ! ends a f o r ... n e x t b l o c k

Remarks:

The for . . . next block is provided for ANSI compatibility, but
the recommended TL/1 structure is the loop for . . . end loop
block.

Related Commands:

end, for, loop

For More Information:

The "Overview of TL/lU section of the Programmer's
Manual.

next

open
special function

Syntax:

open device <terminal name> [, as <as>]
[,mode <mode>] [,term <termination char>]

open device <file name> [, as <as>]
[, mode <mode>] [, term <termination char>]

open device <port name> [I, <option keyword>
<option value>) 1 [, as <as>] [, mode <mode>]
[,term <termination char>]

open device <window name> [I, <option keyword>
<option value>)] [, as <as>] [, mode
<mode>] [,term <termination char>]

open device <ieee-488 name> [, as <as>]
[,mode <mode>] [,term <termination char>]

open 0

Syntax Diagram:

open 1

- mode <mode >
- term < termination char >

- devlce < terminal name >

€
< file name >
< port name >

< window name >

- < option keyword > < oprion value > -
A A
T Y

- < option keyword > < option value > -
A A
T T

open

Description:

Connects the program to a serial port, terminal, text file, or other
interface for input or output by allocating the device to the
program and returning an I/O channel number. It also sets
parameters for serial ports and windows.

Arguments:

device Terminal name:

"/term 1 " for the operator's
interface.

"/term2" for the
programmer's
interface.

File name:

The name of any text file enclosed
in quotes.

Port name:

"/port1 " for RS-232 port1
"/po&" for RS-232 port2

Window name:

"/terml/win" for operator's
display.

"/winv (or
"term2lwin") for monitor.
(Default = "/term1 ")

open

IEEE-488 interface or device name:

mode

*'/ieee** for the IEEE-488
interface.

"/ieee/address list" for one or more
devices attached to the
EEE-488 interface.

where address list is a list of comma-separated
EEE-488 addresses. Each address is either a
single radix 10 number indicating the device
address or a pair of numbers separated by a
colon character, indicating the primary and
secondary addresses of the device. For
example:

"heeel 1 " for the device at address 1.

"/ieee/2,4: 10" for the group consisting of
the device at address 2 and
the device with primary
address 4 and secondary
address 10.

"output", "update", "input", or "append".
(Note: "update" is not allowed for file names.)

Default for terminal names: "update"
Default for file names: "output"
Default for port names: "update"
Default for window names: "update"
Default for EEE-488: "update"

"buffered" or "unbuffered".
(Default = "buffered")

The mode argument determines how newline
characters are translated by TL11 print, print
using, input, or input using commands for
serial ports, and how string values are input.

open

term The termination character string argument
specifies the termination character to associate
with the channel. The length of the string must
be less than or equal to one character. If the
length is zero, no termination character is
associated with the channel. The termination
character is used to mark the end of input
records and is appended to printed expressions.

If the term argument is not supplied, the
termination character default is the newline
character. An exception to this is an IEEE-488
channel, where the default is the linefeed
character.

The following option keywords apply only if the device is a
window:

Option Option
Keyword Value(s)

XO%, YOrg Numeric expressions for the location of the
upper left-hand corner of the window in
characters.

Default values: xorg = 0
yorg = 0

xdim, ydim Numeric expressions for the size of the
window in characters.

Default values for operator's display:
xdim = 42
ydim = 3

Default values for monitor:
xdim = 80
ydim = 24

open

xscale, yscale Numeric expressions for the full-scale
coordinates for objects to be displayed by a
window. The maximum value for xscale and
for yscale is 10000.

Default values:
xscale = loo0
yscale = 1000

border A string expression for the title to be centered at
the top of the border. If the string expression
is a null string (""), the border will not have a
title.
(Default: no border)

The following option keywords apply only if the device is an
RS-232-C"serial port:

Option Option
Keyword Value(s)

speed Baud rate: 19200, 9600, 4800, 2400, 2000,
1800, 1200,600,300, 134, or 1 10.

bits Number of data bits: 5, 6,7, or 8.

stop Number of stop bits: 0, 1, or 2 (0 represents
1.5 stop bits).

parity "even", "odd", or "none".

stall Stall/Unstall control: "on" or "off'.

cts Clear-to-Send handshake: "on" or "off'.

autolf Auto linefeed: "on" or "off '.

Example 1:

i channe l = open dev ice "hexdata", a s " input"

Example 2:

f i l e 2 = open dev ice " /dr l / rombytes" , a s "output"

Example 3:

p l = open dev ice " / p o r t l W , speed 1200, b i t s 8,
p a r i t y "even"

Example 4:

! Open a window on t h e monitor w i th i t s o r i g i n
! a t (20,6) and wi th a dimension of 40 by 12
! (c e n t e r e d on t h e d i s p l a y) . F u l l - s c a l e
! c o o r d i n a t e s of t h e o b j e c t s t o be d i s p l a y e d
! i n t h e window a r e t o be (1000, 1000) .

channel = open dev ice "/winw, xorg 20, yorg 6,
xdim 40, ydim 12, x s c a l e 1000, y s c a l e 1000

Remarks:

Input and output are handled through I/O channels. An 110
channel is a connection between W1 and the operating system.
You create an I/O channel with the open command before
conducting any input or output operations. When
communication to an I/O channel is complete, you close the
channel using the close command. Attempted access to a
channel that has not already been opened results in a run-time
error.

Typically, you open one channel for each device that requires
input or output. You may open more than one channel to the
same device, but this action is not recommended as it may result
in non-standard operation.

open

The minimal open statement:

open 0

is used to open a channel to the operator's display and keypad
for update. In this case, you need not specify the channel in
subsequent print and input commands. Some other forms of the
minimal open command include:

open device "/term2" ! programmer's i n t e r f a c e
open device " / p o r t l W ! RS232C p o r t #1
open device " /por t2" ! RS232C p o r t #2
open device "/ieeeW ! IEEE-488 i n t e r f a c e
open dev ice "/ ieee/lW ! IEEE-488 dev ice a t

add re s s 1

In these cases, channel specification with print or input is also
optional.

You may open channels to the programmer's monitor and
keyboard, the operator's display and keypad, the two RS-232
ports, to text files on the hard or floppy disk drives to the EEE-
488 interface, and to devices attached to the EEE-488 interface.
Special rules apply to input and output depending on the device
you are using. These rules are summarized below:

Operator's Display and Keypad - to open a channel
to the operator's interface, specify "/terml" as the device
name. TL/1 accesses the operator's display as a 3-line by
42-column text area and escape sequences for display
attributes are recognized.

Input is read from the operator's keypad, including the soft
keys and optional foot pedal (via the external switch
interface). In the default line-buffered mode, the keypad
alpha lock is engaged which causes each key press to
return the alphabetical representation after the ENTER key
is pressed. In the unbuffered mode, characters are sent to
TL/1 immediately. If update mode is specified, input
characters automatically appear on the display. The
CLEAR key erases the keystrokes in the input buffer and
on the display allowing for re-entry.

Monitor and Programmer's Keyboard - to open a
channel to the programmer's interface, specify "Aerm2" as
the device name. TL/l accesses the monitor through a text
window, which becomes active until the TLI1 program
completes execution. TL/1 accesses the monitor as an
ANSI 3.64 compatible terminal. See Appendix B,
"Control Codes for Monitor and Operator's Display," for
more information. If a program which uses the monitor as
an output channel is executed under the debugger, the
message window will cover the debugger window.

Input is read from the programmer's keyboard. In line-
buffered mode, characters are stored until the Return key is
pressed. In unbuffered mode, characters are sent to TL/1
immediately. If update mode is specified, input characters
automatically appear on the display, and the rubout key is
used to erase characters before they are sent to TL/1. In
addition, typing Ctrl-U will erase all the characters on a
line and typing Ctrl-R will reprint a line. Tabs are
converted to sequences of spaces.

Windows - to open a channel to a window, specify
"/terml/win" as the device name for a window on the
operator's display and "/winu (or "/term2/win") as the
device name for a window on the monitor. These
extensions allow window operations to be performed on
/term1 and /term2 since they are actually implemented as
windows covering each display.

A window is created with the open command. This allows
normal print and input to be done on windows just as it is
done on any other display device. Windows are permitted
to overlap each other. What is displayed is determined by
the order in which the windows were created. A new
window is always on top of all the other windows. An
existing window may be moved to the front or the back
using the winctl command. The winctl command also
permits making a window invisible by "hiding" it, and
making an invisible window visible by "unhiding" it.

open

The location c
specified by
specified by x
displayed in
yscale. All rt
sizes of object
the full-scale
xscaleand ysc
is (500,500).
only part of th

)f the upper, left-hand comer of a window is
xorg and yorg. The size of a window is
;dim and ydim. The size of the object to be
the window is controlled by xscale and
:ferences to locations inside a window and
:s displayed in a window are made relative to
: coordinates specified. For example, if
ale are both 1000, the center of the window
If the object size is larger than the window,

e object will be visible at any given time.

All normal print and input statements operate on a
window. Doing input on a window device open in update
or read mode will cause input from programmer's
keyboard (in the case of a window on the monitor) and
from the operator's keypad (in the case of a window on the
operator's display). Each window is an ANSI terminal
with all of the escape sequences and control codes active as
defined in Appendix B.

RS-232-C Ports - to open a channel to one of the two
RS-232-C ports, specify either "Iportl" or "Iport2" as the
device name.

When you open a port for input in buffered mode,
characters are held until a carriage return character
(hexadecimal OD) is read. Upon reading the carriage
return, the input is sent to TL11. In unbuffered mode,
characters are sent to TL/1 immediately.

When you open a port for update, the input characters are
immediately echoed as output. If a delete character
(hexadecimal 7F) is read as input, the last character is
deleted and a backspace (08), space (hexadecimal 20),
backspace (08) sequence is sent as output. If Ctrl-U is
read as input, the input line is deleted. If Ctrl-R is read as
input, all input since the last carriage return is re-sent as
output. When a port is opened in any mode other than
update, characters are not echoed, and the delete, Ctrl-U,
and Ctrl-R characters have no special effect.

open

In both buffered and unbuffered mode, when XONIXOFF
flow control is enabled, Ctrl-S is used to stall the output
and Ctrl-Q is used to restore its flow.

IEEE-488 Interface and Devices - When the
9100A19105A is configured as an IEEE-488 talker/listener,
the appropriate way to open the IEEE-488 interface is to
open "Iieee". Since the 9 100Al9105A is not a controller
and cannot address other devices to listen or talk, IEEE-
488 device name arguments containing an address list (e-g.
"Iieeell", "/ieee/2,4:2") are not relevant to operation as a
talker~listener. Values printed to and input from the IEEE-
488 interface are sent to and received from other devices
on the IEEE-488 bus. It is the responsibility of the
controller to ensure that the 9100N9105A is addressed to
listen or talk at the appropriate times.

When the 9100A/9105A is configured as a controller, the
IEEE-488 interface may be opened by opening device
name "Iieee". A channel to a group of devices attached to
the bus may be opened by opening device name
"lieeeladdress list", where address list is a comma-
separated list of IEEE-488 addresses (described in the
Arguments section above). The former form of device
name is principally useful for IEEE-488 bus control via the
ieee command, while the latter form is useful for access by
the print, input, poll, and ieee commands.
Text Files on Disk - to open a channel to a text file on a
disk, specify the file name as the device name. Text files
may be opened:

- as output: this is the default. If the file named by the
device <file name> option already exists, it is truncated to
zero size; otherwise a new (empty) file having the specified
name is created.

- as append: the file named by the device <file name>
option is opened to permit print commands to place new
data after the existing file contents. The file must already
exist or an error will be reported.

open

- as input: the file named by the device <file name> option
must already exist, or an error is reported. The next input
command on the channel will read data starting at the
beginning of the file.

It is an error to have more than one channel open to a
particular file at any given time. It is also an error to open
a text file for both read and write access at the same time or
to open a text fde as "update."

Related Commands:

close, draw, draw ref, draw text, input, input using, poll, print,
print using

For More Information:

The "Overview of TL11" section of the Programmer's
Manual.
The "Control Codes for Monitor and Operator's Display,"
appendix of this manual.

The "Operator's Keypad Mapping to TL11 Input,"
appendix in this manual.
The "Programmer's Keyboard Mapping to TLI1 Input,"
appendix in this manual.
The"9100Al9105A Error Numbers" appendix in this
manual.
The "IEEE-488, 9100A-015" section of the Technical
User's Manual".

open

passes
operator

Syntax:

<invocation> passes

Syntax Diagram:

c name> - passes

Description:

Tests the termination status of a called program or function. The
passes operator evaluates as true if the called function or
program ends with a "passes" status and as false otherwise.

Arguments:

Program or function call.

if testbus addr $8000 passes then y = 1

Example 2:

if testramfull addr $1000, upto $1FFF passes then
x = l

Remarks:

Termination status indicates whether or not a UUT passes
functional tests. Termination status is revised for every
invocation.

passes

Termination status can be:

passes represents completion of a test without any
unhandled fault conditions. The UUT is fiee
from any faults that the test can detect.

fails represents the existence of one or more
umepaired faults at the end of test execution.

A program that runs to completion without detecting any faults
indicates that the UUT passes. Detection of a fault by the
program (or any programs it calls) affects the termination status
of the program. Any unhandled, unexercised fault condition
causes the program to indicate that the UUT fails. Any fault
condition that is exercised causes the program to indicate that the
UUT fails if the last full iteration of the exerciser detected a fault
and allows the program to indicate a "passes" if the last full
iteration of the exerciser did not detect a fault. The termination
status of a program is accumulated in the program that called it,
so that if any called programs indicated a failure, the calling
program also indicates that the UUT fails.

A fault condition can be handled by a block of statements called
a fault condition handler. The fault condition handler has access
to the arguments of the fault and the global variables of the test
program. When a fault condition handler encounters either a
return statement or its last statement the handler terminates, and
execution resumes at the statement following the fault command.

If the handler does not execute a fault command, the fault
condition is handled and disappears. In this case, the termi-
nation status is "passes".

A fault command with no fault name or arguments
unconditionally sets the termination status to "fails."

When a refault or a fault command with a fault name is executed,
the termination status is affected by the presence of other
handlers or exercisers for the fault condition.

-
passes

Related Commands:

execute, exercise,fault,fails, handle, if, refault, while

For More Information:

The "Overview of TL/1" section of the Programmer's
Manual.

passes

podinfo
special function -

Syntax:

podinfo addr
podinfo upto
podinfo addrinc
podinfo datawidth
podinf o datamask
podinfo addrmask
podinfo read
podinf o wri te
podinfo run
podinfo busaddr

Syntax Diagram:

podlnfo addr
upto
addrlnc
datawldth -
datamask-
addrmask -
road
wrlto
run
busaddr -

Description:

Returns the requested information about the current space.

Options:

addr Returns the lowest valid address in
the current space. All valid addresses
in the current space are greater than or
equal to this number.

Returns the highest valid address in the
current space. All valid addresses in
the current space are less than or equal
to this number.

podinfo

addrinc

datawidth

datamask

addrmask

read

write

run

Returns the minimum valid address
increment for the current space. All
valid address increments are multiples
of this number.

Returns the width, in bits, of the data
words in the current space.

Returns a bitmask with bits set for the
valid data bits in the current space.

Returns a bitmask of valid address
bits. Note the least significant couple
of bits may not be set if addrinc is
greater than one.

Returns 1 if read is permitted in the
current space and 0 otherwise.

Returns 1 if write is permitted in the
current space and 0 otherwise.

Returns 1 if run UUT is permitted in
the current space and 0 otherwise.

Returns the default bus test address. busaddr

Returns:

A number is always returned.

Examples:

function testme (addr, upto)

if addr < (podinfo addr) then fault\return
if addr > (podinfo upto) then fault\return

testramfast addr addr upto upto,
addrstep 2

end function

podinfo

Related Commands:

setspace, getspace, sysspace, podsetup, sysaddr, sysdata

For More Information:

The "Overview of TL\1 " section of the Programmer's
Manual.

Supplemental Pod Information for 910019105A User's
Manual.

podinfo

podsetup
special function o j r)

Syntax:

podsetup (<op t ion keyword> <opt ion va lue>]

Syntax Diagram:

podsetup < option keyword > < option value >

A 1 - -

Description:

Accesses the pod to enable or disable reporting of faults directly
sensed by the pod hardware.

Arguments:

O~tion Option
Value(s)

'report power' "on" or "off".
Enables or disables reporting of bad
power supply level.

'report forcing' "on" or "off".
Enables or disables reporting of active
forcing-input lines.

'report intr' "on" or "off".
Enables or disables reporting of active
interrupt lines.

'report address' "on" or "off".
Enables or disables reporting of
undrivable address-output lines.

poasetup

'report data' "on" or "off".
Enables or disables reporting of
undrivable data bus lines.

'report con troll "on" or "off".
Enables or disables reporting of
undrivable control-output lines.

'report special' "on" or "off".
Enables or disables reporting of special
pod errors.

'enable string' "on" or "off".
Enables or disables a pod-dependent
forcing line. The enable phrases all
begin: 'enable ' and end with a pod-
dependent string.

timeout

option

<expression>
Changes the timeout time. The
expression must be numeric.

<value>
A pod-dependent setup option. The
option and value are defined by the pod
data file.

Example 1:

podsetup ' r e p o r t power' "on"

Example 2:

podsetup ' enab le ready ' " o f f n

Example 3:

podsetup t imeout 1 0 0 0

Example 4:

podsetup ' r e p o r t i n t r ' "off ", r e p o r t power "of fw

podsetup

Remarks:

The podsetup function may be written in keyword notation only.

For More Information:

The "Overview of TL/lW section of the Programmer's
Manual.
Supplemental Pod Information for 91 OOA/9l O5A Users
Manual.
The Fluke pod manual for the microprocessor you are
using.

podsetup

Syntax:

poll
function

p o l l channel <channel>, event <condi t ion>

p o l l (<channel>, <condi t ion>)

Syntax Diagram:

p o l l channel <channel> , event <condition>

Description:

The poll function allows you to examine the status of a device
for certain conditions. For most conditions, the poll function
returns a 1 if the condition is present, a 0 if it is not.

a Arguments:

channel An expression which identifies an open
channel.

condition "input", "output", "blocked", "errors",
"break", or "srq".

"input" - One or more characters are
available on an input channel. If the
input is a file, the end-of-file character
has not been reached. If the specified
channel is not open for input, a 0 is
returned.

"output" - The output buffer is empty
on a serial channel open for output. If
the channel is not open for output or is
not a serial channel, a 0 is returned.

poll

"blocked" - Output to a serial device is
blocked (suspended) waiting for
necessary protocol signals (as in
CTSIRTS).

"errors" - Parity, framing, or overrun
errors have occurred on a serial channel
open for input.

"break" - A break character has been
detected on the serial channel open for
input.

"srq" - (IEEE-488 channels only) If the
channel is open on the IEEE-488
interface, then the poll command
returns 1 if a device is asserting SRQ
(Service Request) on the IEEE-488
bus, and 0 if no device is asserting
SRQ. If the channel is open on a group
of devices, a serial poll is performed on
the first device in the address list, and
the resulting serial poll status byte is
used as the return value of the poll
command. (The 9 lOOA19lOSA must be
configured as a controller in order to
conduct a serial poll.)

If an 110 error occurs while attempting to process the poll
command (for example, a timeout error occurs while attempting
to perform a serial poll on an IEEE-488 device), then the
"io-error" fault is raised with numeric argument err-num
containing the 9100A/9105A error number and string argument
ercmsg containing a description of the error. For example, the
following is a TLI1 code fragment for an io-error fault handler:

handle io-error(err-num, err-msg)
declare numeric err-num
declare string err-msg
print using "Error ? # : ? # ' I , err-num, err-msg

end handle

0 Returns:

1, if condition exists.

0, if condition does not exist.

Note: The "srq" condition can return the result of performing a
serial poll, as discussed above.

Example:

l oop while (p o l l channel ichan, event " input") = 0
wai t t i m e 1000 ! wai t f o r i n p u t

end loop

Related Commands:

open

For More Information:

The "Overview of TLI1" section of the Programmer's
Manual.
The "9 lOOA/9 lO5A Error Numbers" appendix in this
manual.
The "IEEE-488, 9 100A-015" section of the "Technical
User's Manual".

poll

pollbutton
function +-+

Syntax:

pollbutton ()

Syntax Diagram:

pollbutton (1

Description:

Determines if any 110 module or probe button presses are
currently queued.

Returns:

1, if an VO module or probe button is queued.

0, if the condition does not exist.

Example 1:

! Poll for any 1/0 module or probe button
sts = pollbutton 0
if (sts = 1) then

readbutton ()
end if

Remarks:

When using the READBUTTON TL/1 function, you may want
to know before the function is executed, whether or not an VO
module or probe button has been pressed. The POLLBUTTON
TL/1 function determines if there is at least one queued button
press from the VO module or the probe.

Related Commands:

clip, probe

pollbutton

For More Information:

The "Overview of TL11" section of the Programmer's
Manual.

polluut
function -*

Syntax:

p o l l u u t ()

Syntax Diagram:

polluut - ()

Description:

Determines whether the pod is executing instructions in the
RUNUUT mode.

Returns:
1, if the pod is executing instructions in RUNUUT mode.

0, if the pod is not executing instructions in RUNUUT mode.
This could be caused by any of the following reasons:

The pod wasn't put into RUNUUT mode.

The pod has halted RUNUUT execution after reaching a
breakpoint.

A data compare equal (DCE) condition has occurred in an
VO module.

Examples:

program look

runuut addr SFFFFFFO
compare dev ice "/modl", p a t t " 1 1 0 1 1 1 0 1 "

(example is cont inued on t h e next page)

polluut

loop whi le p o l l u u t () = 1
execu te io-stimulus () ! a s t imu lus r o u t i n e

! you have w r i t t e n t o
! e x e r c i s e t h e 1/0
! p o r t s of your UUT

end loop

end program

Related Commands:

compare, runuut, waituut

For More Information:

The "Overview of TL11" section of the Programmer's
Manual.

POW
function

Syntax:

pow num <expression I>, power <expression 2>

pow (<expression I>, <expression 2>)

Syntax Diagram:

pow - nu m < expression 1 > - , power < expression 2 >

Description:

Computes the value of one argument raised to the power of the
other argument.

Arguments:

expression 1

expression 2

Returns:

A floating-point number.

Examples:

The floating-point value to raise
by the power argument value.

The floating-point power
argument value.

f = pow num 3.0, power 3.0 ! result is 27.0
f = pow (6.0, 1.0/3.0) ! result is cube root

! of 6.0

Remarks:

If any of the following is true, an error will result:

Both expression 1 and expression 2 are equal to 0.0.

The expression 1 value is negative.

Also, overflow errors may occur for certain ranges of argument
values which cause excessively large returned values.

Related Commands:

pretestram
function
+m+

Syntax:

pretestram addr <addr>, upto <upto>, mask <mask>,
addrstep <addrstep>

pretestram (<addr>, <upto>, <mask>, <addrstep>)

Syntax Diagram:

pretestram - addr < addr> - , upto < upto > ...

... - , mask <mask> - , addrstep <addrstep>

Description:

Performs a very fast pretest of RAM to find any simple faults
such as a totally dead memory chip, stuck address lines, or stuck
data lines.

Arguments:

addr Starting address.

upto Ending address.

mask Bit mask for data bits to test.

addrs tep Address increment.

Example:

if pretestram addr 0, upto SFFFE, mask SFFFF,
addrstep 2 passes then

! If pretestram passes, do your customized
! test (or Pod Quick test) here.

(example is continued on the next page)

pretestram

! If your test finds an error, then execute
! diagnoseram, using the values for
! faultaddr, expdata, and data discovered by
! your program.

else

! No need to program anything. When
! pretestram fails, it has full diagnostics.

end if

Remarks:

The action of prestestram is included in testramfast and
testramfull.

Related Commands:

diagnoseram, testramfast, testramfill

For More Information:

The "Overview of TL11" section of the Programmer's
Manual.

print
statement

Syntax:

p r i n t [<express ion l i s t>]

p r i n t [on <channel>] [, <express ion l i s t >]

Syntax Diagram:

prlnt

- o n < channel >

Description:

Outputs character strings and numbers to a character-oriented
output device.

A numeric expression that identifies a
channel to a device open for output.

expression list One or more expressions for output
separated by commas.

Example 1:

p r i n t " t e x t s t r i n g " ! output t o o p e r a t o r ' s d i s p l a y
! with no e x t r a spaces

Example 2:

p r i n t on c h l , " t e x t s t r i n g = ", t s
! output s t r i n g fol lowed by
! va lue of t s i n decimal

print

Remarks:

Before using the print command, the output device must be
opened for output.

The print command without an "on" expression prints to the
first device opened for output, append, or update. An error
occurs if no device has been opened or if the device has
subsequently been closed.

If an expression is a string, it is printed with no surrounding
spaces. If an expression is numeric, it is printed in decimal with
no surrounding spaces. If an expression is floating-point, it is
printed in scientific notation format with six digits of precision
following the decimal point.

The print command adds the termination character (which
usually defaults to newline) associated with the channel after
printing the last expression. A print command without any
expression list prints a termination character (if any).

If the print channel is a serial port opened in buffered mode, the
newline character is actually printed as either a carriage return or
as a carriage return plus a line feed. This definition can be
changed by pressing the SETUP MENU key and then the
PORT1 or PORT2 softkeys found on the operator keypad.
Output is not actually sent to a buffered serial port channel until a
newline character is printed.

If the print channel is opened on either the IEEE-488 interface or
a device attached to the IEEE-488 interface, EOI is automatically
asserted with the termination character. In addition, if "EOI
Enable" mode is turned on (see the ieee command for details),
EOI is asserted with the last byte printed by the print command
(which is not always a termination character, since the channel
may have no associated termination character).

If an VO error occurs during an attempt to process a print
command (for example, a timeout error during an attempt to
print to an IEEE-488 device), then the io-error fault is raised,
with numeric argument erxnum containing the 9lOOADl O5A
error number, and string argument err-msg containing a
description of the error. For example, the following is a TLl1
code fragment for an io-error fault handler:

handle io-error(err-num,err-msg)
declare numeric err-num
declare string err-msg
print using "Error ?#:?#",err-num,err-msg

end handle

Related Commands:

open, print using

For More Information:

The "Overview of TLI1" section of the Programmer's
Manual.
The "Control Codes for Monitor and Operator's Display,"
appendix of this manual.
The "9100Al9105A Error Numbers" appendix in this
manual.
The "IEEE-488,9105-015" section of the Technical
User's Manual.

print

print using

Syntax:
statement

p r i n t u s i n g <format s t r i n g > [, on <channel>]
[, <express ion l is t>]

Syntax Diagram:

prlnt uslng < lormatstring r
L , on < d a n n e ~ r -1 L , < expression k t r J

Description:

Outputs strings and numbers to a character-oriented output
device in a specified format.

Arguments:

format string A string that defines the output format.

channel A numeric expression that identifies a
device open for output.

expression list One or more expressions for output
separated by commas.

Example 1:

p r i n t u s i n g " # # # # ####", 1, 2, 10, 110
! ou tpu t s t h e s t r i n g :
! 1 2 10 110

Example 2:

p r i n t u s ing " f i r s t &&&&&&ti&, second %%%%, t h i r d
i s # @ @ @ @ " , $FF, $10, 110

! ou tpu t s t h e s t r i n g :
! f i r s t 11111111, second 0010, t h i r d i s 0110

print using-1

print using

Example 3:

p r i n t u s ing " # # # # # # # # # # ##########\n lW, "he l lo" ,
"world"

! ou tpu t s t h e s t r i n g :
! h e l l o world

Example 4:

program squa re s
p r i n t "Table of s q u a r e s \ n l n

! One new-line i s gene ra t ed by p r i n t ,
! t h e o t h e r by t h e l i t e r a l new-line.
loop f o r i = 1 t o 10

p r i n t u s ing "#@ squared i s # # @ \ n l W , i, i * i
end loop

end squa re s
! ou tpu t s t h e fo l lowing t e x t :
! Table of Squares
!
! 1 squared i s 1
! 2 squared i s 4
! 3 squared i s 9
! 4 squared i s 16
! 5 squared i s 25
! 6 squared i s 36
! 7 squared i s 49
! 8 squared i s 64
! 9 squared i s 81
! 10 squared i s 100

Example 5:

p r i n t u s i n g "###"" " ###"""EEEEE\nlW, 3.2, 3.2
! o u t p u t s t h e s t r i n g :
I 003 3.2OOE+OO

Example 6:

p r i n t u s i n g "#""" . """ \nln, f
! with
! argument: ou tpu t s t h e s t r i n g :
!
! 3.2 003 .ZOO
! 1000.3 1000.300
! -40.2359 -40.236

print using-2

print using

Example 7:

p r i n t u s i n g " ? # ?% ?@ ?& ? * \ n l W , $32, $32, $32,
$32, 50.0

! o u t p u t s t h e s t r i n g :
! 50 32 50 110010 5.000000E+01

Remarks:

The print using command allows for highly structured or
colurnnized output by use of format specifications contained in
format smngs. Format smngs specify formatted output through
combinations of literal characters and format pictures. There
must be a format picture for every expression. It is a run-time
error if there are more format pictures in the format smng than
expressions in the expression list.

If no channel is specified in the print using command, output is
directed to the first device opened for output, append, or update.

A print using command does not automatically output a
termination character at the end of the output. To print a new-
line character with the print using command, include 'Inl" in the
format smng.

Characters in the format smng which are not part of a format
picture are simply printed as given in the format string.

If the print channel is a serial port opened in buffered mode, the
newline character is actually printed as either a carriage return or
as a carriage return plus a line feed. This definition can be
changed by pressing the SETUP MENU key and then the
PORT1 or PORT2 softkeys found on the operator's keypad.
Output is not actually sent to a buffered serial port channel until a
newline character is printed.

If the print channel is opened on either the IEEE-488 interface or
a device attached to the IEEE-488 interface, EOI is automatically
asserted with the termination character (if any). In addition, if
the 'EOI Enable' mode is turned on (see the ieee command for
details), then EOI is asserted with the last byte printed by the
print using command.

print using9

print using

If an VO error occurs while attempting to process a print using
command (for example, a timeout error while attempting to print
to an IEEE-488 device), the io-error fault is raised, with
numeric argument ercnum containing the 9 100Al9 lO5A error
number and string argument err-msg containing a description of
the error. For example, the following is a TLI1 code fragment
for an io-error fault handler:

handle io-error (err-num, err-msg)
declare numeric err-num
declare string err-msg
print using "Error ? # : ?#Iv, err-num,

err-msg
end handle

A format picture is a string of one or more format characters; a
format string contains zero or more format pictures. Format
pictures are one of two types: fixed-width and variable-width.
Fixed-width format pictures output data in colurnnized format,
while variable-width format pictures output data using the
minimum number of columns needed to express the data. (The
result for variable-width pictures is the same as that achieved
with the print command, except that it is possible to control the
radix when printing numeric values.)

print using-4

print using

Fixed-Width Formatted Output

A fixed-width string format picture is a string of one or more "#"
characters, where each "#" character represents one character in
the string data to be printed.

A fixed-width numeric format picture is a string of zero or more
optional digit places (leading "#" characters) followed by one or
more required digit places, which also determine the radix
(hexadecimal, decimal, or binary) for numeric data.

A fixed-width floating-point format picture is a string of zero or
more optional digit places (leading "#" characters), followed by
a required digit sequence, optionally followed by the string
"EEEEE" to denote the exponent. If the exponent sequence is
included, the number will be printed in scientific notation;
otherwise, it will be printed in fixed-point notation. For both
notations, the required digit sequence contains "A" characters. In
addition, fixed-point notation allows at most one decimal point
character in the sequence of "A" characters to specify the position
of the decimal point. (Note: At least one "A" character must
precede the decimal point.)

The fixed-width format picture characters are defined below:

Symbol Description

An optional digit place for numeric and
floating-point formats or a character place for
string formats. In numeric formats, if the
place is a non-significant zero, a space is
printed. When the "#" symbol appears as the
last position of a numeric format picture, it is
a required digit place and defines the radix to
be decimal.

% A hexadecimal digit for numeric format
pictures. If this digit is a non-significant
zero, a zero is printed.

@ A decimal digit for numeric format pictures.
If this digit is a non-significant zero, a zero is
printed.

print using-5

print using

& A binary digit for numeric format pictures. If
the digit is a nonsignificant zero, a zero is
printed.

A Required digit place for floating-point
numbers. A sequence of "A" characters may
contain a single decimal-point character
(which must be preceded by at least one
character), or may be followed by a fixed
sequence of five "E" characters denoting the
exponent (in which case the sequence of "A"

characters may not include a decimal point).

When a numeric value is printed into a fixed-width format
picture, the right-most digit place provides-the radix in which the
number is printed. The character "%" in the right-most position
causes the number to be printed in hexadecimal. The characters
"#" and "@" cause the number to be printed in decimal. The
character "&" causes the number to be printed in binary. If there
are fewer characters in the format picture than there are
significant digits in the number, a run-time error occurs. If there
are fewer significant digits in the number than there are format
picture characters, the number is right-justified in the format
picture.

For example, the expression "10" will be printed as " A" with
"#%" as the format picture, but it will be printed as "OA" with
"%%" as the format picture.

When a fixed-width format picture is used to print a string, the
string is left-justified in the picture. If there are more characters
in the string than in the picture, a run-time error occurs. If there
are fewer characters in the string than in the picture, the extra
picture characters are replaced by spaces. Only the "#" character
may represent string characters in a format picture. For example,
the string "data" will be printed as "data " when "######" is
used as the format picture.

print using-6

print using

Variable-Width Formatted Output

Like a fixed-width format picture, a variable-width format
picture describes the format for a single data value. The
difference is that a variable-width format picture prints as many
characters as are necessary to express the corresponding value.
The result for each value is identical to what is generated by the
print command, except that it is possible to specify the radix to
use for printing a numeric value.

A variable-width format picture consists of a single "?"
character, followed by a single character denoting the picture
type-

The following special picture type characters are defined:

Symbol Description

Print a variable-width string or decimal
number.

% Print a variable-width hexadecimal number.

@ Print a variable-width decimal number.

& Print a variable-width binary number.

A Print a variable-width floating-point number
(in scientific notation with six digits of
precision following the decimal point).

? Print a single "?" character.

If the picture type character is not one of the above, then it will
be printed literally (the same as if it had not been preceded by a
"?" character).

Related Commands:

open, print

print using-7

print using

For More Information:

The "Overview of TL/1" section of the Programmer's
Manual.
The "9100A/9105A Error Numbers" appendix in this
manual.

The "IEEE-488 9105-015" section of the Technical User's
Manual.

print using-8

probe
function
47-

Syntax:

p r o b e r e f < r e f p i n >

p r o b e (< r e f p i n >)

Syntax Diagram:

p r o b e ref <refpin>

Description:

Prompts the operator (on the operator's display) to probe the
specified pin and press the ready button on the probe.

Arguments:

ref pin Name of pin to probe.

Example:

probe r e f "Ul-1"

Remarks:

This command is used to verify that the probe is set up for a
measurement. The 9 lOOA/9 lO5A waits until the probe button is
pressed before continuing on past this command.

For More Information:

The "Overview of TW1" section of the Programmer's
Manual.

probe

program
statement block

Syntax:

program <program name> [(<argname> { , <argname>))]

Syntax Diagram:

p r o g r a m <program name r

(-r 1 a r g y - n)

Description:

Specifies the beginning of a program block.

Arguments:

program name Name of the program defined on the
lines following the program statement.

argname Name of an argument for this program.

Example 1:

program t e s t 8

end program

Example 2:

program m y g r o g (a , b, c)

end m y g r o g

program

Example 3:

program 'my.filel ! Single quotes allow the
! use of a period in
! the program name.

end program

Remarks:

The first statement of every TL11 program must be a program
statement. The program statement contains the program name
and the names of any arguments passed to the program. The
program block must be terminated with an end program
statement or an end statement containing the same program
name.

The name in the program and end statements must be the same.
A valid program name contains from 1 to 10 characters and
consists of only letters, numbers, and underscore characters (or
periods, if the program name is enclosed in single quotes). A
program name cannot be the same as the name of a built-in
function.

Although TLl1 requires that a program name be spelled exactly
the same wherever it appears, the case of letters is ignored when
a program is looked up on the disk. Thus it is not possible to
define two program names that differ only in case (such as
PROGl and prog 1).

The scope of a program name is the UUT directory containing it
plus the program library. Therefore, a program can call any
other program in the same UUT directory, but not in another
UUT directory.

The program argument list consists of one or more argument
names, separated by commas; the argument list is enclosed in
parentheses. The order of the names in this list is the same order
in which the values for these arguments must be listed in
positional notation calls to this program. If any arguments have
default values, these values are assigned in the subsequent
declaration blocks.

program

Program arguments may not be declared as arrays nor as global
or persistent variables.

Declarations consist of any and all declaration blocks, function
definition blocks, handler definition blocks, and exerciser
definition blocks.

Related Commands:

declare, end, execute, exercise, function, handle, return

For More Information:

The "Overview of TLI1" section of the Programmer's
Manual.

program

pulser
function

Syntax:

p u l s e r mode <mode name>

p u l s e r (<mode name>)

p u l s e r 0

Syntax Diagram:

Description:

Turns on the probe in a pulser mode synchronized as specified
by the sync command. The probe can pulse low, high, or toggle
alternately high and low.

Arguments:

mode name "off", "high", "low", or "toggle".
(Default = "off ')

Example:

p u l s e r mode " toggle"

Remarks:

When the probe threshold is set to RS-232, a low level is pulsed
to 0 volts. Since this is not a valid RS-232 low level, the green
light of the probe will not be illuminated.

Related Commands:

sync

pulser

For More Information:

The "Overview of TLI1" section of the Programmer's
Manual.

rampaddr
function

Syntax:

rampaddr addr <address>, mask <mask>

rampaddr (<address>, <mask>)

Syntax Diagram:

rampaddr - addr caddress> , mask <mask>

Description:

Performs a series of read operations, each at a different address.
The number of reads and the values of the addresses are
determined by the specified mask.

-

Arguments:

address Address.

mask

Example 1:

Hexadecimal mask of ramp bits.

rampaddr addr $1000, mask 3

The 9 100A/9 105A performs the following:

read addr $1000
read addr $1001
read addr $1002
read addr $1003

rampaddr

Example 2:

rampaddr addr $123B, mask $42
! 123B hexadecimal = 0001 0010 0011 1011 b ina ry
! 42 hexadecimal = 0000 0000 0100 0010 b ina ry

The 9 1 O O A D 1 O5A performs the following:

read addr $1239 ! 0001 0010 0011 1001 b ina ry
read addr $123B ! 0001 0010 0011 1011 b ina ry
read addr $1279 ! 0001 0010 0111 1001 b ina ry
read addr $127B ! 0001 0010 0111 1011 b ina ry

Remarks:

In the second example, the mask (42 hex) specifies the two
address bits, 6 and 1. Four read operations are performed (2
raised to the power of 2.) The bits specified in the mask are
ramped from all zeros to all ones with the right-most bit (bit 1)
considered the LSB and the left-most bit (bit 6) considered the
MSB of the ramped bits. The other address bits remain
unaltered. It is much faster to ramp in groups of smaller masks
(FO, F, FOO) than to ramp one large mask (FFF), although the
larger mask provides more complete coverage.

For More Information:

The "Overview of TL/1" section of the Programmer's
Manual.

rampdata
function
4m+

Syntax:

r a m p d a t a addr < a d d r e s s > , data < d a t a > , m a s k < m a s k >

r a m p d a t a (< a d d r e s s > , < d a t a > , < m a s k >)

Syntax Diagram:

rampdata - addr <address z , data <dafa> , mask <mask>

Description:

Performs

Arguments:
-

address

data

mask

Example:

a series of write operations at the specified address.

Address.

Fist data value.

Hex mask of the data bits to be ramped.

r a m p d a t a addr $123B , data $ 2 5 , m a s k $ 4 3
! data 2 5 h e x = 0 0 1 0 0 1 0 1 b i n a r y
! m a s k 4 3 h e x = 0 1 0 0 0 0 1 1 b i n a r y

The system performs eight writes as shown below:

w r i t e addr $123B , data $ 2 4 ! 0 0 1 0 0 1 0 0
w r i t e addr $123B, data $ 2 5 ! 0 0 1 0 0 1 0 1
w r i t e addr $123B, da ta $ 2 6 ! 0 0 1 0 0 1 1 0
w r i t e addr $123B, da ta $ 2 7 ! 0 0 1 0 0 1 1 1

(e x a m p l e i s c o n t i n u e d o n t h e n e x t page)

rampdata

w r i t e addr $123B, data $ 6 4 ! 0 1 1 0 0 1 0 0
w r i t e addr $123B, da ta $ 6 5 ! 0 1 1 0 0 1 0 1
w r i t e addr $123B, da ta $ 6 6 ! 0 1 1 0 0 1 1 0
w r i t e addr $123B, da ta $ 6 7 ! 0 1 1 0 0 1 1 1

Remarks:

You specify the original data and the data bits to be ramped. In
the previous example, the mask (43 hex) specifies the three data
bits 6, 1 and 0. This means that there are eight write operations
(2 raised to the third power). The data bits are ramped from all
zeros to all ones with the right-most bit (bit 0) considered the
LSB and the left-most bit (bit 6) considered the MSB of the
ramped bits. The other data bits remain unaltered.

The following command performs a ramp for an eight-bit pod
that is equivalent to the 9000-series RAMP @ 1 122 command:

r a m p d a t a addr $ 1 1 2 2 , data 0 , m a s k $FF

This statement performs 256 writes (data 00-FF) at address
1 122 on a 16-bit pod.

Similarly, the following command performs 65536 writes (data
0000 - FFFF) at address 1122:

r a m p d a t a addr $ 1 1 2 2 , data 0 , m a s k $FFFF

For More Information:

The "Overview of TLIl " section of the Programmer's
Manual.

random
function

Syntax:

random [seed <expression>]

random ([<expression>])

Syntax Diagram:

I
()

random smd < expression :, I

Description:

Produces pseudorandom sequences of numbers.

Arguments:

seed Providing this optional
the sequence of numbers.
(Default = $FFFFFFFF)

value changes

Returns:

Returns a pseudorandom 32-bit numeric value.

Example:

loop for i = 1 to 100 ! print 100 random numbers
print random ()

end loop

random

Remarks:

The seed argument can change the sequence of pseduorandom
numbers that are generated by the random function. Setting the
seed to zero begins a new sequence of numbers based on the
current time of day.

Setting the seed to any number other than zero or $FFFFFFFF,
begins a new sequence based on that number. Using the same
number again generates the same sequence of numbers.

The seed value can also be set to $FFFFFFFF (Default), which
returns the next number in the current pseudorandom sequence.

The sequence of numbers returned by random has the
appearance of randomness, but no specific property of the
sequence is guaranteed. The sequences of numbers generated
by random may change in subsequent software revisions to
provide more nearly random sequences.

For More Information:

The "Overview of TL11" section of the Programmer's
Manual.

read
function

Syntax:

r e a d a d d r < a d d r e s s >

r e a d (< a d d r e s s >)

Syntax Diagram:

read add r < address r

Description:

Returns the data located at the specified address.

Arguments: address Address from which to read data.

Returns:

The data read at the specified address.

Example 1:

d a t a 2 = r e a d a d d r h e r e
! Reads t h e d a t a a t t h e a d d r e s s s p e c i f i e d by
! t h e v a l u e of t h e u s e r - d e f i n e d v a r i a b l e h e r e
! and s t o r e s i t i n t h e v a r i a b l e d a t a 2 .

Example 2:

d a t a 2 = r e a d (h e r e)
! The p o s i t i o n a l n o t a t i o n e q u i v a l e n t
! of t h e keyword n o t a t i o n i n t h e above
! example.

read

Example 3:

data1 = read ($8FFO) ! Reads the hex data at
! address 8FF0 into
! the variable datal.

For More Information:

The "Overview of TL/l" section of the Programmer's
Manual.

read block
function +-*

Syntax:

readblock file <file name>, format <format>,
addr <address I>, upto <address 2,

readblock (<file name>, <format>, <address I>,
<address 2,)

Syntax Diagram:

readblock - lllo < file name r , format < formal r ...

. - , addr caddress 1 r , upto caddress 2r

Description:

Reads the data from the specified address range and stores this
data in the specified text file.

Arguments:

file name

format

address 1

address 2

The name of the file in which to store
the data. If a full path name is not
specified, the data will be stored in the
specified file in the current UUT
directory.

The ASCII format in which the data
was previously stored. Either
"motorola" or "intel".
(Default="motorola".)

Start address.

End address.

read block

Example 1:

readblock file "testlcd", format "motorola",
addr $7000, upto $7FD4

Example 2:

readblock ("pgml", "motorola", $1000, $lFFF)

Example 3:

readblock file "/HDR/testdataW, format "motorola",
addr $7000, upto $7FD4

Related Commands:

loadblock, writeblock

For More Information:

The "Overview of TL11" section of the Programmer's
Manual.

readbutton
function

Syntax:

readbut ton mode <mode>

readbut ton (<mode>)

readbut ton ()

Syntax Diagram:

(1
readbutton I mode < m d e z I

Description:

Waits for you to press the VO module or probe button.

Arguments:

mode "beep" or "nobeep".
Default = "beep"

Returns:

The name of the device that is selected.

Example 1:

! Wait f o r any 1/0 module o r probe bu t ton
dev ice = readbut ton ()

Example 2:

! Wait f o r probe bu t ton with no beep
device = readbut ton ("nobeep")

! va lue of device v a r i a b l e i s now "/probew

readbutton

Example 3:

! Wait f o r 1/0 Module bu t ton with beep
dev ice = readbut ton mode "beep"

! va lue of dev i ce v a r i a b l e i s now "/mod4BW

Remarks:

It is often inconvenient to continue pressing the <RETURN>
key on the programmer's keyboard or the <ENTER/YES> key
on the operator's keypad while probing points on a UUT. The
readbutton command delays program execution until the If0
module or probe button can be pressed.

When the proper button is pressed, the function returns with the
name of the device.

Related Commands:

clip, probe

For More Information:

The "Overview of TL/1" section of the Programmer's
Manual.

readdate
function
4m*

Syntax:

r eadda t e t i m e <express ion>

r eadda t e (<express ion>)

Syntax Diagram:

r e a d d a t e tlme i expression z

Description:

Returns a string which contains the date. To access the current
date, the expression should be the value returned from the
systime funchon.

Arguments:

expression A number returned by the systime
function that represents a number of
elapsed seconds.

Returns:

A string representing a date.

Example:

t = sys t ime 0
X = r eadda t e t i m e t ! S t o r e s t h e d a t e

! from v a r i a b l e t i n s t r i n g
! format i n t h e v a r i a b l e X

p r i n t r eadda t e (t) ! P r i n t s t h e d a t a from
! v a r i a b l e t i n s t r i n g format

readdate

Remarks:

The readdate function returns a string containing the date in the
format:

where YYYY = year, MM = month, and DD = day.

For example, the string "1986/07/06" represents July 6, 1986.

Related Commands:

readtime, systime

For More Information:

The "Overview of TL/lW section of the Programmer's
Manual.

readmenu
function

Syntax:

readmenu channel <channel express ion>, i d e n t i f i e r
<menu name> [, name < te rmina l name>] [, s t y l e
< s t y l e >] [, xorg <xloca t ion>] [, yorg
<y loca t ion>] [, he igh t <he ight>]

Syntax Diagram:

readmenu - channel <channel expression D - , Identiller <menuname> - ...

... ...
, name < terminal name D L, s t y l e < s t y / e > -..I

...
L , xorg <xlocation D A L , xorg < ylocation D J L , height < height D J

Description:

Used to display and read from a menu defined by the define
menu command.

Arguments:

channel expression A numeric expression to define a
channel opened to read key presses
used to make menu selections. Note
that /term1 and /term2 are also
considered windows.

menu name

terminal name

A menu name as defined by the define
menu command. If the menu does not
exist, readmenu returns an empty string
(fff').

The name of the display device to draw
the menu on. The only name allowed is
"Iterrn2" (this is also the default value).

readmenu

style

xlocation

ylocation

height

0 - The menu is a non-button menu
(Default).

1 - The menu is a button menu.

A numeric expression that defines the
horizontal location of the upper left-
hand comer of the menu in characters.

If xorg is not specified, the default is to
center the menu on the display.

A numeric expression that defines the
vertical location of the upper left hand
comer of the menu in characters.

If yorg is not specified, the default is to
center the menu on the display.

A numeric expression that defines the
maximum height of the menu in
characters. If not specified, it defaults
to the size required to list all the menu
items.

Returns:

A string indicating which menu item is selected.

Example 1:

response = readmenu channe l channe l , i d e n t i f i e r
"MI"

! Read from menu M1

Example 2:

r e s p o n s e = readmenu channe l channe l , i d e n t i f i e r
WM2 W

! Read from menu M2

readmenu

Example 3:

Pop up a menu when t h e u s e r pushes a key. On
subsequent key p r e s s e s , s t a r t t h e menu a t
t h e l a s t p l a c e t h e u s e r was on t h e menu. I f
t h e u s e r makes no s e l e c t i o n , e x i t t h e
program loop . This example assumes t h e u s e r
has w r i t t e n a program c a l l e d doac t ion which
causes t h e a c t i o n i n d i c a t e d by t h e menu
s e l e c t i o n t o be done.

keyboard = open dev ice " / t e r m l M , a s " input" , mode
"unbuffered"

response = "MI"
notdone = 1
loop whi le notdone

i f (p o l l channel keyboard, event " input") t hen
response = readmenu channel keyboard,

i d e n t i f i e r response
i f response = "" t hen

notdone = 0
else

doac t ion a c t i o n response
end i f

end i f
end loop

Remarks:

Menus are drawn in two styles, button or no button. In the no
button style, a menu is simply a list of selectable items. In the
button style, the menu is drawn as a collection of buttons with a
box drawn around each menu item.

The user can type keys to make a menu selection if keys were
defined for that menu. The keys defined are displayed in front
of each menu item.

There is also a menu cursor displayed in a menu. The menu
cursor is shown by inversing the active field. To select the item
at the menu cursor enter a carriage return. To select a submenu
at the menu cursor (submenus are drawn with a "->" appearing
in the right hand side of the menu item) enter a carriage return or
a right arrow key. To move the menu cursor down, press the

readmenu

down arrow key, and to move the menu cursor up, press the up
arrow key. The height argument specifies the maximum height
of the menu on the screen. If the menu items will not fit in the
height specified, the menu becomes a scrollable menu. This is
indicated by the menu having the word "More" and a down
arrow appear on the bottom border. Pressing the cursor down
key on the last visible field causes the menu to scroll down. The
word "More" and an up arrow now appears on the top border to
indicate the menu may be scrolled up by pressing the up arrow
on the top most visible field.

If a selection is made by the user, a string indicating that
selection is returned. That string is of the form MMM1-
1111/MMM2-1112/MMM3-1111, where 1111 is the selection made
on menu MMM3, a submenu of menu MMM2 which is a
submenu of MMM1. If the size of the string is larger than 255
characters, a string overflow error will be generated.

A menu can be forced to start up at a particular selection or
submenu by passing the menu name of a particular selection.
The menu name is of the form returned when a menu selection is
made. For example, to start a menu in a submenu selection,
pass menu as "MMM1-IIIlIMMM2-1111".

If the menu style was 1 (indicating buttons), readmenu will
accept escape sequences from a touch-sense interface. The
escape sequence recognized is "/lB[>2;xxxnW. The xxx is the
location on the screen, assuming the screen is divided into 10
columns by 12 rows. The locations are numbered from 000 (the
upper left comer) through 119 (the lower right comer).

The device is a channel opened for reading by the open
command. It is recommended that this channel be opened as
"input" mode "unbuffered". If the channel is buffered, you will
have to type line terminators to cause menu action and this is
probably undesirable. This channel will be flushed before
characters are read if it is not a disk file.

readmenu

xorg and yorg specify the position of the menu on the screen in
character cells in the default font. If xorg is missing, xorg will
default to center the menu horizontally, and if yorg is missing,
yorg will default to center the menu vertically.

Related Commands:

define menu, remove menu, open

For More Information:

The "Overview of TL/ lM section of the Programmer's
Manual.

readmenu

readout
function

Syntax:

readout dev i ce <device l i s t>

readout (<device l i s t>)

readout ()

Syntax Diagram:

readout i i s > I

Description:

Reads response data from the VO module or the probe, and
stores it in the system's memory. The response data is then
available via the sig, count, and level commands.

Arguments:

device list VO module name, clip module name,
probe name, or combinations of these.
(Default = "/probe")

Example 1:

mod = c l i p r e f "u3" , p i n s 4 0

arm dev ice mod
rampdata addr 0 , d a t a 0 , mask SFF
rampdata addr 0 , d a t a 0 , mask SFFOO

readout dev i ce mod

readout

Example 2:

arm device "/modl, /mod2"

readout device "/modl,/mod2"

Remarks:

The readout command terminates signature gathering started by
the arm command. Therefore arm and readout should be
considered as beginning and ending statements for a TL/1
response-gathering block.

Related Commands:

arm, checkstatus, clip, count, level, sig, stopcount, sync

For More Information:

The "Overview of TL/1" section of the Programmer's
Manual.

readspecial
function
4m+

Syntax:

readspecial addr <address>

readspecial (<address>)

Syntax Diagram:

readspeclal - addr <address r

Description:

Returns the data located at the specified virtual address. This
allows access to the virtual addresses that, in some pods, are
used for special operations. This command should only be used
when you know that the normal read command does not provide
the required special operation.

Arguments:

address Address from which to read data.

Returns:

The data at the specified address.

Example 1:

value = readspecial addr $F0000018

Example 2:

value = readspecial ($F0000018)

readspecial

Remarks:

Incorrect use of this special-purpose command can place the pod
and the 91004/9105A mainframe in inconsistent states.

For More Information:

The "Overview of TL11" section of the Programmer's
Manual.
The Fluke pod manual for the microprocessor you are
using.

readstatus
function
0-4

Syntax:

r e a d s t a t u s ()

Syntax Diagram:

readstatus (1

Description:

The readstatus command reads the values on the status lines of
the pod. To interpret the status data, refer to the pod's
o~erator 's manual. As with the read function, a value is
aicessed by assigning the function invocation to a variable.

Returns:

The status word.

Example:

s t a t u s = r e a d s t a t u s () ! t h e v a r i a b l e s t a t u s i s
! loaded wi th d a t a from
! t h e f u n c t i o n r e a d s t a t u s

Related Commands:

writecontrol

For More Information:

The "Overview of TL/lW section of the Programmer's
Manual.

readstatus-l

readstatus

readtime
function
@mp

Syntax:

read t ime t i m e <express ion>

read t ime (<express ion>)

Syntax Diagram:

Description:

Returns a string containing the time. To access the current time,
the expression should be the value returned by the systime
function.

Arguments:

expression A number returned by calling systime,
or a number representing elapsed
seconds.

Returns:

A string representing a time.

Example 1:

t = sys t ime ()
p r i n t " the t i m e i s ", readt ime t i m e t

! p r i n t s " the t i m e i s 15:36:58 (o r
! whatever t i m e t h e va lue of t i n d i c a t e s)

readtime

Example 2:

start = systime 0
testuut
print "TestUUT time ", readtime (systime 0 -
start)

! prints: "TestUUT time 00:05:03" if,
! testuut took five minutes and three
! seconds to execute.

Remarks:

The readtime function returns a string containing the time in the
format:

where HH = hours, MM = minutes, and SS = seconds.

For example, the string " l5:36:58" represents 36 minutes and 58
seconds past 3 o'clock in the afternoon. In this format, a list of
strings ordered by the ASCII value of the characters from left to
right is also ordered chronologically.

Related Commands:

readdate, systime

For More Information:

The "Overview of TL/1 " section of the Programmer's
Manual.

readvirtual
function
+m+

Syntax:

readvirtual extaddr <extended address>, addr
<address>

readvirtual (<extended address>, <address>)

Syntax Diagram:

readvlrtual - oxtaddr < extentedaddress D , addr < address D

Description:

Readvirtual is a complete replacement for the obsoleted
readspecial command. Returns the data located at the specified
virtual address. This allows access to the virtual addresses that,
in some pods, are used for special operations. This command
should only be used when you know that the normal read
command does not provide the required special operation.

Arguments:

extaddr Upper 32-bits of virtual address.

addr Address from which to read data.

Returns:

The data at the specified address.

Example 1:

value = readvirtual extaddr 0, addr SF0000018

Example 2:

value = readvirtual (0, SF0000018)

readvirtual

Remarks:

Incorrect use of this special-purpose command can place the pod
and the 9 1 OON9 1 O5A mainframe in inconsistent states.

For More Information:

The "Overview of TL11" section of the Programmer's
Manual.
The Fluke pod manual for the microprocessor you are
using.

readword
function
4m*

Syntax:

r e a d w o r d [device < I / O m o d u l e n a m e >] [, w o r d < w o r d
number>] [, m o d e < m o d e >]

r e a d w o r d (< I / O m o d u l e n a m e > , < w o r d number> , < m o d e >)

Syntax Diagram:

word < word number >

mode <mode>

Description:

Allows a group of I/O module pins to be read as a single group
of values.

Arguments:

I/O Module name I/O module name ("/mod1 ", "/mod2",
"/mod3 ", or "/mod4").
(Default = "/mod 1 ")

word number The number of the word group. Valid
values are from 1 through 5.
(Default = 1)

mode The mode in which to read the word.
Valid values are "now" or "stored".
(Default = "now")

readword

Returns:

A string representing the state of the pins specified by the
setword function.

Example 1:

! Read t h e c u r r e n t l e v e l of p i n s 1 -4 of 1 / 0 Module #1
setword dev ice "/modlW, word 1, a s g i n s "1 2 3 4"
b i n s t r = readword dev ice "/modln, word 1, mode "now"

Example 2:

! Read t h e s t o r e d l e v e l of p i n s 1 - 4 of 1 / 0 Module #1
c l o c k f r e q dev ice "/modl", f r e q "1MHZ"
edgeoutput dev i ce "/modl", s t a r t "at-vectordr ive"
sync dev ice "/modln, mode "capture"
syncoutput dev i ce "mod/l", mode " i n t f r e q "
setword dev ice "/modll', word 1, a s g i n s " 1 2 3 4"
vec to r load dev ice "/modl", f i l e "demo"
arm dev ice "/modln

v e c t o r d r i v e device "/modl", s tar tmode "now"
readout dev i ce "/modln

i f i n s t r (b i n s t r , " * ") = 0 t hen
b i n s t r = readword dev ice "/modl", word 1, mode "s tored"

wordone = v a l (b i n s t r , 2)
else

wordone = 0
end i f

Remarks:

In the "now" mode, the readword function mimics the operation
of the INPUT WORD operation from the front panel. The
current logic level of the pins in the word are grouped into a
string. In the "stored" mode, the readword function takes the
clocked level history information from the values that are stored
in memory from the latest readout command.

A pin level of HIGH is represented as a logic "1 ". A pin level of
LOW is represented as a logic "0". Any other pin level is
represented as an "*", so use the level function to determine the
aciual level.

readword

Setword can make pin grouping assignments. Groupings may
be made from 1 to 40 pins.

Related Commands:

setword, writeword

For More Information:

The "Overview of TLI1" section of the Programmer's
Manual.

readword

Syntax:

refault
statement

r e f a u l t [< f a u l t cond i t i on>]

Syntax Diagram:

refault

c fault name z

c argument z - c value z -
A ,
7

Description:

Pass a fault condition to the caller for further processing.

Arguments:

fault condition Name of the fault condition to be
raised.

argname Name of an argument.

An expression which provides the value
for an argument.

Example 1:

handle pia-out ! Handler f o r t h e pia-out f a u l t
! c o n d i t i o n
!

r e f a u l t ! Raise t h e pia-out f a u l t
! cond i t i on i n t h e c a l l e r of t h e
! i nvoca t ion t h a t a c t i v a t e d t h i s
! hand le r f o r pia-out.

end handle

refault

Example 2:

I n t h i s example, t h e o u t e r program c a l l s t h e
i n n e r f u n c t i o n which r a i s e s a f a u l t
c o n d i t i o n c a l l e d f a u l t l . Af t e r t h e handler
p roces se s t h e f a u l t cond i t i on , it may wish
t o r a i s e it t o t h e a t t e n t i o n of a hand le r
a c t i v a t e d by t h e o u t e r program. The r e f a u l t
command a l lows r a i s i n g t h e same f a u l t
c o n d i t i o n i n t h e c a l l i n g b lock .

program o u t e r

handle f a u l t 1 ! Handler f o r t h e f a u l t
! f a u l t cond i t i on

p r i n t "execut ing o u t e r ' s handler"
f a u l t ! Se t t e rmina t ion s t a t u s t o

! " f a i l s "
end handle

func t ion i n n e r
handle f a u l t l ! Another handler f o r t h e

! f a u l t l f a u l t cond i t i on
p r i n t "execut ing i n n e r ' s handler"
r e f a u l t ! Re-raise t h e same f a u l t

! cond i t i on i n t h e c o n t r o l
! program

end handle

i f s u b c i r c u i t 5 () f a i l s t hen
! Test s u b - c i r c u i t 5
! f o r f a u l t s

f a u l t f a u l t l !Raise t h e f a u l t l
! f a u l t cond i t i on

end i f
end func t ion

execu te i n n e r ()

end program

refault

I n t h i s example, t h e hand le r f o r f a u l t 2 i n
t h e i n n e r f u n c t i o n wants t o r a i s e a
d i f f e r e n t f a u l t cond i t i on , bu t doesn ' t want
t o a c t i v a t e t h e hand le r f o r t h a t f a u l t t h a t
i s a c t i v a t e d i n t h e i n n e r f u n c t i o n . The
r e f a u l t command r a i s e s t h i s new f a u l t
c o n d i t i o n i n t h e block t h a t c a l l e d t h e i n n e r
f u n c t i o n (i n t h i s case , t h e o u t e r program).

program o u t e r

handle f a u l t 1 ! Handler f o r t h e f a u l t 1
! f a u l t cond i t i on

p r i n t "execut ing o u t e r ' s handler f o r
f a u l t 1"

f a u l t ! Set t e rmina t ion s t a t u s
! t o " f a i l s "

end handle

f u n c t i o n i n n e r

handle f a u l t 2 ! Handler f o r t h e f a u l t 2
! f a u l t c o n d i t i o n

p r i n t "execut ing i n n e r ' s handler"
r e f a u l t f a u l t l ! Raise t h e f a u l t l

! f a u l t cond i t i on i n t h e
! o u t e r program, no t i n
! t h e i n n e r f u n c t i o n

end handle

handle f a u l t 1
p r i n t "execut ing i n n e r ' s handler

f o r f a u l t l "
end handle

refault

i f s u b c i r c u i t l 6 () f a i l s t h e n
! T e s t s u b - c i r c u i t 1 6

f a u l t f a u l t 2 ! R a i s e t h e f a u l t 2
! f a u l t c o n d i t i o n

e n d i f

e n d f u n c t i o n

e x e c u t e i n n e r ()

e n d program

Remarks:

The refault command is an advanced feature for fault condition
handling. You will not need it for most test programs.

The purpose of the refault command is to permit fault condition
handlers at outer levels of a program to see fault conditions even
though they have been handled at a lower level. Once a fault
condition is handled, it normally disappears. A fault command
in the handler could be used to preserve the (failure) termination
status for the program, but if the fault command has the same
fault condition as the name of the handler, an infinite recursion
will occur.

This recursion can be avoided by using a refault command
instead of a fault command. When the refault command is used
in a handler, the effect is as if the fault condition that invoked the
handler had been raised in the invocation that activated that
handler. This insures that the current handler is not invoked
again, thereby avoiding an infinite recursion.

Using the refault command without a fault name raises the fault
condition that invoked the handler, but raises it in the calling
block. Using the refault command with a fault name raises the
new fault condition in the calling block.

refault

Related Commands:

abort, fault, handle, return

For More Information:

The "Overview of TL11" section of the Programmer's
Manual.

refault

remove
function

Syntax:

r e m o v e m e n u [< m e n u n a m e >]

r e m o v e m o d e [< m o d e n a m e >]

r e m o v e p a r t [< p a r t n a m e >]

r e m o v e ref [< r e f n a m e >]

r e m o v e t e x t [< t e x t n a m e >]

Syntax Diagram:

menu <name>
mode <name>
part <name>
ref <name>
text <name>

Description:

Removes definitions made by the define commands.

Options:

menu name: The name of the menu definition to
remove from the list of menu
definitions. If the menu string is of the
form "MMMM", that menu is removed.
If the menu string is of the form
"MMMM-1111", that menu item is
removed, but the rest of the menu
remains. If the name is the null string
(""), all of the menu definitions are
removed.

remove

mode name: The name of the mode definition to
remove from the list of mode
definitions. If the name is the null
string (""), all of the mode definitions
are removed. A comma-separated list
of mode names (with no spaces in the
list) allows more than one mode
definition to be removed

part name:

ref name:

text name:

The name of the part definition to
remove from the list of part definitions.
If the name is the null string (""), all of
the part definitions are removed. A
comma-separated list of part names
(with no spaces in the list) allows more
than one part definition to be removed.

The name of the reference designator
definition to remove from the list of ref
definitions. If the name is the null
string (""), all of the ref definitions are
removed. A comma-separated list of ref
names (with no spaces in the list)
allows more than one ref name to be
removed.

The name of the text definition to
remove from the list of text definitions.
If the name is the null string (""), all of
the text definitions are removed. A
comma-separated list of mode names
(with no spaces in the list) allows more
than one text name to be removed.

Example 1:

remove p a r t "" ! Remove a l l p a r t d e f i n i t i o n s

Example 2:

remove p a r t "box" ! Remove t h e p a r t d e f i n i t i o n
! named "boxw

remove

Example 3:

r e m o v e ref "" ! R e m o v e all ref d e f i n i t i o n s

Example 4:

r e m o v e m e n u "MI" ! R e m o v e m e n u M1

Example 5:

r e m o v e m e n u "M1-a" ! R e m o v e i t e m a f r o m m e n u M1

Remarks:

Removing a definition frees up any memory used by that
definition. All of the definitions are removed automatically at the
start of each new TL/1 invocation. A new TL11 invocation is
started by pressing the REPEAT or EXEC keys on the
operator's keypad or by pressing the EXECUTE or INIT
softkeys when in the debugger.

Related Commands:

defne mode, define menu, define part, define ref, define text

For More Information:

The "Overview of TLJ1" section of the Programmer's
Manual.

remove

reset
function
O j *

Syntax:

reset device <device l i s t >

reset (<device l i s t >)

reset ()

Syntax Diagram:

Description:

Configures the response-gathering hardware for the probe or an
VO module to a default state.

Arguments:

device list VO module name, clip module name,
probe name, or combinations of these.
(Default = "/probeM)

Example 1:

reset device "/modlW

Example 2:

iomod = c l i p ref "u5",pins 4 0
reset device iomod

reset

Remarks:

The settings as a result of reset are as follows:

counter = "transition"

edge = "+" (rising edge for external start, stop, and
clock

enable = "always"

sync = "pod for an 110 module
= "freerun" for the probe

threshold = "ttl"

stopcount = "1"

syncoutput= "intfreq"

edgeoutput= "+" (rising edge for drive start, stop,
and clock)

enableoutput "a1 ways"

clockfreq = "1MHz"

Also note that although the syncoutput, edgeoutput,
enableoutput, and clockfreq settings are reset, they are only used
when a 9 100-0 17 Vector Output I/O Module is connected.

In addition, all 110 module lines are placed in the high-
impedance state.

For More Information:

The "Overview of TL/l" section of the Programmer's
Manual.

resetpersvars
function

Syntax:

resetpersvars ()

Syntax Diagram:

resetperwars ()

Description:

Resets the persistent variable set to the empty set.

Examples:

For each of the following example programs, assume that the
persistent variable set initially contains:

Name Type Value

P V ~ numeric 3
P V ~ string rrfoorr
P V ~ string "barrr

After executing the following command:

resetpersvars ()

the persistent variable set is empty.

After executing the following program:

program progl
declare persistent numeric pvl
resetpersvars ()
pvl = 4

end program

resetpe rsvars-1

resetpersvars

the persistent variable set contains:

Name Type Value

P V ~ numeric 4

After executing the following program:

program prog2
d e c l a r e p e r s i s t e n t s t r i n g pv2
d e c l a r e p e r s i s t e n t s t r i n g pv3
func t ion •’00

d e c l a r e p e r s i s t e n t s t r i n g pv2
end f u n c t i o n
r e s e t p e r s v a r s ()

foo 0
end program

the persistent variable set contains:

Name Type Value

P V ~ s t r i n g "f oo"

Remarks:

A local copy of any persistent variables known by the currently
executing TL/1 program is retained, along with the current
values. If any such persistent variables are subsequently
redeclared or are assigned a value, they are added back to the
persistent variable set.

The resetpersvars command allows purging of the persistent
variable set, which would otherwise accrete forever (or until
power was cycled).

Related Commands:

clearspersvars

restorecal
function

Syntax:

r e s t o r e c a l [from <uut-userdisk>,name<name>]

r e s t o r e c a l (<uut-userdisk>, <name>)

r e s t o r e c a l ()

Syntax Diagram:

restorecai I
name <name>

Description:

Restores the calibration values for the I/O module and the probe
from the requested UUT or USERDISK.

Arguments:

uut-userdisk USERDISK or UUT
Default = "USERDISK"

name

Example 1:

USERDISK or UUT name
Default = "" (current USERDISK or
UUT)

! r e s t o r e c a l i b r a t i o n va lues from t h e c u r r e n t UUT
r e s t o r e c a l from "UUT"

Example 2:

! r e s t o r e c a l i b r a t i o n v a l u e from t h e U U T DEMO
r e s t o r e c a l from "UUT", name "DEMO"

restorecal

Example 3:

! res tore c a l i b r a t i o n va lue f r o m U S E R D I S K / D R 1
restorecal f r o m "USERDISK" , n a m e " / D R l W

Remarks:

This function is similar to the front panel RESTORE CALDATA
operation and restores calibration values from a TL11 program.
Calibration values may be restored from a USERDISK or UUT.

If the name of the USERDISK or UUT is the null string (""),
then the current USERDISK or UUT is used. If the
USERDISK or UUT is named, the calibration values are
restored from the named USERDISK or UUT. Calibration
values are restored for all VO modules and the probe.

For More Information:

The "Overview of TL11" section of the Programmer's
Manual.

return
statement

r e t u r n [<express ion>]

Syntax Diagram:

return
L < expression > J

Description:

Causes a program, function, handler, or exerciser to terminate.
Execution continues at the statement following the invocation
statement (for programs and functions) or at the statement
following the fault command (for handlers).

The value to return.

Returns:

As an option, the value of an expression can be returned when a
function or program terminates.

Example 1:

r e t u r n ! Return c o n t r o l t o c a l l i n g program

Example 2:

r e t u r n d + 1 ! Return c o n t r o l t o c a l l i n g program.
! The va lue t h a t t h e func t ion
! r e t u r n s , i s t h e va lue of t h e
! v a r i a b l e d, p l u s 1.

return

Remarks:

The value of an expression can be returned when a program or
function terminates. When the program or function is invoked as
part of an expression the returned value is used in the
expression.

A program or function that returns a value must do so explicitly.
A program or function may not return values of two different
types or return a value in one place without returning a value in
every other place.

After the last statement of a block is executed, a return command
is performed implicitly.

Related Commands:

execute, exercise, finction, handle, program

For More Information:

The "Overview of TL/lW section of the Programmer's
Manual.

rotate
function

Syntax:

r o t a t e a d d r < a d d r e s s > , d a t a < d a t a >

r o t a t e (< a d d r e s s > , < d a t a >)

Syntax Diagram:

rotate - addr <address > , data <data >

Description:

Writes a data pattern to the specified address. The data is then
rotated to the right and a write operation is performed. This is
repeated as many times as there are data bits. Therefore, the last
write performed writes the original data rotated one bit left.

Arguments:

address All write operations are written to this
address.

data Initial data value.

Examples:

r o t a t e a d d r $FFFFE, d a t a $1234

The system performs the following sixteen operations:

w r i t e a d d r $FFFFE, d a t a $1234
w r i t e a d d r $FFFFE, d a t a S091A
w r i t e a d d r $FFFFE, d a t a $048D
w r i t e a d d r $FFFFE, d a t a $8246
w r i t e a d d r $FFFFE, d a t a $4123
w r i t e a d d r $FFFFE, d a t a $A091

(example i s c o n t i n u e d on t h e n e x t p a g e)

rotate

w r i t e addr SFFFFE,
w r i t e addr $FFFFE,
w r i t e addr SFFFFE,
w r i t e addr SFFFFE,
w r i t e addr SFFFFE,
w r i t e addr SFFFFE,
w r i t e addr SFFFFE,
w r i t e a d d r $FFFFE,
w r i t e addr SFFFFE,
w r i t e addr SFFFFE,

da ta $DO48
da ta $ 6 8 2 4
da ta $3412
data SlA09
data $8D04
data $4682
da ta $ 2 3 4 1
data $91AO
data $48DO
data $ 2 4 6 8

For More Information:

The "Overview of TL/l" section of the Programmer's
Manual.

runuut
special function

Syntax:

runuut addr <address 1 > [, break <address 2>]

Syntax Diagram:

runuut - addr caddress 1 >

L , break <address 2 > J

Description:

Causes the UUT to begin executing instructions from its own
memory, asynchronously to the system.

0 Arguments:
address 1 Start address.

address 2 Break address.

Example 1:

runuut addr $ 1 2 3 5
! start at hex address 1 2 3 5

Example 2:

runuut addr (read addr SFFFE)
! start at address read from location FFFE

Example 3:

runuut addr $1235 , break $2000
! start at hex address 1 2 3 5
! stop at hex address 2 0 0 0

runuut

Remarks:

Typically, runuut would be followed by waituut with a suitable
maxtime value which would allow the UUT time to complete its
operation.

Some pods have a breakpoint capability which can optionally be
enabled by specifying a stop address with the "break" argument.
Generally, pods designed before the 80286-era cannot use the
"break" feature. Refer to your pod manual for more specific
information.

Execution of runuut continues until one of the following events
occurs:

The pod encounters a breakpoint.

A DCE condition occurs.

A hultuut is executed.

The time specified in a waituut expires.

The RESET key is pressed on the operator's keypad.

The RUN UUT HALT command is entered from the
operator's keypad.

Faults which occur during the execution of runuut are reported
on the subsequent haltuut or waituut. Attempts to perform any
pod-related operations except waituut, haltuut, or polluut will
result in an error if the runuut is still active. You must execute
haltuut or waituut before attempting any other pod-related
operations.

Related Commands:

compare, hultuut, polluut, waituut

runuut

For More Information:

The "Overview
Manual.

of TL/ln section of the Programmer's

The Fluke pod manual for the microprocessor you are
using.

runuut

special fbnction
@m+

Syntax:

runuutspecial addr <address 1> [, break <address 2>]

runuutspecial (<address I>, <address 2>)

runuutspecial ()

Syntax Diagram:

runuutspeclal

addr < address I r

break < address 2 r

Description:

Causes the UUT to begin executing instructions from its own
memory, asynchronously to the system. Execution begins at the
virtual address specified. If none is specified, runuutspecial
defaults to an address that is pod dependent.

Arguments:

address 1 Virtual start address.

address 2

Example 1:

Stop address.
(Default = 0)

runuutspecial ()
! start at pod-dependent starting
! address.

Example 2:

runuutspecial addr (read addr SFFFE)
! start at virtual address read from
! location FFFE

runuutspecial

Example 3:

runuutspecial addr $1235, break $2000
! start at h e x virtual address 1235
! stop at h e x address 2000

Remarks:

Some pods have special addresses where a runuut may begin.
Such addresses may read a reset or interrupt vector from
memory and begin execution at that address.

Typically, runuutspecial would be followed by waituut with a
suitable maxtime value that allows the UUT time to complete its
operation.

Some pods have a breakpoint capability which can optionally be
enabled by specifying a stop address with the "break" argument.
Generally, pods designed before the 80286-era cannot use the
"break" feature. Refer to your pod manual for more specific
information.

Execution of runuutspecial continues until one of the following
events occurs:

The pod encounters a breakpoint.

A DCE condition occurs.

A haltuut is executed.

The time specified in a waituut expires.

The RESET key is press on the operator's keypad.

The RUN UUT HALT command is entered from the
operator's keypad.

runuutspecial

Faults that occur during the execution of runuutspecial are
reported on the subsequent haltuut or waituut. Attempts to
perform any pod-related operations except waituut, haltuut, or
polluut results in an error if the runuutspecial is still active. You
must execute haltuut or waituut before attempting any other pod-
related operations.

Related Commands:

compare, haltuut, polluut, waituut, runuut

For More Information:

The "Overview of TL/1 " section of the Programmer's
Manual.
The Fluke pod manual for the microprocessor you are
using.

Supplemental Pod Information for 91 00Al91 O5A User's
Manual.

runuutspecial

runuutvirtual
special function

4 j *
Syntax:

runuutvirtual [extadddr <ext>,] addr <address 1>
[, break <address 2>]

runuutvirtual (<address 1>, caddress 2>)

runuutvirtual ()

Syntax Diagram:

runuutvirtual extaddr c ext 2

Description:

Runuutvirtual is a compete replacement for the obsoleted
runuutspecial command. Runuutvirtual causes the UUT to
begin executing instructions from its own memory,
asynchronously to the system. Execution begins at the virtual
address specified. If none is specified, runuutvirtual defaults to
an address that is pod dependent.

Arguments:

ext Extended address bits used to
form virtual addresses from
address 1 and address 2.

address 1 Start address.

address 2

Example 1:

Breakpoint address.
(Default = 0)

runuutvirtual ()
! start at pod-dependent starting
! address.

runuutvirtual

Example 2:

r u n u u t v i r t u a l addr (r e a d addr SFFFE)
! s t a r t a t v i r t u a l address read from
! l o c a t i o n FFFE

Example 3:

r u n u u t v i r t u a l addr $1235, break $2000
! s t a r t a t hex v i r t u a l add re s s 1235
! s t o p a t hex address 2000

Remarks:

Some pods have special addresses where a runuut may begin.
Such addresses may read a reset or interrupt vector from
memory and begin execution at that address.

Typically, runuutvirtual would be followed by waituut with a
suitable maxtime value that allows the UUT time to com~lete its
operation.

Some pods have a breakpoint capability which can optionally be
enabled by specifying a stop address with the "break" argument.
Generally, pods designed before the 80286-era cannot use the
"break" feature. Refer to your pod manual for more specific
information.

Execution of runuutvirtual continues until one of the following
events occurs:

The pod encounters a breakpoint.

A DCE condition occurs.

A hultuut is executed.

The time specified in a waituut expires.

The RESET key is press on the operator's keypad.

The RUN UUT HALT command is entered from the
operator's keypad.

runuutvirtual

Faults that occur during the execution of runuutvirtual are
reported on the subsequent haltuut or waituut. Attempts to
perform any pod-related operations except waituut, haltuut, or
polluut results in an error if the runuutvirtual is still active. You
must execute haltuut or waituut before attempting any other pod-
related operations.

Related Commands:

compare, haltuut, polluut, waituut, runuut

For More Information:

The "Overview of TLI1" section of the Programmer's
Manual.
The Fluke pod manual for the microprocessor you are
using.
Supplemental Pod Information for 91 00Al91 O5A Users
Manual.

runuutvirtual

setbit
operator

Syntax:

s e t b i t <number>

Syntax Diagram:

setblt - <number>

Description:

Calculates the number that results from setting the bit whose
index is given by the operand.

Arguments:

number Index on bit to set.

x = s e t b i t 3 ! t h e v a r i a b l e x i s s e t t o 8

Remarks:

An argument value greater than 3 1 (decimal) causes an error.

Related Commands:

bitmask

setbit

setoffset
function

Syntax:

s e t o f f s e t [device <device name>] [, o f f s e t <value>]

s e t o f f s e t (<device name>, <value>)

s e t o f f set ()

Syntax Diagram:

setoffset device < device name z

offset <value :, . e I '
Description:

Sets the delay offset for the specified I/O module or probe
device. The value entered is biased by a value of 1000000
(decimal). For example, if data is to be sampled 10
nanoseconds before the calibration point, enter a value of
999990 (decimal). The delay lines in the hardware (I10 module
or probe) will be set to the closest tap possible, which provides
the desired delay offset. The I/O module has a resolution of
about 15 nanoseconds per tap, and the probe has a resolution of
about 4 nanoseconds per tap.

Each sync mode has a separate offset associated with it. For this
reason, changing sync modes will change the offset.

Arguments:

device name I/O module name or probe name.
(Default = "/probeM)

value Desired offset from calibration point.
The value entered is biased by 1000000
(decimal).
(Default = 1000000)

setoffset

Returns:

Returns a status of 1 or 0. A one indicates that the setting of the
offset was successful (within the range of the hardware). A zero
indicates that when setting the offset with the current calibration
value, the resulting delay line setting is out of the range of the
hardware. In this case, the hardware will still be set as close as
possible to the desired offset; that is, the offset will be set to
either the maximum or minimum of its range, depending on the
offset value.

Example 1:

! Set an offset of -10 nanoseconds for the
! probe in pod address sync

sync device "/probew mode "pod"
sync device "/podw, mode "addr"
offset - value = 1000000 - 10
sts = setoffset device "/probew, offset
offset value
if (sts-= 1) then

print "setoffset succeeded"
else

print "setoffset failed"
end if

Example 2:

! Set an offset of 0 nanoseconds for 1/0
! module 1 in pod data sync

sync device "/modlW, mode "pod"
sync device "/podw, mode "data"
offset-value = 1000000
sts = setoffset device "/modlW, offset offset-value
if (sts = 1) then

print "setoffset succeeded"
else

print "setoffset failed"
end if

setoffset

Example 3:

! Set an offset of 25 nanoseconds for 1/0
! module 4 in ext sync

sync device "/mod4", mode "ext"
offset value = 1000000 + 25
sts = setoff set device "/mod4", off set off set-value
if (sts = 1) then

print "setoffset succeeded"
else

print "setoffset failed"
end if

Remarks:

The setoflset command is valid only if the sync mode is "pod"
or "ext"

In most cases, this function will not need to be used. Once the
probe and VO module have been calibrated to a particular pod,
their delay lines will have been set properly for the selected sync
mode. But if special situations arise, where it is desired to
"move" the clock point around, this command can be used.

These offsets are always relative to an edge. The calibration
procedure for the probe and VO module finds the correct delay
settings for a particular edge (for example, falling edge of ALE
on the 8088 pod in address sync mode). The calibration
procedure then sets an offset from that edge as defined in the
pod database. When calibrating to ext, the offset is set to zero.
This setoflset command allows other values of offset to be used,
rather than these defaults.

Remarks concerning example 1 (using pod sync):

In the 80286 pod, assume that address sync is specified to occur
45 nanoseconds prior to the rising edge of signal -S 1. When
calibration is performed, the hardware delay lines will be set as
close as possible to this point. If getoffset is performed at this
point, it will return a value of 999955 (decimal) or a value close
to that, since the hardware provides delays in incremental
values. If it is desired to sample a signal 20 nanoseconds before

setoffset

the rising edge of -S 1, an offset of 999980 (decimal) would be
used. If it is desired to sample a signal exactly on the edge of
-S1, an offset of 1000000 (decimal) would be used. And if it
was desired to sample 35 nanoseconds after -S1, an offset of
1000035 (decimal) would be used.

Remarks concerning example 3 (using external sync):

If getoffset were performed just after an external calibration, the
offset would return 1000000 (decimal) or some number near
1000000. This indicates that data will be sampled on the edge of
the clock signal. If it is desired to sample the signal 28
nanoseconds before the clock edge, the offset would be set to
999972 (decimal). Likewise, sampling after the clock edge
would require an offset value greater than 1000000 (decimal).

The range of the setofset command may vary from unit to unit.
You need to be careful with programs that require large offsets.
These offsets may be legal on some units but illegal on others.
The recommended procedure is to determine the allowable range
of offsets for a particular sync mode, and then make sure that
some guard band is left. This range can be determined by
selecting two very large offsets, such as +I000 nanoseconds
and -1000 nanoseconds. Since these values will drive the
hardware to its maximum settings, performing a getofset will
return the maximum and minimum allowable offset values
respectively.

Related Commands:

arm, getofset

For More Information:

The "Overview of TL11 " section of the Programmer's
Manual.
The "Offset Command" section of the Programmer's
Manual for information on using offsets with GFI.

setspace
function

Syntax:

setspace space <expression>

se tspace (<expression>)

Syntax Diagram:

setspace - space < expressh >

Description:

Sets the address space to the specified number.

Arguments:

expression A value returned by getspace or
sysspace.

Example:

program t e s t15
s = getspace space "memory", s i z e "byte"
setspace space s ! Sets the address space

! parameters.

s 2 = sysspace () ! Saves t he last-used
! address space parameters.

execute t e s t12 ! Suppose the program tes t12
! changes the address space.

setspace space s 2 ! Restores t he o r i g ina l
! address space parameters.

end program

Remarks:

Set the address space to the number returned by sysspace or
getspace. It is meaningless to give setspace a number other than
one returned by getspace or sysspace. An invalid space will
cause an error.

Related Commands:

getspace, sysspace

For More Information:

The "Overview of TLI1" section of the Programmer's
Manual.
Appendix I, "Pod-Related Information," in this manual.

setword
function

Syntax:

setword [device <device name>] [, word <word number>]
[, a s g i n s <pins>]

setword (<device name>, <word number> , <pins>)

Syntax Diagram:

word < word number >

asglns < pin6 >

Description:

Allows pin numbers to be grouped together to form a user
defined word. Setword is identical to the front panel operation
IOMOD SET WORD. Up to 40 unique pins may be grouped
together for each VO module in five different groups.

Arguments:

device name 110 module name, ("/mod1 ", "/mod2",
"/mod3 'I, or "/mod4").
(Default = "/mod1 ")

word number The number of the word group. Valid
values are from 1 through 5.
(Default = 1)

pins A string of from 1 through 40 unique
pin numbers.
(Default = "40 39 38 37 ... 4 3 2 1")

setword

Example 1:

setword device "/modlW, word 1, a s g i n s "1 2 3 4"

Example 2:

setword device "/modlW, word 5, a s g i n s "40 39 2 1"

Remarks:

The setword function is identical in operation to the front panel
operation IOMOD SET WORD. The purpose of this command is
to group together user related pins to form specific words for
use with the readword and writeword commands.

Only unique pin numbers between 1 and 40 inclusive are valid.

Related Commands:

readword, writeword

For More Information:

The "Overview of TL/lU section of the Programmer's
Manual.

shl
operator

Syntax:

<expression 1> shl [<expression 2>]

Syntax Diagram:

< expression 1 > T ::I J L < e x p r b Y i m r > J

Description:

Shifts the operand left by either one bit, or a specified number of
bits. The first operand is shifted left: by one bit if the second
operand is omitted, or by the number of bits specified by the
second operand.

Arguments:

expression 1 The operand to be shifted left.

expression 2 The number of bits to shift.
(Default = 1)

Returns:

The shifted number.

Example 1:

x = 7 shl ! the variable x is set to E

Example 2:

x = 7 shl 2 ! the variable x is set to 1C

Example 3:

x = 12 shl 2 ! the variable x is set to 30
! hexadecimal

Remarks:

The symbol, << , also denotes the shl operation.

An error is raised if expression 2 is greater than decimal 31.

Since shl operations are carried out from right to left,

a shl b shl c

is the same as:

a shl (b shl c)

Related Commands:

shr

shr
operator

0 Syntax:
<expression 1> s h r [<expression 2>]

Syntax Diagram:

Description:

Shifts the operand right by either one bit, or a specified number
of bits. The first operand is shifted right: by one bit if the
second operand is omitted, or by the number of bits specified by
the second operand.

The operand to be shifted right.

expression 2 The number of bits to shift.
(Default = 1)

Returns:

The shifted number.

Example 1:

y = $19 s h r ! t h e v a r i a b l e y i s s e t t o C

Example 2:

y = $19 s h r 3 ! t h e v a r i a b l e y i s s e t t o 3

Example 3:

y = 1 9 s h r 3 ! t h e v a r i a b l e y i s s e t t o 2

shr

Remarks:

The symbol, >> , also denotes the shr operation.

An error is caused if expression 2 is greater than decimal 3 1.

Since shr operations are carried out from right to left,

a s h r b s h r c

is the same as:

a s h r (b s h r C)

Related Commands:

shl

sig
function

Syntax:

s i g [device <device name>] [, p i n <p in number>]
[, r e f p i n < r e f p i n name>]

s i g (<device name>, <p in number>, < r e f p i n name>)

Syntax Diagram:

dovlco < devicenamer
pl n < pin number r
rolpln < refpinnamer

Description:

Returns the signature for one pin. The signature can be
requested either in terms of an VO module pin, a component pin,
or the probe. This command will return useful information only
after an am . . . readout block has taken a measurement.

Arguments:

device name VO module name, clip module name,
probe name, or reference designator.
(Default = "/probeM)

pin number

refpin name

Pin number of device specified.
(Default = 1)

Specifies the device and pin in string
format. The refpin argument is used to
override the device and pin values.
(Default = "")

Returns:

The 16-bit signature read.

Example 1:

modlist = clip ref "U3" , pins 40
modsig = sig device "U3" , pin 12

! Get sig on U3 pin 12

Example 2:

modsig = sig device "/modl", pin 12
! Get sig on pin 12 of I/O module 1

Example 3:

modsig = sig ("/modlA", 12,"")
! Get sig on pin 12 of 1/0 module 1, clip A
! A refpin value must be supplied.

Remarks:

The signature can be requested for a specific pin of an I10
module by specifying the module name ("Imodl", "/mod2",
etc.) as the device argument. The pin argument is interpreted as
an UO module pin. Refer to Appendix E for tables that show
what VO module pin numbers to use for every possible clip
module.

If a component name ("Ul", "U2", etc.) is specified as the
device argument, the pin argument is interpreted as a component
pin. The sig function determines the VO module and pin number
that corresponds to the specified component pin. The named
component must have been previously named in a clip
command.

If the smng value for refpin is not a null smng (""), the values
of the device and pin arguments are ignored.

The sig function should be called only after the execution of an
arm . . . readout block.

sig

Related Commands:

arm, count, level, readout

For More Information:

The "Overview of TLI1" section of the Programmer's
Manual.

sin
function

Syntax:

s i n ang le <express ion>

s i n (<expression>)

Syntax Diagram:

sln angle < expression >

Description:

Returns the sine function of the floating-point argument value.

Argument:

expression The floating-point argument
value, expressed in radians.

Returns:

A floating-point number

Examples :

f = s i n ((n a t u r a l p i) / 2 . 0)

f = s i n ang le t h e t a

Related Commands:

asin, natural

sin

sqrt
function

Syntax:

sqrt num <expression>

sqrt (<expression>)

Syntax Diagram:

sqrt nu m c expression r

Description:

Returns the square root of a floating-point argument value.

Arguments:

expression A floating argument value, which must
be greater than or equal to 0.0.

Returns:

A floating-point number.

Examples:

f = sqrt num f
f = sqrt (3.0)

Related Commands:

sqrt

stopcount
function

Syntax:

stopcount [device <device list>] [,count <number>]

stopcount (<device list >, <number>)

stopcount ()

Syntax Diagram:

stopcount

Description:

Sets the programmable stop count that turns off the response-
gathering hardware after the specified number of enabled clock
pulses. The stopcount function assigns this feature to the probe
or a single VO module and specifies the value of the stop count
(1-65535).

Arguments:

device list

number

VO module name, clip module name,
probe name, or combinations of these.
(Default = "/probe")

Number of clock pulses that the
response-gathering hardware should
count.
(Default = 1)

stopcount

Example:

mod = c l i p r e f "u55", p i n s 2 4
s topcount dev ice mod, count 1 0 0

Remarks:

When using stopcount, the edge command is required to set the
stop condition to "count".

To get the same count as that entered at the operator's keypad,
use a decimal number for the stopcount.

Example: stopcount count 1000

Related Commands:

a m , edge, readout

For More Information:

The "Overview of TL/lW section of the Programmer's
Manual.

storepatt
function

Syntax:

s t o r e p a t t dev i ce <device name>, p i n <p in number>,
p a t t < s t r i n g p a t t e r n > [, r e f p i n < r e f p i n name>]

s t o r e p a t t (<device name>, <p in number>, < s t r i n g
p a t t e r n > , < r e f p i n name>)

Syntax Diagram:

storepatt - dmvlcm < device name r , pln <pin numw r ...

... - , patt cstringpanernr
L , retpin < refpin name r A

Description:

Stores an arbitrary sequence of patterns that will be overdriven
with the VO module. The last pattern driven can be latched or
pulsed.

Arguments:

device name

pin number

string pattern

refpin name

VO module name, clip module name, or
reference designator.

Pin number affected.

Smng, composed of "l", "0", "X", or
l l ~ t l .

Specifies the device and pin in smng
format. The refpin argument is used to
override the device and pin values.
(Default = "")

storepatt

Example:

! driving a 7400 through its truth table

mod = clip ref "ul", pins 14
sync device mod, mode "int"
clearpatt device "ul"
storepatt device "ul" , pin 1, patt "0011"
storepatt device "ul" , pin 2, patt "0101"
storepatt device "ul", pin 4, patt "0011"
storepatt device "ul" , pin 5, patt "0101"
storepatt device "ul" , pin 9, patt "0011"
storepatt device "ul" , pin 10, patt "0101"
storepatt device "ul", pin 12, patt "0011"
storepatt device "ul", pin 13, patt "0101"

arm device mod
writepatt device "ul", mode "latch"

readout device mod

Remarks:

The storepatt command stores an arbitrary sequence of patterns
that will be overdriven with the VO module. The last pattern
driven can be either latched or pulsed. The overdrivers are
turned off either by writing a pattern that sets all pins to high-
impedance, or by using the clearourpurs command.

You describe the pattern to be driven using a pattern string.
Each string describes the pattern of highs, lows, and high-
impedance states that a single pin should be driven through.

Pattern strings are composed of the following characters: " 1" =
high; "0" = low; "X" or "x" = high-impedance.

For example, to use an VO module pin and drive it alternately
high and low, you would specify the following type of pattern
string: "10101010101010101010".

The pattern can be driven in the following terms: VO module
pins, pins on an VO module clip, or reference designator pins:

For UO module names: pin numbers are interpreted as
110 module pins. Each 110 module can have up to two
clips connected. The clips are referred to as "A" and "B",
depending on which end of the 110 module they are
connected to.

For clip module names: pin numbers are interpreted as
clip pin numbers.

For reference designator names: pin numbers are
interpreted as component pins. An error is generated if the
system does not recognize that the clip is connected to the
component. This error occurs when the programmer does
not use the clip command in the program.

If the smng value for refpin is not a null smng (""), the
values of the device and pin arguments are ignored.

Related Commands:

clearouputs, clearpatt, writepatt

For More Information:

The "Overview of TL11" section of the Programmer's
Manual.

storepatt

str
function

Syntax:

str num <expression 1> [, radix <expression 2>]

str (<expression I>, <expression 2>)

Syntax Diagram:

st r - nu rn < expression 1 2

, radlx < expression 2 z

Description:

Returns the string representation of the numeric operand.

expression 2

A numeric expression for the number to
be conve;ted into a string -
representation.

A numeric expression for the radix of
the number to be converted. The
allowed radices are 2 ,8 , lO(default), or
16.

eturns:

The string representing the converted number.

Examples:

x = str (256,lO) ! the variable x is set to the
! character string "256"

x = str(256,16) ! the variable x is set to the
! character string "100"

Related Commands:

fstr, val

strobeclock
function
4 j +

Syntax:

s t robec lock device <device l i s t>

s t robec lock (<device l is t>)

s t robec lock ()

Syntax Diagram:

Description:

Strobes the internal clock of the probe or the specified 110
module for clocking CRC signatures and synchronous level
histories.

Arguments:

device list VO module name, clip module name, or
probe name.
(Default = "/probeM)

Example:

mod = "/modlW
sync dev ice mod, mode " i n t "

! w i n t m mode i s r e q u i r e d f o r t h e
! s t robec lock command

coun te r dev i ce mod, mode " t r a n s i t i o n "
arm dev ice mod

s t robec lock dev ice mod
readout dev i ce mod

crc = s i g dev ice mod, p i n 1
l v l = l e v e l dev ice mod, p i n 1, type "clocked"

strobeclock

Remarks:

The "int" sync mode is required when using the strobeclock
command.

Related Commands:

arm, readout, sync

For More Information:

The "Overview of TL11" section of the Programmer's
Manual.

sync
function

Syntax:

sync [device <device l i s t>,] mode <mode name>

sync (<device l ist>, <mode name>)

Syntax Diagram:

sync mod a < mode name r
L devlca <devicelist> , J

Description:

Sets the synchronization mode for the pod, the probe, or a single
VO module. The allowable modes are a pod sync, external sync,
freerun sync, or internal sync.

@ Arguments:

device list

mode name

Pod, VO module name, clip module
name, probe name, or combinations of
these.
(Default = "/podM)

Pod sync modes: to match those on the
pod database.

Probe or I/O module sync modes:
"pod", "ext", "int", or "freerun".

Example:

mod = c l i p r e f "ul" , p i n s 1 6
sync dev ice mod, mode "pod"

sync dev ice "/podw, mode "addr"

sync dev ice " /probew, mode " f reerun"

sync

Remarks:

When using the "pod" mode for the sync command, you must
tell the pod what kind of pod sync signal should be generated.
This is done with a second sync command:

sync device "/probe", mode "pod"
sync device "/pod", mode "data"

Four 110 module or probe sync modes are allowed: external
sync, pod sync, freerun sync, and internal sync.

External Sync Mode

This mode qualifies the external Clock line with the external
measurement control Start, Stop, and Enable lines. For the
probe, the lines are available through the clock module. The UO
module has its own measurement control lines.

Start, Stop, and Clock are edge-sensitive inputs from the UUT.
Each can be made to respond to falling or rising edges. The
sync period can also be programmed to end after a specified
number of valid clock pulses, in which case the Stop input is
ignored. Enable is a level-sensitive signal and can be specified
by the enable command.

After an ann command is entered, and after a valid Start edge is
detected, the sync measurement period begins. Start is
recognized independently of the enabling condition, but data is
only gathered after the enabling condition becomes true.
Asynchronous data is gathered immediately after this point.
Synchronous data is gathered after the same point but only at the
selected clock edges.

The data gathering period ends when the Stop condition
becomes true: the selected Stop edge occurs, or a programmed
number of clock edges completes. The data-gathering period
ends when a readout command is executed.

In addition, this synchronization mode can be used to
synchronize the probe's pulsing output resulting from the pulser
command.

sync

Pod Sync Mode

This mode uses Pod Sync, an internal pod signal, as the clock.
The generation of Pod Sync can be made to depend on valid
address, data, or other (pod-dependent) cycles. The external
measurement control lines are ignored.

Data is gathered after an arm command until a readout command
is executed.

In addition, this synchronization mode can be used to
synchronize the probe's pulsing output resulting from the pulser
command.

Freerun Sync Mode

In this mode, the probe uses the 9100A/9105A system's internal
lk Hz clock for asynchronous output. The external Start, Stop,
Clock, and Enable lines are ignored.

For both the UO modules and the probe, asynchronous level
history and transition count data can be gathered between the
arm and readout commands. CRC signatures and clocked level
histories are not gathered.

In addition, this synchronous mode can be used to synchronize
the probe's pulsing output resulting from the pulser command.

Internal Sync Mode

This sync mode is designed to use a clock signal generated
internally be the strobeclock command. The external
measurement control lines (Start, Stop, Clock, and Enable) are
ignored.

In addition, this synchronous mode can be used to synchronize
the probe's pulsing output resulting from the pulser command.

sync

Related Commands:

arm, checkstatus, connect, enable, readout, strobeclock

For More Information:

The "Overview of TLI1" section of the Programmer's
Manual.
The Fluke pod manual for the microprocessor you are
using.

sysaddr
function

Syntax:

sysaddr 0

Syntax Diagram:

sysaddr- ()

Description:

Returns the last address written to or read from.

Returns:

The last address written to or read from.

Example:

lastaddr = sysaddr () ! stores the last address
! written to or read from in
! the variable lastaddr .

write addr sysaddr 0 , data $34

Remarks:

The value returned by sysaddr is used as the default address for
the next read or write initiated from the operator's keypad.

In some cases, the last address written to or read from does not
update sysaddr.

sysaddr

Related Commands:

sysspace

For More Information:

The "Overview of TL/lU section of the Programmer's
Manual.

sysdata
function

Syntax:

sysda ta 0

Syntax Diagram:

sysdata - ()

Description:

Returns the last data read or written.

Returns:

The last data read or written.

Example:

l a s t d a t a = sysda ta 0 ! s t o r e s t h e l a s t d a t a read
! i n t h e v a r i a b l e l a s t d a t a

w r i t e d a t a sysda ta 0 , addr next

Remarks:

The value returned by sysdata is used as the default data for the
next read or write initiated from the operator's keypad.

In some cases, the last data written or read does not update
sysdata.

svsdata

Related Commands:

sysspace

For More Information:

The "Overview of TL/lM section of the Programmer's
Manual.

sysinfo
special function

Syntax:

sysinfo get <attribute name>

Syntax Diagram:

syslnfo gel < attribute name >

Description:

The sysinfo command quieries information about the system.
Each system attribute which can be manifulated, has a unique
name. Currently, only the following system attribute can be
determined:

The string describing the system
software release version (for
example, "6.0").

/sy s tedmodel The string describing the system
model (for example, "9 loo",
"9105", "9100FT", or "9105FT").

When invoked with the 'get' argument, sysinfo returns a string
representing the value of the requesting attribute.

Arguments:

The name of the attribute to
retrieve.

Example:

The following retrieves the system software version string:

s = sysinfo get "/system/version"

s = sysinfo get "/system/model"

sysinfo

Remarks:

This command first appeared in the 6.0 software release.

For More Information:

The "Overview of TL/l" section of the Programmer's
Manual.

sysspace
function

Syntax:

sysspace 0

Syntax Diagram:

sysspace - ()

Description:

Returns the number associated with the last address space
accessed.

Returns:

The number associated with the last address space accessed.

Examples:

program t e s t 1 5
s = ge t space space "memory", s i z e "byte"
s e t s p a c e space s !

!

s 2 = sysspace 0 !
!

execute t e s t 1 2 !
!

s e t s p a c e space s 2 !
!

S e t s t h e add re s s space
parameters .

Saves t h e l a s t - u s e d
add re s s space parameters .
Suppose t h e program t e s t 1 2
changes t h e add re s s space .
Res to re s t h e o r i g i n a l
add re s s space parameters .

end program

sysspace

Related Commands:

getspace, setspace, sysaddr, sysdata

For More Information:

The "Overview of TLI1" section of the Programmer's
Manual.

systime
function

Syntax:

systime 0

Syntax Diagram:

Description:

Returns the number of seconds that have elapsed since a
particular date (January 1, 1980). This number alone is
generally not useful. However, the difference between the
numbers returned by two invocations of systime yields the
elapsed time in seconds between the two invocations. The
systime function also provides the argument for the readdate and
readtime functions that produce the current date and time.

Returns:

The number of elapsed seconds.

Example:

start = systime ()

testramfull addr 0, upto $7FFF
finish = systime ()
print "Full RAM test took ", finish - start,

I' seconds"

! prints: "Full RAM test took 368 seconds"
! if, testramfull requires six minutes and
! eight seconds to execute

systime

Related Commands:

readdate, readn'me

For More Information:

The "Overview of TLI1" section of the Programmer's
Manual.

tan
function

Syntax:

tan angle <expression>

tan (<expression>)

Syntax Diagram:

tan angle < expressh D

Description:

Returns the tangent function of a floating-point argument value.

Argument:

expression The argument (floating-point)
value in radians.

Returns:

A floating-point number.

Examples:

f = tan ((natural pi) / 4 . 0)
f = tan angle theta

Related Commands:

tan

testbus
function

Syntax:

testbus addr <address>

testbus (<address>)

Syntax Diagram:

testbus - addr <address z

Description:

Checks the address, data, and control lines for drivability.

address Readablelwritable address used for data
bus testing.

Example:

testbus addr SFFFF

Remarks:

The testbus test performs the following checks:

Tests for control-line drivability.

Tests for address drivability and tied address lines.

Tests for data drivability and tied data lines.

The specified address must be a RAM location to prevent
erroneous data line faults from being reported.

testbus

It is not a good idea to use testbus as a stimulus in GFI. The
algorithm for this functional test could change and this would
also change any resulting signatures. The commands
toggleaddr, toggledata, rampaddr, and rampdata should be used
instead.

Related Commands:

fails, passes

For More Information:

The "Overview of TL11" section of the Programmer's
Manual.

testramfast
function

Syntax:

testramfast addr <addr>, upto <upto> [, mask
<mask>], addrstep <addrstep> [, delay <delay>]
[, seed <seed>]

testramfast (<addr>, <upto>, <mask>, <addrstep>,
<delay>, <seed>)

Syntax Diagram:

testramfast , addr < addf > , upto < uplo> ...
L , mask < mask > -1

... , , addrstep<addrstep> ...
L , delay <delay > A

Description:

Performs a probabilistic test on RAM.

Arguments:

addr Starting address.

upto

mask

addrstep

delay

Ending address.

Bit mask of testable data bits.
(Default = $FFFFFFFF)

Address increment.

Milliseconds to delay between sweeps.
(Default = 250)

testramfast

seed Number to be used as seed for pseudo-
random number generator.
(Default = 0; seed based on real-time
clock.)

Example 1:

testramfast addr $B, upto here, addrstep 2
! address hex B to address in variable
! "here"

Example 2:

testramfast addr $1234, upto $12FE, mask $7F,
addrstep 2

! only the lower 7 data bits are tested

Remarks:

The fast RAM test is a probabilistic test which has complete
coverage of a wide range of common faults and very thorough
coverage of nearly every possible RAM fault. Each word is
accessed five times using pseudo-random data.

The coverage of testramfast is shown on the next page. "P"
represents the probability that a fault is not detected. "K"
represents the number of addresses affected by the fault. The
values which appear in parentheses are the actual probabilities
for a 16K memory. Larger memories have better fault coverage.

testramfast

testrarrgfast Coverage

Fault Condition

Stuck cells

Aliased cells

Stuck address lines

Stuck data lines

Shorted address lines

Shorted data lines

Multiple selection decoder

Dynamic coupling

Aliasing between bits in
same word

Refresh problems

Pattern sensitive faults

Coverage

Always found.

Always found.

Always found.

Always found.

Always found.

P = 0 .5~ .

P = O S K (2.9 x for a row
or column decoder.

P = 0 . 7 5 ~ (0.75 for 1 cell
coupling to 1 other cell).

P = 0SK.

Always detected if the delay is
sufficiently long and standby
reads do not mask the problem.

Because of the random nature of
this test, some pattern sensitive
faults can be detected.

The seed parameter controls the exact sequence of pseudo-
random values which are generated. When the seed argument is
zero, the 9100A19105A generates a different sequence of
pseudo-random data at each pass through the memory. You
should specify zero in most applications.

The mask parameter provides a convenient method for testing
the parity bit of memories so equipped. First you perform a
testramfast test with a mask that tests all valid data bits. Then
you do a second testramfast test, but use a mask with an odd
number of bits set. In addition, this second test is done with a
line of a clip module connected to the output of the memory
parity tree. The DCE condition is generated by using a compare

testramfast

command with a compare string only one bit long, which checks
for the desired logic level at the parity tree output.

The procedure for testing memories with error-correcting codes
is similar, except that you should choose a mask such that
toggling the bits specified by the mask will cause all the check
bits to toggle.

Related Commands:

fails, passes, testramfill

For More Information:

The "Overview of TLI1" section of the Programmer's
Manual.

testramfull
function
+m*

Syntax:

testramfull addr <addr>, upto <upto> [, mask
<mask>], addrstep <addrstep> [, delay <delay>]
[, coupling <coupling>]

testramfull (<addr>, <upto>, <mask>, <addrstep>,
<delay>, <coupling>)

Syntax Diagram:

testramfull - addr <addr> , upto < upror ...
L , mask <mask> J

... - , addrstep t addrsrep> ...
L , delay < d e l a y r A

L , coup~ng < coupling r -I

Description:

Performs a deterministic test of RAM functionality. It couples a
test for static and dynamic coupling of cells in the same data
word with a comprehensive Suk and Reddy B-test (a standard
algorithm for testing memory).

Arguments:

addr

mask

addrstep

Starting address.

Ending address.

Bit mask of valid data bits.
(Default = $FFFFFFFF)

Address increment.

testramfull

delay Milliseconds to delay between sweeps.
(Default = 250)

coupling "ont' or "off'.
(Default = "off ')

Example 1:

testramfull addr $B, upto here, addrstep 2
! address hex B to variable address "here"

Example 2:

testramfull addr $1234, upto $13FF, mask $ 7 ~ ,
addrstep 2

Remarks:

The full RAM test is a deterministic test of RAM functionality.
With coupling disabled, each word is accessed 17 times. With
coupling enabled, each word is accessed 29 times for 8-bit
spaces, 33 times for 16-bit spaces, and 37 times for 32-bit
spaces.

This test has been found to be superior to testramfast in finding
faults caused by electrical transients in the bus where worst-case
fault detection occurs when writing data with all ones or all
zeros. Fault coverage for testramfill is shown on the next page.

testramfull

testran3full Coverage

Fault Condition

Stuck cells

Aliased cells

Stuck address lines

Stuck data lines

Shorted address lines

Shorted address lines

Multiple selection decoder

Dynamic coupling

Aliasing between bits in
same word

Refresh problems

Pattern sensitive faults

Coverage

Always found.

Always found.

Always found.

Always found.

Always found.

Always found if coupling is
enabled or in buses through
which the first or last address
must pass.

Always found.

Always found.

Always found if coupling is
enabled.

Always found if delay is
sufficiently long and standby
reads do not mask the problem.

Not found.

The delay parameter specifies the amount of time that the test
waits between sweeps. This delay can be increased to find
faults related to the dynamic memory refresh circuit.

The mask parameter provides a convenient method for testing
the parity bit of memories so equipped. First you perform a
testramfull test with a mask that tests all valid data bits. Then
you do a second testramfull test, but use a mask with an odd
number of bits set. In addition, this second test is done with a
line of a clip module connected to the output of the memory
parity tree. The DCE condition is generated by using a compare
command with a compare string only one bit long, which checks
for the desired logic level at the parity tree output.

testramfull

The procedure for testing memories with error-correcting codes
is similar, except that you should choose a mask such that
toggling the bits specified by the mask will cause all the check
bits to toggle.

The coupling test verifies that, for every word, each pair of bits
in that word can store opposite values. For many memory
systems, the coupling test will not be necessary since the pretest
checks for this with the first and last addresses, even with
coupling disabled. However, for some memory systems,
enabled coupling will be required in order to have a fully
conclusive test.

You can specify an exhaustive check for coupling between bits
in the same word (shorted data bus lines manifest as this fault at
every address) by enabling coupling. For an eight-bit space the
values 55, AA, 33, CC, OF, and FO are written to every word
and read back. Wider spaces are similar.

Related Commands:

fails, passes, testramfast

For More Information:

The "Overview of TL11" section of the Programmer's
Manual.

testromfull
function
4m*

Syntax:

testromfull addr <addr>, upto <upto> [, mask
<mask>], addrstep <addrstep>, sig <expsig>

testromfull (<addr>, <upto>, <mask>, <addrstep>,
<expsig>)

Syntax Diagram:

testromlull- addr < addrr , upto < uptor ...
L , mask <mask r J

. . . , , addrstep < addrstep r - , slg < expsig r

Description:

Verifies that the signature data contained by a range of ROM
matches the signature obtained from a c 0 ~ e c t . 1 ~ programmed
ROM.

Arguments:

addr Starting address.

upto

mask

Ending address.

Bit mask of valid data bits.
(Default = $FFFFFFFF)

addrstep Address increment.

expsig Expected signature.

Example 1:

testromfull addr 0, upto $7FF, addrstep 1, sig
$BE26

testromfull

Example 2:

testromfull addr first, upto last, mask $7C,
addrstep 4, sig $31BC

Remarks:

The ROM test (testromfull) verifies that the signature data
contained by a range of ROM matches the signature obtained
from a correctly programmed ROM. If the measured signature
does not match the expected signature, a diagnostic routine
attempts to locate the fault.

As with all signature-based schemes, there is some probability
(over the space of possible faults) that a faulty ROM will still
have the correct signature. Only one in 65536 randomly chosen
faults are missed. However, all faults that are confined to one
bit-slice and 16 or fewer consecutive addresses are reported.

Should the signature be wrong, a diagnostic attempts to ascertain
a likely cause. The following conditions may be reported as
possible problems:

A bit slice all zeros.

A bit slice all ones.

Two bit slices identical.

An address bit ineffective.

Related Commands:

fails, getromsig , passes

For More Information:

The "Overview of TL/lW section of the Programmer's
Manual.

threshold
function
4-a

Syntax:

t h r e s h o l d [device <device l i s t >] [, l e v e l < l e v e l
name>]

t h r e s h o l d (<device l i s t> , < l e v e l name>)

t h r e s h o l d ()

Syntax Diagram:

threshold dovlco < devfce //st z

Iovol <levelnamer IF0 4'
Description:

Sets the input threshold levels for the probe or an VO module.
The allowable levels are "ttl", "cmos", or (for the probe only)
"rs232". "ecl" is allowed for the probe if ecl capability is
installed.

Arguments:

device list

level name

VO module name, clip module name,
probe name, or combinations of these.
(Default = "/probew)

VO module threshold levels "ttl" or
"cmosI'.

Probe threshold levels: "ttl", "cmos", or
"rs232" if ecl capability is not installed.

threshold

Probe threshold levels: "ttl", "cmos",
"rs232", or "ecl" if ecl capability
installed.

Example 1:

mod = c l i p device "a l" , p ins 2 4
t h r e s h o l d device mod, l e v e l "ttl"

Example 2

t h r e s h o l d ("/modl", "ttl")

For More Information:

The "Overview of TLI1" section of the Programmer's
Manual.

toggleaddr
function

Syntax:

toggleaddr addr <address>, mask <mask>

toggleaddr (<address>, <mask>)

Syntax Diagram:

toggleaddr - addr <address> , mask <mask>

Description:

Performs a series of read functions to stimulate the
microprocessor's address bus. For each 1 in the mask, two
accesses are performed: one at the address with the masked bit
set and one at the address with the masked bit cleared.

Arguments:

address Address.

mask Bit mask of address bits to toggle.

Example:

toggleaddr addr $1004, mask $25
! addr 1 0 0 4 hex = 0 0 0 1 0000 0000 0100
! mask 2 5 hex = 0000 0000 0010 0 1 0 1

toggleaddr

The system performs a series of six reauk as shown below:

read addr $1004
read addr $1005

read addr $1004
read addr $1000

read addr $1004
read addr $1024

Remarks:

Accesses are made in pairs for each bit in the mask, first at the
original address and then at the address with the bit toggled.

The number of read's is equal to twice the number of bits set in
the mask. The data read is not returned.

A 9000-series toggle address (ATOG) performs the equivalent
of a toggleaddr for a single bit. Therefore, the following pairs
of commands are equivalent:

toggleaddr addr $100, mask 1 ATOG @ 100 Bit 0
toggleaddr addr $100, mask $10 ATOG @ 100 Bit 4

For More Information:

The "Overview of TLI1" section of the Programmer's
Manual.

togglecontrol
function

Syntax:

t o g g l e c o n t r o l c t l < c o n t r o l word>, mask <mask>

t o g g l e c o n t r o l (< c o n t r o l word>, <mask>)

Syntax Diagram:

togglecontrol - ctl < mtroi w r d > , mask <mask >

Description:

Performs a series of writecontrols to stimulate the
microprocessor's control bus. For each 1 in the mask, two
writecontrols are performed: one with the masked bit set, and
one with the masked bit cleared.

Arguments:

control word Control word.

mask Mask of control bits to toggle.

Example:

t o g g l e c o n t r o l c t l 1, mask $41

The system performs two pairs of writeconrrols:

w r i t e c o n t r o l c t l 1
w r i t e c o n t r o l c t l 0

w r i t e c o n t r o l c t l 1
w r i t e c o n t r o l c t l $41

togglecontrol

Remarks:

Writes are performed in pairs for each bit in the mask, first with
the original control word and then with the toggled value.

For More Information:

The "Overview of TL/ln section of the Programmer's
Manual.

toggledata
function
44mp

Syntax:

toggledata addr < a d d r > , da ta < d a t a > , m a s k < m a s k >

toggledata (< a d d r > , < d a t a > , < m a s k >)

Syntax Diagram:

toggledata - addr <address> , data <data> , mask <mask> -

Description:

Performs a series of writes to stimulate the microprocessor's
data bus. For each 1 in the mask, two writes are performed:
one with the masked data bit set and one with the masked data

addr Address.

data Data value.

mask Mask of bits to toggle.

Examples:

toggledata addr SEEDO, da ta SAA, m a s k $ 5 5

The system performs:

w r i t e addr SEEDO, data $AA
w r i t e addr SEEDO, data $AB

w r i t e addr SEEDO, data $AA
w r i t e addr SEEDO, data $AE

(e x a m p l e i s con t inued on t h e next page)

toggledata

write addr SEEDO, data $AA
write addr SEEDO, data $BA

write addr SEEDO, data $AA
write addr SEEDO, data SEA

Remarks:

Writes are performed in pairs for each bit in the mask, first with
the original data and then with the toggled data.

For More Information:

The "Overview of TL/lN section of the Programmer's
Manual.

token
function

Syntax:

t o k e n s t r < s t r i n g > [, s e p s < s e p a r a t o r s > [, f rom
< s t a r t index>]

t o k e n (< s t r i n g > , <seps> , < s t a r t index>)

Syntax Diagram:

token 6tr c string r . . .
, rep6 c separators r

. . .
, from c start index r

Description:

Implements token scanning from strings, where the tokens can
be distinguished by the presence of one or more separator
characters.

Arguments:

string

separators

The string expression that is being
scanned for a token.

A string containing the set of separator
characters that can separate token values.
Each character in the set is considered
equivalent to all other characters in the set.
No character fiom the separator set is
included in any returned token sting value.
The default set of separator characters is
(newline, linefeed, space, tab).

token

start index The index in the string to start scanning
for the next token substring, where an
index value of 1 corresponds to the first
character in the string. If the start index
is not supplied, scanning starts at the
beginning of the string unless the
previous call to the token command
supplied the same string argument. In
that case, scanning continues at the
position in the string immediately
following the last returned token.

Returns:

The next and largest possible substring from the source string
that does not contain any characters from the set of separators,
skipping over any initial separator prefix sequence. If there are
no more substrings that do not contain non-separator characters,
then an empty string is returned.

Examples:

Given an arbitrary input string in-string, extract the "words"
(where a word is any non-white- space sequence of characters),
assigning up to 10 words to the elements of a string array:

declare string array [1:10] words
! extract the first word
next-word = token str in-string, from 1
i = l
loop while (next-word <> "")

if (i <= 10) then
words [i] = next-word

! extract the next word
next-word = token str in-string

else
next-word = ""

end if

i = i + l
end loop

token

Suppose an IEEE-488 device outputs a single floating-point
number string value, with an arbitrary number of leading spaces
and a carriage return, linefeed character sequence a f g e a c h
value. The following program example strips the whitespace
(the spaces, carriage return and linefeed), then converts the
remaining string to a floating-point number. If the device is
opened with the termination character of the channel set to
lihefeed, the problem reduces to stripping the spaces and the
carriage return:

declare numeric ieee-chan
declare numeric term-chan
declare string val-string
declare floating val-number

term-chan = open device "/termlm
ieee-chan = open device "/ieee/lW,. term "\OAW
print on ieee-chan, "val?"
input on ieee-chan, val-st ring
val-string = token str val-string, from 1
! strip whitespace
if (isflt (val-string)) then

val-number = fval (val-string)
print on term-chan,
"value is ", val-number

else
print on term-chan,
"received a bogus value: ", val-string

end if

Suppose an IEEE-488 device outputs analog measurements in
the following format:

chan (<nn>) : <ss> <f f f f . . . >

where <nn> represents a "channel number" in radix 10, <ss>
represents a measurement status in radix 16, and <ffff. ..> is a
string representation of the floating-point measurement value.

The following TL/1 fragment extracts these various fields, given
the initial input string in the string variable meas-string:

meas-seps = " 0 : " ! the set of separators
! skip the "chan" substring
token (meas-string, meas-seps, 1)

token

! extract the channel number
chan-string = token str meas-string, seps
meas-seps

if (isval (chan-string, 10)) then
chan-num = val(chan-string, 10)

else
! measurement string syntax error
! detected
return (0)

endif

! extract the measurement status
status-string = token str meas-string,
seps meas-seps

if (isval (status-string, 16)) then
meas-status = val (status-string, 16)

else'
!measurement string syntax error
!detected
return (0)

endi f

! extract the measurement value
value-string = token str meas-string, seps
meas-seps

if (isflt (value-string)) then
meas-value = fval(va1ue-string)

else
! measurement string syntax error
! detected
return (0)

endif

Remarks:

The token command is useful for separating the fields of an
input string from one another. Given a particular input smng,
token can be called repeatedly to extract the fields of the smng.

Related Commands:

isval, isjlt

val
function

Syntax:

val str <string> [, radix <radix>]
val (<string>, <radix>)

Syntax Diagram:

val str <string >

L , radix <radix> 1

Description:

Calculates the numeric value of the string operand using the
specified radix.

Arguments:

smng

radix

A smng which represents a number.

A numeric expression for the radix to
use for the returned number. Allowed
values for radix are 2, 8, 10 (default),
and 16.

Returns:

A numeric value.

Example:

x = val ("15",16) ! the variable x is set to
! the numeric value of
! hexadecimal 15

x = val ("15",10) ! the variable x is set to
! the numeric value of decimal 15

Related Commands:

pal, str, isval

wait
function

Syntax:

wait time <expression>

wait (<expression>)

Syntax Diagram:

walt t l me < expression r

Description:

Causes program execution to pause for the specified number of
milliseconds.

Argument:

expression

Example:

Approximate length of time in
milliseconds.

wait time 1000
! Generate a one-second pause (plus or
! minus about 50 milliseconds)

wait

Remarks:

You must use wait commands carefully since they can cause a
program to pause indefinitely. The wait command cannot be
used to generate exact timing. The precision of the timer is
approximately 50 milliseconds; longer waits may result if the
9 100Al9 lO5A must service interrupts or perform other
operations.

For More Information:

The "Overview of TL11" section of the Programmer's
Manual.

waituut
function

Syntax:

wai tuut maxtime <express ion>

wai tuu t (<express ion>)

Syntax Diagram:

waltuut - rnaxtlrne c expression >

Description:

Suspends TL/1 program execution until one of the following
conditions occurs:

The pod encounters a breakpoint.

The DCE condition occurs.

The number of milliseconds specified by the expression
expires.

Argument:

expression

Example:

A numeric expression for the maximum
timeout limit value in milliseconds.

runuut addr SFFOO
wai tuu t maxtime 4000 ! suspends TL/1 program

! execut ion f o r 4 seconds
! whi le t h e UUT i s c o n t r o l l e d
! by i t s own program

waituut

Remarks:

After executing runuut, you must invoke either haltuut or
waituut to regain control of the pod before executing other
statements that send commands to the pod.

The command waituut (0) is equivalent to haltuut 0.

The waituut command is usually preferred over continuous
looping using polluut because it frees the 9100A/9105A
processor for other functions.

Related Commands:

haltuut, polluut, runuul

For More Information:

The "Overview of TL/1 " section of the Programmer's
Manual.

winctl
function

Syntax:

w i n c t l channel <channel express ion>, p o s i t i o n
< p o s i t ion>

Syntax Diagram:

wlnctl - channel < channel expression > - , posltlon < pmi~m > -

Description:

Controls the window position for the specified channel.

Arguments:

channel expression A numeric exmession to define a
channel openedLto write on the desired
window. Remember that /term1 and
/term2 are also considered windows.

position The position is one of the following:

"front" The window covers all
other windows.

"back" The window is covered by
all other windows.

"hide" The window is invisible.

"unhide" The window becomes
visible.

winctl

Example 1:

w i n c t l channel chanl , p o s i t i o n " f r o n t "

Example 2:

w i n c t l channel chan2, p o s i t i o n "hide"

Remarks:

A window in the front covers all other windows. A window in
the back is covered by all other windows. A window when
hidden becomes invisible, but remains in the same position on
the screen.

Related Commands:

open

For More Information:

"The Overview of TL/1" section of the Programmer's
Manual.

write
function

Syntax:

write addr <address>, data <data>

write (<address>, <data>)

Syntax Diagram:

w r l t e addr <address> , data <data>

Description:

Writes the specifkd data to the specified address.

Arguments:

address Address at which to write.

data Data to write.

Examples:

write addr $5567, data $21 ! writes hex 21 at
! hex address 5567

write data $34, addr $CDD3FF ! writes hex 34
! at hex address
! CDD3FF

write

Remarks:

Refer to the pod manual for the microprocessor you are using to
find specific address and data formats.

For More Information:

The "Overview of TL11" section of the Programmer's
Manwl.

writeblock
function
4m*

Syntax:

writeblock file <file name> [, format
<format name>]

writeblock (<file name>, <format name>)

Syntax Diagram:

wrlteblock - flla <filename r
L , format < rtxmarname r J

Description:

Loads the contents of a file in a standard ASCII form (Motorola
S-Record format or Intel Hex format) into UUT or pod overlay
RAM. The file contains information about the starting address
and number of data bytes.

Arguments:

file name The name of the file containing the
required data.

format name The ASCII format in which the data
was previously stored. Either
"motorola" or "intel".
(Default = "motorola".)

Examples:

writeblock file "test-lcd", format "motorola"

writeblock ("pgml", "motorola")

writeblock

Related Commands:

loadblock, readblock

For More Information:

The "Overview of TL/1 " section of the Programmer's
Manual.

writecontrol
function
4 j *

Syntax:

w r i t e c o n t r o l c t l < c o n t r o l word>

w r i t e c o n t r o l (< c o n t r o l word>)

Syntax Diagram:

wrltetontrol - ctl <control wwdr

Description:

The writecontrol command writes the specified data to the
control lines of the pod.

Arguments:

control word Control word.

Examples:

w r i t e c o n t r o l ($Al)

w r i t e c o n t r o l c t l $13

Remarks:

Not all control lines are writable; the lines that are writeable
depend on the type of pod you are using. The lines are asserted
for a moment while drivability is tested. Refer to your pod
manual for more information.

writecontrol

Related Commands:

For More Information:

The "Overview of TL11" section of the Programmer's
Manual.
The Fluke pod manual for the rni~~~processor you are
using.

writefill
function -

Syntax:

writefill addr <address 1>, upto <address 2>, data
<data>

writefill (<address 1>, <address 2>, <data>)

Syntax Diagram:

wrlteflll - addr <address 1 > , upto <address2> , data <data > -

Description:

The writejill command writes the specified data to each address
within the specified address range.

Arguments:

address 1 Starting Address.

address 2 Ending Address.

data Data value.

Examples:

writefill addr $1000, upto $1FFF, data $21

writefill (0, $7F, S123D567E)

For More Information:

The "Overview of TL/l" section of the Programmer's
Manual.

writefill

writef ill-2

writepatt
function

Syntax:

w r i t e p a t t [device < d e v i c e l is t>] [, m o d e < m o d e
n a m e >]

w r i t e p a t t (< d e v i c e l ist>, < m o d e n a m e >)

w r i t e p a t t ()

Syntax Diagram:

wrltopatt dovlco < device l l s r ~
mode <modename>

a
Description:

Overdrives the specified sequence of patterns through the VO
module. The pattern to be written to each pin is stored
beforehand using the storepatt command.

Arguments:

device list

mode name

VO module name, clip module name,
reference designator, or combinations
of these.
(Default = "/mod1 ")

"pulse", or "latch".
(Default = "latch")

writepatt

Example:

! dr iv ing a 7400 through i t s t r u t h t a b l e :

mod = c l i p re f " U l , p ins 1 4
c l e a r p a t t device "U1"
s t o r e p a t t device "U1" , pin 1, p a t t "0011"
s t o r e p a t t device " U l " , pin 2, p a t t "0101"
s t o r e p a t t device "Ul" , p in 4, p a t t "0011"
s t o r e p a t t device "Ul" , p in 5, p a t t "0101"
s t o r e p a t t device "Ul" , p in 9, p a t t "0011"
s t o r e p a t t device "U1" , pin 1 0 , p a t t "0101"
s t o r e p a t t device " U l " , pin 12, p a t t "0011"
s t o r e p a t t device " U l " , p i n 13, p a t t "0101"

! i n t e r n a l sync mode required f o r wr i t epa t t
sync device mod, mode " in t "
arm device mod

wr i t epa t t device "Ul" , mode " la tch"
readout device mod

Remarks:

The writepatt command requires that the sync mode be set to
"int".

The maximum pattern depth for writepatt for each pin depends
on the number of UO modules used:

Number of UO Maximum Pattern
Modules Used Depth

Appendix E, "YO Module Clip/Pin Mapping," shows, for each
clip module, which I/O module pin is connected to each clip pin.

writepatt

Related Commands:

storepatt, clearpatt, clearoutputs

For More Information:

The "Overview of TLI1" section of the Programmer's
Manual.

writepatt

writepin
function

Syntax:

writepin [device <device name>] [, p i n <pin
number>] [, l e v e l < l e v e l >] [, mode <mode>]
[, re fp in <re fp in name>]

writepin (<device name>, <pin number>, < l e v e l > ,
<mode>, <re fp in name>)

wri tepin ()

Syntax Diagram:

wrltepln dovlco < device name >
pln <pinnumber>
lovol <level>

rofpln < relpin name >

Description:

Sets the specified I/O module pin to the desired state by either
latching or pulsing.

Arguments:

device name

pin number

level

I/O module name, clip module name, or
reference designator.
(Default = "/mod1 ")

I/O module pin number.
(Default = 1)

"1" for high, "0" for low, and "X" or
"x" for high-impedance.
(Default = "0")

writepin

mode "latch" or "pulse".
(Default = "latch")

refpin name Specifies the device and pin in string
format. The refpin argument is used to
ovemde the device and pin values.
(Default = "")

Example 1:

! L a t c h i n g I / O module #1, p i n #40 H I G H

w r i t e p i n d e v i c e "/modl, " p i n 40, l e v e l "I", mode
" l a t c h "

Example 2:

! P u l s i n g I / O module #2, p i n #20 LOW

w r i t e p i n d e v i c e "/mod2", p i n 20, l e v e l " O w , mode
" p u l s e "

Example 3:

w r i t e p i n r e f p i n "U26-F", l e v e l "I", mode " p u l s e "

Remarks:

If the string value for refpin is not a null string (""), the values
of the device and pin arguments are ignored.

Appendix E, "UO Module ClipIPin Mapping," shows, for each
clip module, which UO module pin is connected to each clip pin.

For More Information:

The "Overview of TL11" section of the Programmer's
Manual.

writespecial
function
4i..n4

Syntax:

writespecial addr <address>, data <data>

writespecial (<address>, <data>)

Syntax Diagram:

wrltespeclal - addr <address> , data <data>

Description:

Writes the specified data to the specified virtual address. This
allows access to the virtual addresses that, in some pods, are
used for special operations. This command should only be used
when you know that the normal write command does not
provide the required special operation.

Arguments:

address The virtual address where data will be
written.

data Data to write.

Examples:

writespecial addr $F0000018, data $21

For More Information:

The "Overview of TL11" section of the Programmer's
Manual.
The Fluke pod manual for the microprocessor you are
using.

writespecial

writevirtual
function
m

Syntax:

writevirtual extaddr <ext>, addr <address>, data
<data>

writevirtual (<ext>, <address>, <data>)

Syntax Diagram:

mltovlrtual - oxtaddr < ext r - . - addr <address r , data < data r .-,

Description:

Writevirtual is a complete replacement for the obsoleted
writespecial command. The writevirtual command writes the
specified data to the specified virtual address. This allows
access to the virtual addresses that, in some pods, are used for
special operations. This command should only be used when
you know that the normal write command does not provide the
required special operation.

Arguments:

extaddr Extended address bits.

address The virtual address where data will be
written.

data Data to write.

Examples:

writevirtual extaddr 0, addr $F0000018, data $21

writevirtual

For More Information:

The "Overview of TL11" section of the Programmer's
Manual.
The Fluke pod manual for the microprocessor you are
using.

writeword
function

Syntax:

w r i t e w o r d [d e v i c e < I / O m o d u l e n a m e >] [, w o r d < w o r d
number>] [, p a t t <pattern>]

w r i t e w o r d (<1 /0 m o d u l e n a m e > , <pat tern> , < w o r d number>)

Syntax Diagram:

Description:

Writes a data pattern to a group of UO module pins. The group
of UO module pins is set using senuord.

Arguments:

UO module name UO module name ("/mod 1 ", " / m d " ,
''/mod3 It, or "/mod4").
(Default = "/mod1 ")

word number This specifies the pin grouping to use in
writing out the word.
(Default = 1)

pattern

Example 1:

Specifies the levels to be driven. Valid
values are 1 (HIGH), 0 (LOW), and X
or x (driver off, 3-stated)
(Default = "0")

w r i t e w o r d device " / m o d l " , w o r d 4, p a t t "10X"

writeword

Example 2:

writeword device "/mod2", word 1, patt "000000000000"

Remarks:

If not enough levels have been specified in the pattern, they are
assumed to be LOW. If too many values are specified, the
leading values are ignored.

Related Commands:

readword, setword

For More Information:

The "Overview of TL/lM section of the Programmer's
Manual.

Appendix A
ASCII - Codes

CHR HEX DEC CHR HEX DEC CHR HEX DEC CHR HEX DEC

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
B S
HT
LF
VT
F F
CR
SO
S I
D LE
DC 1
DC2
DC 3
DC 4
NAK
SYN
ETB
CAN
EM
SUB
ESC
F S
GS
RS
us

@ 40 6 4 60 9 6
A 4 1 6 5 a 6 1 9 7
B 42 6 6 b 6 2 9 8
C 4 3 6 7 c 6 3 9 9
D 4 4 6 8 d 6 4 1 0 0
E 4 5 6 9 e 6 5 1 0 1
F 4 6 7 0 f 6 6 1 0 2
G 4 7 7 1 g 6 7 1 0 3
H 4 8 7 2 h 6 8 1 0 4
I 4 9 7 3 i 6 9 1 0 5
J 4A 7 4 j 6A 1 0 6
K 4B 7 5 k 6B 1 0 7
L 4C 7 6 1 6C 1 0 8
M 4D 7 7 m 6D 1 0 9
N 4E 7 8 n 6E 1 1 0
0 4 F 7 9 o 6 F 111
P 5 0 8 0 p 7 0 1 1 2
Q 51 8 1 q 7 1 113
R 5 2 8 2 r 7 2 1 1 4
S 53 8 3 s 7 3 115
T 5 4 8 4 t 7 4 1 1 6
U 55 8 5 u 7 5 1 1 7
V 5 6 8 6 v 7 6 1 1 8
W 5 7 8 7 w 7 7 1 1 9
X 5 8 8 8 x 7 8 1 2 0
Y 5 9 8 9 y 7 9 1 2 1
Z 5A 9 0 z 7A 1 2 2
[5 B 9 1 (7B 1 2 3
\ 5C 9 2 I 7C 1 2 4
] 5D 9 3) 7D 1 2 5
A 5E 9 4 - 7 E 1 2 6

- 5 F 9 5 RUB 7 F 1 2 7

@ Appendix B
Control Codes for Monitor

and Operator's Display

ERASING B.1.

Cursor to end-of-line ESC [K
or ESC [0 K

Beginning-of-line to cursor ESC [1 K
Line containing cursor ESC [2 K
Cursor to end-of-screen ESC [J

or ESC [0 J
Beginning-of-screen to cursor ESC [1 J
Entire screen ESC [2 J

NOTE

Since the ESC key cannot be entered from the
keyboard, substitute a backslash followed by
the ASCII code for the ESC character. The
example below erases the entire screen:

p r i n t " \ 1 B [2 J W

CURSOR CONTROL SEQUENCES 8.2.

UP
Down
Right
L e f t

D i r e c t c u r s o r add re s s ing ESC [P1;Pc H
Where P1 = l i n e number o r ESC [P1;Pc f

and PC = column number

Index ESC D

Next l i n e ESC E

Reverse index ESC M

Save c u r s o r and a t t r i b u t e s ESC 7
Res tore c u r s o r and a t t r i b u t e s ESC 8

DISPLAY ATTRIBUTES 8.3.

Change d i s p l a y a t t r i b u t e s ESC [Ps m

Where Ps = 0 (A l l a t t r i b u t e s o f f)
1 (Bold) *
4 (Underscore) *
5 (Bl ink)
7 (~ n v e r s e / ~ e v e r s e v ideo)

* Not a v a i l a b l e f o r t h e o p e r a t o r ' s d i s p l a y .

DISPLAY MODE SEQUENCES

I n s e r t mode enabled
Replacement mode enabled

Auto Line-feed mode enabled
Auto Line-feed mode d i s a b l e d

ESC [4 h
ESC [4 1

ESC [20 h
ESC [20 1

Auto Wrap mode enabled
Auto Wrap mode d i s a b l e d

Text c u r s o r enabled
Text c u r s o r d i s a b l e d

TAB STOPS

S e t a t c u r r e n t column
C l e a r a t c u r r e n t column

C lea r a l l t a b s

EDITING CONTROL

I n s e r t l i n e
D e l e t e l i n e
In . se r t c h a r a c t e r s
D e l e t e c h a r a c t e r s

ANNUNCIATOR CONTROL

Set Annunciators

Where Ps =

ESC [? 7 h
ESC [? 7 1

ESC [? 25 h
ESC [? 25 1

ESC [Pn L
ESC [Pn M
ESC [Pn @
ESC [Pn P

ESC [Ps q

0 (All Annunciators Off)
1 (Busy)
2 (Stopped)
3 (Storing Seq)
4 (More Softkeys)
5 (More Information)
6 (Alpha)

When control returns from TL/1 to the operator interface,
the operator interface sets the annunciators back to the
correct state.

BEEPER CONTROL

Set Beeper

Where P1=

and Pt =

length in milliseconds.
The actual length is set in
increments of 16
milliseconds with a
maximum of 1.008
seconds.

0 Bell 1
1 Bell 2 (Default on

power up)
2 Bell 1 and Bell 2

Setting the beep tone from the operator interface restores
the beeper to Bell 2.

SPECIAL DISPLAY CHARACTERS FOR THE
OPERATOR'S DISPLAY B.9.

Two-digit IC pin numbers (in GFI displays) are displayed in
single-character cells. The special codes for these two-digit
numbers are generated by this formula:

number + 95hex.

For example, the number 23, as displayed below, would use the
hex code AC.

Other special symbols used in displaying ICs on the operator's
display are shown below.

Symbol Hex

I C H e a d
I C B o d y
I C U p p e r L e g
I C L o w e r L e g
I C L o n g U p p e r L e g
I C L o n g L o w e r L e g
U p A r r o w
Down A r r o w
~ i d i r e c t i o n a l A r r o w
 eft-adjusted V e r t i c a l B a r

DISPLAY CHARACTERS FOR THE MONITOR B.10.

The 9100Al9105A may use either the Fluke monochrome
monitor or a customer-supplied IBM-compatible color monitor.
Both ASCII characters and special graphics characters may be
displayed on either type of monitor. The following pages show
the 9x10 pixel character cells used for monochrome display and
the 9x9 pixel character cells used for color display. The number
above each character represents the hexadecimal control code
required to use the character.

Monochrome Font, ASCII Characters B.8.1.
28

i iMi mom mu
m w 5 o
8888N88El
mmmmo
mmmmo
mmmmo

30 38 40 48 50 58
m m q q mmm q mmm om m ommmm mmmmo

88~ff iB99 mm~mm ~ B M B ommmm S#MMEI ~~mwmmu El33!$!#10 mmmm 013MMB mclmmao EQWBi380 m~ommo
wmmmo oommmm omommm 8mmmmmmo 8111111m mmm3mo
B!MHJE ~l:mi~ i:aBm E~~~BHEI 0:mm maws mnmmmo oommm oommmo owommm omm m mmmom
m m q o ommmm m[mpm ommmm ommHm mmmmo mmm o ommmm ommmm ommmm ommmm mmmmo

mmmmo bm m ommmm o&mm bmmmm Emmmo
SeMM!?i El88@kl 83 !MM6€l 888888830 0BMBB6€l MMWB0
mmmmo mmmm ommmm ommmm omommmo mmommo mommmoo ommmm ommmm ommmm ommmmm mmmmo
ffiEl8888El 888e58888 08888830 ElR88883i 03988888 B88!88880 m11111 0 ommmm ommm ommmm ommmm 011111110 mmmdo ommmm ommmm ommmm ommmm mmmmo mmmmo ommmm ommmm ommmm ommmm mmmmo

3B
ommmm

mmmm

Monochrome Font, Graphics Characters B.8.2.

BO 0-0 B8 u-u

~ 8 8 ~ 8 8 8 &PPi@3 &d?i88 bdMil 888BBBB88 i8888Bi mmmmo ommmmmo ommowm ommom ommmco mmommo mmmm ommmm ommomm oromom ommmm mommmo ~aa:i~es ampa p~aaa~~ EII~IBBIIEEI smse~m semq~l mmmomo o m m mmom ommom ommmm mmmm o
mm10m0 ?I mmmm ommom oomo1m 111111111 11mm011
8888El888 888888888 ClPAflPA88 8MMM88 888888888 888888888

888888888
mmmmo
mmmmo
88es88888 mmmmo

IIIIi
81
mmmmu
mmmmu
88888888
mmmmu

p3Ii mmmu
mmmmo

A2 A A BZ o-x BA u-x

888888888
ommmm
ummmm
888REfl
ummmm

!!I11

AC 1.1 B4 x-x BC EEBH~I ~ ~ J E I & w w i ENWWPP BHBBBBH PPW&
mmm o om m o mmmm ommmm ommmm mmmmo mormmo orommm oBmmmm om mm ommmm mmmm
H[111ii 8Ed888H 881888888 888~8888 ClMMMM BBBBHBB0
m mrmoo ommmro oormmm ommmm ommmm mmmmo mmmmo mommmmo oommmm ommmm ommmm mmmmrr
88m8888El i888888ra SB888888 mas88 088888888 888888880

R5 x-o
immmm
ommmm
088888888 ,mi
ommmm
ommmm

97 9F A7 AF 1.v B7 x-u BF
111111111 iiiiil
111111111

111111111
111111111

CO C8 DO D8 EO E8 FO F8

a ommmm ommmm omrnmn w m m m m m m mmmmo mmmmo mmmmo mm1mmmmmm
mmmmmmmm mmmmmmmm ommm 111111111 mmmm mmmmo mmommo ommmmmmmo
ommom ommmm omoommmo 111111111 mmmm8 mmmmo mmmmo oolmmmm
088118188 088118888 019818810 111311111 B8888998 888888888 BMMa0 888MaBBB
omm mm ommmm omoommmo mmmmo ommmmoo 111111111 ommmmo ommmm
ommEmm ommmm omoomm mmmm rnmommo mmmmo ommmmoo ommmm
iNMo88 9NNNhl 1191:8811 H8888BBB 81mMM0 m 8 8 0 88~MEB3 08888BBBB
ommmm ommmm omommm mmmmo mmmmo m mo m mmo ommmm
C 1 C9 D 1 D9 El E9 F1 F9

omommm ommmm mommmm mmmmo mmmmo ommmmmmo mmmmo mmmmmm
onmommom ommmm mmoommm mmmmo mmmmo olmm
0ll888888 18838888 11981883 11111111 BBBBt3MI [!::I: iiiiai iiira
001mmm 0mmmm 11001m11 111111111 mm10110 m10 111111100 110 mm
001111111 111111111 11~01m11 111111111 000013110 mmm 111111111 ~mmmm
0mmmm 0mmmm lloolmll 111111111 m021~130 mmm 111111111 ~mmmm
C2 C A D2 DA
ommmm oommmm ommrnm 111111111
mmmmmmm o o m m ommom 111111111
ommmm oommHm oommom 111111111

888888188 0I:BeWBB 881888188 11:::::::
ommom oomomwom oommom BBBBBBBBB ommmmm oommmm m o m 111111111
W W R H 0~888888 ~1EHElW 111111111
ommmm o mmm ommmm BBBBBBBBB

- - ,"

if/$f~ BWBBBm BHHHm b ~ p cu cu ism1 ommom eimi[ollmol
ommmm ommom omammom 1Kg'
El88888888 El88888888 EllsHsaEe 88881M

C5 CD D5 DD E5 ED F5 FD
mmmmo mmmmo mmmmo mrmmmwmm

-.
mmmm ommmm om
am014 B~BBBPBB wIII 1::::::::
ommom om mmm 111111111 ommwomm om mm 111111111

111111111
111111111 a EBBMBI~ E E & ~ !::::::I: I .:il:.il; 111 mmmmmm ommmm ommmm mmm ~1111110 111111111

ommmm ommmm ommmm mmm 111111111 111111111

a Appendix C
Operator's Keypad Mapping

to TLI1 Input

Input from the following keys is available in either buffered or
unbuffered mode.

A S C I I
CHR HEX

A S C I I
CHR HEX

-
EXEC (G)
PROBE (H)
BUS (I)
READ (J)
C
D
E
F
MAIN MENU (K)
G F I (L)
1 /0 MOD (M)
RAM (N)
WRITE (0)
8
9
A
B
SETUP MENU (P)
SEQ (Q)
POD (R)

ROM (S)
STIM (T)
4
5
6
7
OPTION (U)
(V)
SYNC (W)
(X)
RUN UUT (Y)
0
1
2
3
EDIT (.)
REPEAT (-)
LOOP (2)
CONT (SPACE)

Input from the following keys is only available in unbuffered mode.

ENTER/YES
CLEAR/NO
LEFT ARROW
UP ARROW
RIGHT ARROW
DOWN ARROW
HELP
ALPHA

A S C I I
CHR HEX

CR OD
RUB 7F

A 4
A1
A3
A2
9 2

ESC 1B

A S C I I
CHR HEX

SOFT KEYS 9 4
F1 8 1
F2 82
F 3 8 3
F 4 8 5
F5 8 6
EXT SW (input) CR OD

Appendix D
Programmer's ~eyboard

Mapping to TLIl Input

The hexadecimal character codes less th&n or equal to 7F are the
standard ASCII codes as defined in Appendix A, "ASCII
Codes." The chart on the next page shows the mapping of the
programmer's keyboard to non-standard character codes. Input
from these keys is only available in unbuffered mode. "Shifted"
indicates that the Shift key is pressed.

Shifted
HEX HEX

F 1 8 1
F 2 82
F 3 8 3
F4 8 5
F5 85
F 6 8 7
F 7 8 8
F8 8 A
F 9 8 B
F10 8 C
E d i t 8D
Q u i t 8 F
M s g s 9 1
Help 92
I n f o 9 4
Begin F i l e 9 5
End F i l e 97
S c r o l l Forward 99
S c r o l l Backward 9B
Begin Line 9D
End Line 9F
Le f t Arrow A4
Down Arrow A2
Right Arrow A3
Up Arrow A 1
F i e l d S e l e c t FO
Break F3

Appendix E
I10 Module CliplPin

Mapping

Clip size = 14, module installed on "A" side

C l i p 1/0 Mod P i n C l i p 1/0 Mod P i n

Clip size = 14, module installed on "B" side

C l i p 1/0 Mod P i n C l i p 1/0 Mod P i n

Clip size = 16, module installed on "A" side

Clip 1/0 Mod Pin Clip 1/0 Mod Pin

Clip size = 16, module installed on "B" side

Clip 1/0 Mod Pin Clip 1/0 Mod Pin

C l i p s i z e = 18, module i n s t a l l e d on "A" s i d e

Clip 1/0 Mod Pin Clip 1/0 Mod Pin

C l i p s i z e = 18, module i n s t a l L e d on "B" s i d e

Clip 1/0 Mod Pin Clip I/O Mod Pin

Clip s i z e = 20, module i n s t a l l e d on "A" s ide

C l i p 1/0 Mod P i n C l i p 1/0 Mod P i n

Clip s i z e = 20, module i n s t a l l e d on "B s i d e

C l i p 1/0 Mod P i n C l i p I / O Mod P i n

C l i p s i z e = 24, module i n s t a l l e d on "A" side

Clip 1/0 Mod Pin Clip 1/0 Mod Pin

C l i p s i z e = 24, module i n s t a l l e d on "B" side

Clip I/O Mod Pin Clip 1/0 Mod Pin

C l i p s i z e = 2 8

C l i p 1/0 Mod P i n

C l i p s i z e = 4 0

C l i p 1/0 Mod P i n

C l i p 1/0 Mod P i n

C l i p 1/0 Mod P i n

Appendix F
TLII Reserved Words

a b o r t
and
a r r a y
bi tmask
C P ~
d e c l a r e
else
e l s e i f
end
e n d i f
execu te
e x e r c i s e
e x i t
f a i l s
f a u l t
f l o a t i n g
f o r
f u n c t i o n
g l o b a l
go t0
handle
i f
i n p u t
l e n
l o c a l
loop

l s b
msb
next
no t
numeric
on
o r
p a s s e s
p e r s i s t e n t
p r i n t
program
r e f a u l t
r e t u r n
s e t b i t
s h l
s h r
s t e p
s t r i n g
tes t
then
t i m e s
t o
u n t i l
u s i n g
while
xo r

Appendix G
Handling Built-in Fault

Conditions

OVERVIEW G.1.

This appendix lists the arguments that are provided with TLIl's
built-in tests. These arguments can be used in your fault
condition handlers (the handle command) and fault condition
exercisers (the exercise command).

A TL/1 fault-condition handling procedure for the
ram - addr fault fault condition might look like this, for example:

handle ram-addr-fault (mask, access-attempted,
addr, data-mask)

declare
string mask
string access-attempted
numeric addr
numeric data-mask

end declare
! <insert your code here>

end ram-addr-fault

The W1 applications interface always provides a fault condition
handler for each fault test listed here. In the absence of a handler
written by you, TLIl's default handler simply displays the name
of the fault condition encountered on the operator's display.

When you provide a handler for a given test, TL/1 will use your
handler and the fault message will not be displayed.

The process of calling a fau1.t condition handler is exactly like
calling a function. The arguments are essential even to handlers
designed to ignore the first several occurrences of a fault
condition; for example, if your handler is to ignore the first five
occurrences but act on the sixth, all of the relevant arguments
must be in place so that they can be used on the sixth
occurrence.

ARGUMENT NAMES G.2.
mask, mask-tied, mask-low,
mask-high, mask-stat, - A 64-character string of faulted
mask-ctrl, mask-misc, bits, where 0 = not faulted, and
mas k-addr , mas k-da t a 1 = faulted. The rightmost bit is
(string) the least significant.

acce ss-attempted (string) - UUT access when a fault
condition occurred, e.g.
"READ", "WRITE".

upto (numeric)

ctl (numeric)

verified (string)

addr (numeric) - Address at which a fault
condition occurred (as first
detected by the test phase of the
testldiagnostic built-in) or the
low address of an address
range.

- High address in an address
range.

- Value written to control lines of
the UUT.

- Parameter indicating that a fault
condition has been verified (not
in termittent), where verified
= "conf i rmed" o r "not
confmed. "

addr-expected (numeric)

data-expected (numeric)

code (numeric)

index (numeric)

data (numeric)

sig (numeric)

sig-expected (numeric)

iomod-nums (numeric)

data-mask (numeric)

addrstep (numeric)

nogins (numeric)

Address expected during a test.

Data expected during a test.

Pod self-test error code.

Index into a table of pod
specific error messages.

Data read from or written to the
UUT.

Faulty signature read in a ROM
test.

Signature expected in a ROM
test.

A bit mask for the faulty
VO module number (the least-
significant bit is VO module 1).

Example: If iomod-nums is 3, it
refers to both VO module 1 and
VO module 2.

Mask of testable data bits,
where 0 = not testable bit,
1 = testable bit.

Address increment.

If this argument is present, pin
numbers are not to appear in
message text on the display
(only signal names are
displayed). If the no-pins
argument is absent, both pin
numbers and signal names will
appear in fault messages on the
display.

message, messagel, message2 - Additional information added
(string) to a fault. Message1 becomes

the first line, and message2
becomes the second line of the
display.

err-num (numeric)
err-msg (st ring)

Arguments describing an error
raised under special con-
itions as a fault (e.g. the
io - error fault)

RAM TEST FAULT CONDITIONS

Fault Condition Name Arguments

ram-addr-addr-tied

ram-addr-data-tied

mask
(address bus tied)

access-attempted
addr
data-mask
nogins
verified

mask
(data bits tied to an
address line)

mas k-t ied
(address bit tied to
data bits)

access-attempted
addr
data
data-expected
data-mas k
nogins

ram~addr~data~tiedram_addr_data_tied_unconfirmedun~~nfirmed
mask
(data bus tied to an
address line)

mas k-t ied
(address bit tied to
data bits)

access-attempted

Fault Condition Name

ram - addr-fault

ram-cell-cell-tied

ram cell-high-tied -

ram-cell-low-tied

ram - data-data-tied

Arguments

data
data-expected
data-mask
nogins

mask
(address bits faulted)

access-attempted
addr
data-mask
nogins

mask
(data bits tied)

access-attempted
addr
data
data-expected
data-mask
nogins
verified

mask
(data bits tied high)

access-attempted
addr
data
data-expected
da t a-ma s k
nogins

mask
(data bits tied low)

access-attempted
addr
data
data-expected
data - mask
nogins

mask
(data bits tied
together)

access-attempted
addr

Fault Condition Name Arguments

dat a-expected
da t a-ma s k
nogins
verified

ram - data-fault access-attempted
addr
(address of cell unable
to modify)

data

ram-data-high-tied mask
(data bits tied high)

access-attempted
addr
data
data-expected
data-mask
nogins

ram-data-incorrect

ram-dat a-low-t ied

data-expected
data
access-attempted
addr
(address where
read/write error
occurred)

mask
(data bits tied low)

access-attempted
addr
data
dat a-expected
dat a-mask
nogins

ram-data-retention-fault access attempted
addr
data-expected
data

ROM TEST FAULT CONDITIONS

Fault Condition Name Arguments

rom - addr-addr - tied addr
upt 0
mask
(addr bits tied
together)

addrstep
data-mask
nogins

rom - data-data - tied

addr
upto
mask
(addr. bits stuck)

addrstep
data-mask
nogins

addr
upt 0
mask
(data bits tied
together)

addrstep
da t a-ma s k
nogins

addr
upt 0
mask-low
(data bits tied low)

mask-high
(data bits tied high)

addrstep
data - mask
nogins

rom-data-high-tied-a11 addr
upt 0
addrstep
data-mask
nogins

F a u l t C o n d i t i o n Name Arguments

rom-data-low-tied-all addr
upt 0
addrstep
data-mask
nogins

rom-sig-incorrect s ig
sig-expected
addr
upt 0

BUS TEST FAULT CONDITIONS

F a u l t Condi,t i on Name

bus-addr - high-tied

bus-addr-low-tied

bus-addr-tied

bus-data-high-tied

bus-data-low-tied

Arguments

mask
(address bits tied
high)

addr

mask
(address bits tied low)

addr

mask
(address bits tied
together)

addr

mask
(data bits tied high)

addr
data

mask
(data bits tied low)

addr
data

Fault Condition Name Argumen t s

bus-data-t ied mask
(data bits tied
together)

addr
data

MEMORY INTERFACE POD FAULT
CONDITIONS

Fault Condition Name Arguments

messagel
message2

m-bus-addr-high mask

m-bus-addr-low mask

mgod~buscycle~clock mask-stat
mask-ctrl
mask-misc

messagel
message2

m g o d ~ s l o w ~ c l o c k mask

messagel
message2

mask
messagel
message2

addr-expected
mask high
maskIlow

data-expected
mask-high
mask-low

GENERIC FAULT CONDITIONS

F a u l t C o n d i t i o n Name Argurnen t s

generic-fault message
mask-stat
mask-ctrl
mas k-addr
mas k-da t a
mas k-mi s c

PRIMITIVE FAULT CONDITIONS

F a u l t C o n d i t i o n Name

clkmod-fuse-blown

iomod-dce

iomod-fuse-blown

iomod-current-fault

pod-addr-tied

pod-breakpoint

pod-ctl-tied

pod-data-incorrect

pod-data-tied

pod-forcing-active

pod-interrupt-active

Argurnen t s

iomod-nums

iomod-nums

mask
(address bits tied
together)

mask
(control lines tied)

data
data-expected

mask
(data lines tied)

mask
(forcing lines tied)

mask
(interrupt line active)

Fault Condition Name Arguments

pod-misc-fault

pod-special

pod-timeout-bad-pwr

pod-timeout-enabled-line

pod-timeout-no-clk

pod-t imeout-recovered

pod-timeout-setup

pod-uutgower

podselftest-failed

probe-fuse-blown

110 FAULT CONDITIONS

Fault Condition Name

mask
(miscellaneous signals
faulted)

index

mask
(enable line causing
timeout)

code

Arguments

e r r-num
err-msg

ARGUMENTS USED WITH BUILT-IN TESTS G.lO.

The following built-in tests raise the primitive fault conditions
(listed in the previous section). In addition to the arguments
required as indicated by each primitive fault condition, each
built-in test adds the arguments listed in the following table:

B u i l t - i n T e s t Argumen t s

rampaddr

rampdat a

read

readblock

readstatus

rotate

toggleaddr

togglecont rol

toggledata

write

access-attempted
addr

access-attempted
addr
data

access-attempted
addr

access-attempted
addr

(Does n o t r a i s e f a u l t
c o n d i t i o n s)

access-attempted
addr
data

access-attempted
addr

access-attempted
ctl

access-attempted
data
addr

access-attempted
data
addr

Built -in Test

writeblock

writecontrol

write•’ ill

Arguments

access-attempted
data
addr
access-attempted
ctl

access-attempted
data
addr

Appendix H
Generating 'Built-in

Fault Messages

OVERVIEW H.1.

This appendix relates the text of TL11 fault messages to the arguments
used in the TLI1 fault command. With this information, you can
produce the same fault messages as those produced by the TW1 default

0
Fault messages are one or two lines long, and each line can have up to
three variatl'ons, depending on the absence or presence of particular
arguments in the handler. For example, the podforcing - active fault
condition can produce these different messages:

1. forcing signal <name> <pin> is active

2 . forcing signal <name> <pin> is active
attempted to <action> at <address>

3 . forcing signal <name> <pin> is active
attempted to <action> control <control>

Message 1 would be displayed if the following statement appeared in the
program:

fault pod-forcing-active mask mask

Message 2 would be displayed if the following statement appeared in the
program:

fault pod-forcing-active mask mask, access-attempted
"read", addr $8000

Finally, message 3 would be displayed if the following statement
appeared in the program:

fault pod-forcing-active mask mask, access-attempted
"read", ctl $62

For the statements above, 62 is the argument value used for the
argument named ctl, "read" is the argument value used for the argument
named access-attempted, 8000 is the argument value used for the
argument named addr, and mask is the variable name used to provide
the argument value for the argument named mask.

Symbols H.l . I .

The following symbols and names are used in the tables that follow:

The argument is a smng.
The argument is numeric.
The argument is included in the handler.
The message is always used for this fault condition.
The first alternative for the fault message.
The second alternative for the fault message.
The third alternative for the fault message.
The fourth alternative for the fault message.
The fifth alternative for the fault message.

Message Variables H.1.2.

One of the following actions:
write
read

<name> A signal name.

<pin> A pin number or alphanumeric designation.

<data> A hexadecimal data value.

<pod-special message> A pod-dependent fault message.

A decimal number.

A UUT address.

<control> A control word.

Argument Names H.1.3.

mask, mas k-t ied, mas k-low, - A 64-character string of faulted
mask-high (string) , bits, where 0 = not faulted, and
mask-stat, mask-ctrl, 1 = faulted.
mask-data, mask-addr,
mask-misc

access-attempted (string) - UUT access when a fault
condition occurred, (e.g. "read"
or "write").

addr (numeric)

upto (numeric)

ctl (numeric)

- Address at which a fault
condition occurred or the low
address of an address range.

- High address in an address
range.

- Value written to control lines of
the UUT.

message, messagel,
message2 (string)

verified (string)

addr-expected (numeric)

data-expected (numeric)

code (numeric)

index (numeric)

data (numeric)

sig (numeric)

sig-expected (numeric)

test-type (string)

iomod-nums (numeric)

data-mask (numeric)

addrstep (numeric)

no-pins (numeric)

- Message written to the display.

- Parameter indicating that a fault
condition has been verified,
where verified = " ~ o n f i e d ' ~ or
"not confirmed. "

- Address expected during a test.

- Data expected during a test.

- Pod self-test error code.

- Index into a table of pod special
error messages.

- Data read from or written to the
UUT.

- Faulty signature read in a ROM
test.

- Signature expected in a ROM
test.

- The type of test being executed.

- A bit mask for the faulty
VO module number (the least-
significant bit is ID module 1).

Example: If iomod-nums is 3, it
refers to both VO module 1 and
VO module 2.

- Mask of valid data bits, where
0 = invalid bit, 1 = valid bit.

- Address increment.

- Pin numbers are not to appear in
message text, where (0 = pins,
1 = no pins.)

err-num (numeric)
err-msg (string)

- Arguments describing an
error raised under special
conditions as a fault (e.g. the
io-error fault).

HOW TO READ THE FAULT-MESSAGE TABLES H.2.

In the tables that follow, the fault conditions are organized alpha-
betically, the Type column shows whether the arguments for that fault
condition are string or numeric variables. Columns 1 , 2 , 3, 4 or 5
contain an x if the related argument is needed to produce the fault
message associated with that column.

For example, in the bus addr tied fault condition (next page), the
arguments mask, accessattem~ted, and addr are needed in the fault
condition handler if youwant MESSAGE 2 to be displayed. If you
prefer MESSAGE 3, use the mask, access attempted, addr, and data
arguments. To get MESSAGE 1, include The mask argument in your
handler.

FAULT MESSAGE TABLES H.3.

Fault Condition and
Arguments

Type Fault Message
Alternutives

bus-addr-high-tied I I I I I
mask I s I x I x I I
access-attempted I s I 1 x 1 I
addr I n I 1 x 1 I

MESSAGE 1: addr line <name> <pin> stuck high
MESSAGE 2 : attempted to <action> at <address>

bus-addr-low-tied I I I I I I
mask I s I x I x I I I
access-attempted I s I 1 x 1 I I -
addr I n I 1 x 1 I I

MESSAGE 1: addr line <name> <pin> stuck low
MESSAGE 2: attempted to <action> at <address>

bus-addr-tied
mask
access-attempted
addr
data

I I I I I I
I s I X I X I X I I
I s I I X I X I I
I n I I x l x l I
I n I I 1 x 1 I

MESSAGE 1: addr line <name> <pin> tied
MESSAGE 2: attempted to <action> at <address>
MESSAGE 3: attempted to <action> data <data> at

<address>

a
Fault Condition and Type Fault Message
Arguments Alternatives

bus-data-high-tied I I I I I I
mask I S 1 x 1 I I I

MESSAGE 1: data line <name> <pin> stuck high

bus-data-low-tied I I I I I I
mask I S I x I x I I I

MESSAGE 1: data line <name> <pin> stuck low

bus data-tied
mask

I I I I I I
I S 1 x 1 I I I

MESSAGE 1: data line <name> <pin> tied

clkmod-fuse-blown I 1 * 1 I I I

MESSAGE 1: clock module fuse blown

Fault Condition and
Arguments

Type Fault Message
Alternatives

generic-fault
message
mask stat
maskIctrl
mas k-addr
mask-dat a
mas k-mi s c

I I I I I I
I S 1 x 1 I I I
I s 1 x 1 I I I
I s 1 x 1 I I I
I s 1 x 1 I I I
I s 1 x 1 I I I
I s 1 x 1 I I I

MESSAGE 1: <message>
status line <name> <pin>
control line <name> <pin>
address line <name> <pin>
data line <name> <pin>
line <name> <pin>

io-error
e r r-num
err-msg

I I I I I I
I n 1 x 1 I I I
I s 1 x 1 I I I

MESSAGE 1: 1/0 error <err-num>: <err-msg>

iomod-current-f ault I I * I I I I

MESSAGE 1: 1/0 module overcurrent fault

Fault Condition and Type Fault Message
Arguments Alternatives

iomod-dce
iomod-nums
access-attempted
addr

I I I I I I
I n 1 x 1 I I I
I S 1 1 x 1 I I
I n I 1 x 1 I I

MESSAGE 1: compare condition reached in 1/0 module
<number>

MESSAGE 2: attempted to <action> at <address>

iomod-fuse-blown I I I I I I
iomod-nums I n 1 x 1 I I I

MESSAGE 1: 1/0 module <number> fuse blown

m-bus-addr-high I I I I I I
mask I s 1 x 1 I I I

MESSAGE 1: addr line <name> <pin> was high - expected
low

m-bus-addr-low
mask

MESSAGE 1: addr line <name> <pin> was low - expected
high

Fault Condition and
Arguments

Type Fault Message
Alternatives

m-bus-ke rnel
messagel
message2

MESSAGE 1: kernel fault
<messagel>
<message2>

m g o d ~ b u s c y c l e ~ c l o c k I I I I I I
mask-stat I s 1 x 1 I I I
mask-ctrl I s 1 x 1 I I I
ma s k-mi s c I s 1 x 1 I I I

MESSAGE 1: pod buscycle CLK BAD
check status line <name> <pin>
check control line <name> <pin>
check line <name> <pin>

mgod-no-reset
mask
messagel
message2

MESSAGE 1: no pP reset detected on <name> <pin>
<messagel>
<message2>

Fault Condition and
Arguments

Type Fault Message
Alternatives

mgod-reset-addr
addr-expected
mask high
mask~low

I I I I I I
I n 1 x 1 I I I
I s 1 x 1 I I I
I S 1 x 1 I I I

MESSAGE 1: BAD reset address: <address> expected
<name> <pin> was high
<name> <pin> was low

m - pod-reset-data

a data-expected
mask-high
mask-low

I I I I I I
I n 1 x 1 I I I
I S 1 x 1 I I I
I s 1 x 1 I I I

MESSAGE 1: BAD reset data: <data> expected
<name> <pin> was high
<name> <pin> was low

I I I I I I
I s 1 x 1 I I I
I S 1 x 1 I I I

MESSAGE 1: ROMl CS or OE is stuck invalid
<messagel>
<message2>

Fault Condition and
Arguments

Type Fault Message
Alternatives

m ~ p o d ~ s 1 o w ~ c l o c k
mask

I I I I I I
I S 1 x 1 I I I

MESSAGE 1: UTT clock <name> <pin> slow or stuck

I I I I I I
I S 1 x 1 I I I
I S 1 x 1 I I I

MESSAGE 1: microprocessor stopped or bad
<messagel>
<message2>

pod-addr-tied
mask
access-attempted
addr
data

MESSAGE 1: addr line <name> <pin> not drivable
MESSAGE 2: attempted to <action> at <address>
MESSAGE 3: attempted to <action> data <data> at

<address>

pod-breakpoint
access-attempted
addr

MESSAGE 1: breakpoint reached
MESSAGE 2: attempted to <action> at <address>

Fault Condition and
Arguments

Type Fault Message
Alternatives

pod-ctl-tied
mask
access-attempted
ctl
addr
data

I I I I I I
I s I x l x l x l x l
I s I I X I X I X I
I n I I I 1 x 1
I n I I x l x l x l
I n I I 1 x 1 I

MESSAGE 1: control line <name> <pin> not drivable
MESSAGE 2: attempted to <action> at <address>
MESSAGE 3: attempted to <action> data <data> at

<address>
MESSAGE 4: attempted to <action> control <control>

a pod-data-incorrect I I I I I I
data I n 1 x 1 I I I
dat a-expected
access-attempted
addr

MESSAGE 1: read incorrect data <data> expected <data>
MESSAGE 2: attempted to <action> at <address>

pod-data-tied
mask
access-attempted
addr
data

I I I I I I
I S I X I X I X I I
I s I I X I X I I
I n I I x I x l I
I n I I 1 x 1 I

MESSAGE 1: data line <name> <pin> not drivable
MESSAGE 2 : attempted to <action> at <address>
MESSAGE 3: attempted to <action> data <data> at

Fault Condition and
Arguments

Type Fault Message
Alternatives

pod-forcing-active I I I I I I
mask I S I x I x I x I I
access-attempted I s I I x I x I I
ctl I n I I 1 x 1 I
addr I n I 1 x 1 I I

MESSAGE 1: forcing signal <name> <pin> is active
MESSAGE 2: attempted to <action> at <address>
MESSAGE 3: attempted to <action> control <control>

pod-interrupt-active I I I I I I
mask I s I x I x I x I I
access-attempted I S I I x I x I I
ctl I n I I 1 x 1 I
addr I n I 1 x 1 I I

MESSAGE 1 : interrupt <name> <pin> is active
MESSAGE 2: attempted to <action> at <address>
MESSAGE 3: attempted to <action> control <control>

pod-miac-fault
mask
access-attempted
ctl
data
addr

I I I I I I
I s I x I x I x l x l x
I S 1 I X I X I X I X
I n I I I 1 x 1
I n I 1 x 1 I I
I n I 1 x 1 I I x

MESSAGE 1: <name> fault <pin>
MESSAGE 2 : attempted to <action> data <data> at

<address>
MESSAGE 3: attempted to <action>
MESSAGE 4: attempted to <action> control <control>
MESSAGE 5 : attempted to <action> at <address>

Fault Condition and
Arguments

Type Fault Message
Alternatives

pod-special
index
access-attempted
addr

MESSAGE 1: <pod-special message>
MESSAGE 2 : attempted to <action> at <address>

pod-timeout-bad-pwr I I * I I I I

MESSAGE 1: pod timeout bad UUT power supply

pod-timeout-enabled-line I I I I I I
mask I s 1 x 1 I I I

MESSAGE 1: enabled line <name> <pin> causes
t imeout

pod-timeout-no-clk I 1 * 1 I I I

MESSAGE 1: pod timeout bad UUT clock

Fault Condition and
Arguments

Type Fault Message
Alternatives

pod-timeout-recovered I I * l I I I
access-attempted I s I I x I x I x I
ctl I n I I I 1 x 1
addr I n I I 1 x 1 I

MESSAGE 1: pod t imeout recovered
MESSAGE 2: attempted to <action>
MESSAGE 3: attempted to <action> at <address>
MESSAGE 4: attempted to <action> <control>

pod-timeout-setup I I * I I I I

MESSAGE 1 : setup causes pod timeout

MESSAGE 1: bad UUT power supply

podselftest-failed I I I I I I
code I n I x l I I I

MESSAGE 1: pod selftest code = <number>

probe-fuse-blown I l * I I I I

MESSAGE 1: probe fuse blown

Fault Condition and Type Fault Message
Arguments Alternatives

ram-addr-addr-t ied I I I I I I
verified I S I x I x I I I
mask I S I x I x l x l I
nogins I n I 1 x 1 I I
access-attempted I S I I 1 x 1 I
addr I n I I 1 x 1 I

MESSAGE 1: addr line <name> <pin> tied to addr
line <name> <pin>

MESSAGE 2 : addr line <name> may be tied to addr line
<name>

MESSAGE 3 : attempted to <action> at <address>

ram-addr-data-t ied
mask
mask-t ied
nogins
access-attempted
addr
data-expected
data

I I I I I I
I S I X I X I I I
I S I X I X I I I
I n 1 x 1 I I I
I S I 1 x 1 I I
I n I 1 x 1 I I
I n I 1 x 1 I I
I n I 1 x 1 I I

MESSAGE 1: addr line <name> tied to data line <name>
MESSAGE 2: attempted to <action> data <data> at

<address> read <data>

Fault Condition and
Arguments

Type Fault Message
Alternatives

ram-addr-data-tied-unconfirmed
mask I s I x I x I I I
mask-t ied I s I x I x I I I
nogins I n 1 x 1 I I I
access-attempted I S I 1 x 1 I I
addr I n I 1 x 1 I I
dat a-expected 1 n I 1 x 1 I I
data I n I 1 x 1 I I

MESSAGE 1: addr line <name> may be tied to data line
<name>

MESSAGE 2: attempted to <action> data <data> at
<address> read <data>

ram-addr-fault
mask
nogins
access-attempted
addr

I I I I I I
I S I X I X I I I
I n 1 x 1 I I I
I S I 1 x 1 I I
I n I 1 x 1 I I

MESSAGE 1: addr line <name> stuck or open
MESSAGE 2: attempted to <action> at <address>

Fault Condition and Type Fault Message
Arguments Alternatives

ram-cell-cell-tied
verified
mask
nogins
access-attempted
addr
data-expected
data

I I I I I I
I s I 1 x 1 I I
I S I X I X I X I I
I n I x I x l I I
I s I I 1 x 1 I
I n I I 1 x 1 I
I n I I 1 x 1 I
I n I I 1 x 1 I

MESSAGE 1: memory cell for <name> coupled to memory
cell for <name>

MESSAGE 2: memory cell for <name> may be coupled to
memory cell for <name>

MESSAGE 3: attempted to <action> data <data> at
<address> read <data>

ram cell-high-tied I I I I I I
mask I s I X I X I I I
nogins I n 1 x 1 I I I
access-attempted I s I 1 x 1 I I
addr I n I 1 x 1 I I
data-expected I n I 1 x 1 I I
data I n I 1 x 1 I I

MESSAGE 1: memory cell for <name> stuck high
MESSAGE 2: attempted to <action> data <data> at

<address> read <data>

Fault Condition and
Arguments

Type Fault Message
Alternatives

ram-cell-low-tied I I I I I I
mask I s I x I x I I I
nogins I n 1 x 1 I I I
access-attempted I s I 1 x 1 I I
addr I n I 1 x 1 I I
data-expected I n I 1 x 1 I I
data I n I 1 x 1 I I

MESSAGE 1: memory cell for <name> stuck low
MESSAGE 2: attempted to <action> data <data> at

<address> read <data>

ram-data-data-tied
verified
mask
nogins
access-attempted
addr
data-expected
data

I I I I I I
I s I I 1 x 1 I
I s I X I X I X I X I
I n I I x I x l I
I s I I I 1 x 1
I n I I I 1 x 1
I n I I I 1 x 1
I n I I I 1 x 1

MESSAGE 1: data line <name> <pin> tied to data
line <name> pod <pin>

MESSAGE 2: data line <name> tied to data line <name>
MESSAGE 3: data line <name> may be tied to data line

<name>
MESSAGE 4: attempted to <action> data <data> at

<address> read <data>

Fault Condition and Type Fault Message - -
Arguments ~lternatives-

ram-data-f ault
access-attempted
addr
data

MESSAGE 1: cannot modify RAM data
MESSAGE 2: attempted to <action> at <address> read

<data>

ram-data-high-tied I I I I I I
mask I s I x I x I x I I
nogins
access-attempted
addr
data-expected
data

MESSAGE 1: data line <name> <pin> stuck high
MESSAGE 2: data line <name> stuck high
MESSAGE 3: attempted to <action> data <data> at

<address> read <data>

ram-data-incorrect I I I I I I
data I n 1 x 1 I I I
data-expected I n 1 x 1 I I I
access-attempted I s I 1 x 1 I I
addr I n I 1 x 1 I I

MESSAGE 1: read incorrect data <data> expected <data>
MESSAGE 2: attempted to <action> at <address>

Fault Condition and
Arguments

Type Fault Message
Alternatives

ram-data-low-tied I I I I I I
mask I s I x I x I x I 1
nogins I n I 1 x 1 I I
access-attempted I s I I 1 x 1 I
addr I n I I 1 x 1 I
data-expected I n I I 1 x 1 I
data I n I I 1 x 1 I

MESSAGE 1: data line <name> <pin> stuck low
MESSAGE 2: data line <name> stuck low
MESSAGE 3: attempted to <action> data <data> at

<address> read <data>

ram data-retention-fault I I I I I I
access-attempted I s I 1 x 1 I I
addr I n I 1 x 1 I I
data-expected I n I 1 x 1 I I
data I n I 1 x 1 I I

MESSAGE 1: RAM data retention fault (bad refresh?)
MESSAGE 2: attempted to <action> data <data> at

<address> read <data>

ram-addr-addr-tied I I I I I I
mask I s I x I x I I I
nogins I n 1 x 1 I I I
addr I n I 1 x 1 I I
upt 0 I n I 1 x 1 I I

MESSAGE 1: addr line <name> tied to addr line <name>
MESSAGE 2: testing from addr <address> to <address>

* Fault Condition and Type Fault Message
Arguments Alternatives

rom-addr-fault
mask
nogins
addr
upt 0

I I I I I I
I s I X I X I I I
I n 1 x 1 I I I
I n I 1 x 1 I I
I n I 1 x 1 I I

MESSAGE 1 : addr line <name> stuck
MESSAGE 2 : testing from addr <address> to <address>

ram-data-data-tied I I I I I I
mask I s I x I x I I I
nogins
addr
upt 0

MESSAGE 1 : data line <name> tied to data line <name>
MESSAGE 2 : testing from addr <address> to <address>

rom-data-fault
mask-low
mask-high
nogins
addr
upt 0

I I I I I I
I S 1 x 1 I I I
I s 1 x 1 I I I
I n 1 x 1 I I I
I n I I I I I
I n I I I I I

MESSAGE 1: data line <name> stuck low
or data line <name> stuck high

MESSAGE 2: testing from addr <address> to <address>

Fault Condition and
Arguments

Type Fault Message
Alternatives

rom-data-high-tied-a11 I I * I I I I
addr I n I 1 x 1 I I
upto I n I 1 x 1 I I

MESSAGE 1: all ROM data bits stuck high
MESSAGE 2: testing from addr <address> to <address>

rom-data-low-tied-all I 1 * 1 I I I
addr I n I 1 x 1 I I
upto I n I 1 x 1 I I

MESSAGE 1: all ROM data bits stuck low
MESSAGE 2 : testing from addr <address> to <address>

rom-sig-incorrect I I I I I I
s ig I n 1 x 1 I I I
sig-expected I n 1 x 1 I I I
addr I n I 1 x 1 I I
upto I n I 1 x 1 I I

MESSAGE 1: read incorrect sig <data> expected <data>
MESSAGE 2: testing from addr <address> to <address>

unknown-fault
access-attempted
addr
data

MESSAGE 1: unknown or intermittent fault occurred
MESSAGE 2: attempted to <action> data <data> at

<address>

Appendix I
Pod-Related Information

POD CALIBRATION AND OFFSETS 1.1.

Calibration is the process by which the internal delay lines in the UO
module and probe are adjusted to correctly align (in time) the clock and
signals to be sampled. To calibrate an UO module or probe to a pod for
a particular pod sync mode, you are prompted to probe a signal on the
UUT. The specified reference edge on that signal is found by adjusting
the delay lines in the 110 module or probe relative to the internal
PodSync signal, The appropriate delay, labeled "tcal" in Figure 1-1,
may vary from one pod to another and from one sync mode to another.
If calibration is not performed, then a default setting is used for the tcal
value. When calibration is performed, the measured value for tcal
replaces the default value.

Once the reference edge is found, then an offset is applied to that edge to
determine just where in time the UO module or probe will latch data.

The following is an example for an imaginary "xyz" pod showing how
the offset data is listed in this appendix and how this data would apply
to real waveforms. Pod calibration and offset data for the "xyz" pod
would appear in this appendix as follows:

Sync Mode UUT S i g n a l Edge o f S i g n a l O f f s e t f rom Edge

ADDR -ALE rising -24 ns

In the imaginary "xyz" pod, the reference edge for address sync is the
rising edge of the -ALE (address latch enable) signal. Furthermore, the
offset data shows that a valid address is best captured when sampled 24
nanoseconds before the rising edge of -ALE. (A positive offset would
have indicated that the address should be latched after the reference
edge.)

The waveforms corresponding to the above example are shown in
Figure 1-1. The - symbol indicates that both the ALE signal and the
PodSync signal are active low.

As a result of the calibration process, the offset value is set to the default
value for the sync mode in use. If other offsets are required, the TL/1
setoffset command can be used. See the setoffset command and the
getoffset command in the "TL11 Alphabetical Reference" section of this
manual.

POD INFORMATION FOR 9100A/9105A USERS 1.2.

In addition to the pod information in Fluke pod manuals, the
Supplemental Pod Information for 9100Al9105A Users Manual
provides the following additional information for each pod:

Address space options: Shows the parameter names, para-
meter values, and all legal combinations of parameter values.
Address space options are accessed through the OPTIONS key at
the operator's keypad and display or through the TLI1 getspace
command.

Pod-specific set-up information: Shows the parameters that
are available through the SETUP MENU key on the operator's
keypad and display or through the TLI1 podsetup command.
These parameters are used to set-up the pod for a specific UUT.

Data latched here

1 2 4 n T t a ,

Specified reference edge 4

Figure 1-1 : Calibration and Offset Example Waveforms

TLI1 support programs: Shows a list of the TL11 programs
that are available in the pod library. These programs provide
convenient interfacing with any special functions built into the
pod.
Pod sync calibration and offset data: Shows the UUT
signal, active (reference) edge of the signal, and the default offset
from the specified reference edge for each sync mode.

SUMMARY OF 80186 POD SUPPLEMENTAL
INFORMATION 1.3.

The following information is included as one example of the information
available in The Supplemental Pod Information for 9100A/9105A Users
Manual. This information is particularly helpful for use with the
getspace command, for pod-specific setup information when using pod-
specific TL11 support programs, and for adjusting pod sync calibration.

Address Space Options:

Parameter
Names : mode space size

Parameter
Values : NORMAL

NORMAL
NORMAL
NORMAL
DMA
DMA
DMA
DMA

MEMORY
MEMORY
1 /o
I / O
MEMORY
MEMORY

1 /o
I / O

Pod-Specific Setup Information:

WORD
BYTE
WORD
BYTE
WORD
BYTE
WORD
BYTE

POD-CTL - P o d c o n t r o l addresses
STDBY-AD - S t a n d b y read address
RESET - R e s e t

SEG - REG - Segment r e g i s t e r s
EXTRA - Ext ra segment r e g i s t e r
STACK - Stack segment r e g i s t e r
CODE - Code segment r e g i s t e r
DATA - Data segment r e g i s t e r

ERR - MASK - E r r o r masks
SUMMARY - E r r o r summary mask
CTRL-DR - Cont ro l d r i v a b i l i t y e r r o r mask
ACT FRC - Forc ing s i g n a l e r r o r mask
ACTIINT - Act ive i n t e r r u p t s i g n a l mask
SEG DR - Segment d r i v a b i l i t y e r r o r mask
A D D ~ D R - Address d r i v a b i l i t y e r r o r mask
DATA-DR - Data d r i v a b i l i t y e r r o r mask
INTA-TO - I n t e r r u p t acknowledge and t i m e r ou t

e r r o r mask
CHIP - SEL - Chip select e r r o r mask

CS-REG - Chip select r e g i s t e r s
MPCS - MPCS r e g i s t e r
MMCS - MMCS r e g i s t e r
PACS - PACS r e g i s t e r
LMCS - LMCS r e g i s t e r
UMCS - UMCS r e g i s t e r

DMA-CHO - DMA channel 0
CTRL-WD - Cont ro l word
TRNS-CNT - Trans fe r count
DP UPPR - D e s t i n a t i o n p o i n t e r (upper f o u r b i t s)
DPILWR - D e s t i n a t i o n p o i n t e r (lower s i x t e e n b i t s)
SP UPPR - Source p o i n t e r (upper f o u r b i t s)
SPILWR - Source p o i n t e r (lower s i x t e e n b i t s)

DMA - C H 1 - DMA channel 1
CTRL-WD - Cont ro l word
TRNS-CNT - Trans fe r count
DP UPPR - D e s t i n a t i o n p o i n t e r (upper f o u r b i t s)
DPILWR - D e s t i n a t i o n p o i n t e r (lower s i x t e e n b i t s)
SP-UPPR - Source p o i n t e r (upper f o u r b i t s)
SP-LWR - Source p o i n t e r (lower s i x t e e n b i t s)

TIMER0 - T i m e r 0
M/C-WD - Mode/Control word r e g i s t e r
MAX-CNTA - Max count A r e g i s t e r
MAX CNTB - Max count B r e g i s t e r
COUNT - Count r e g i s t e r

TIMER1 - T i m e r 1
M/C-WD - Mode/Control word r e g i s t e r
MAX-CNTA - Max coun t A r e g i s t e r
MAX CNTB - Max coun t B r e g i s t e r
COUNT - Count r e g i s t e r

TIMER2 - T i m e r 2
M/C-WD - Mode/Control word r e g i s t e r
MAX CNTA - Max coun t A r e g i s t e r
COUNT - Count r e g i s t e r

INT-CNTR - I n t e r r u p t c o n t r o l l e r r e g i s t e r s
INT3 - INT3 c o n t r o l r e g i s t e r
INT2 - INT2 c o n t r o l r e g i s t e r
I N T l - I N T l c o n t r o l r e g i s t e r
INTO - I N T O c o n t r o l r e g i s t e r
DMAl - DMAl c o n t r o l r e g i s t e r
DMAO - DMAO c o n t r o l r e g i s t e r
TMR CTL - TIMER c o n t r o l r e g i s t e r
INTISTAT - I n t e r r u p t c o n t r o l s t a t u s r e g i s t e r
INT REQ - I n t e r r u p t r e q u e s t r e g i s t e r
IN-SERV - ~ n - s e r v i c e r e g i s t e r
PRI-MSK - P r i o r i t y mask r e g i s t e r
MASK - Mask r e g i s t e r
EOI - EOI r e g i s t e r
INT-VECT - I n t e r r u p t v e c t o r r e g i s t e r

TLII Support Programs:

QWK RD Quick l o o p i n g r e a d
Q W K ~ R Quick l o o p i n g w r i t e
QWK-ROM Quick ROM test
QWK RAM Q u i c k RAM test
Q W K ~ R A M P Quick ramp
QWK-FILL Quick f i l l

Pod Sync Cali bration

Sync Mode UUT S i g n a l

ADDR ALE
DATA -DEN
I N T A -DEN

Edge o f S i g n a l O f f s e t from Edge

f a l l i n g
r i s i n g
r i s i n g

Appendix J
91 OOA/gl O5A Error

Numbers

INTRODUCTION J.1.

The 9100Al9105A associates an error number with each
possible error that the instrument can encounter during
operation. This association is system-wide. A given error has
the same error number in all facets of system operation.

Also associated with each error is an error message, which is a
string describing the error. For some errors, this error message
string is modified to reflect certain error parameters (for
example, if a file cannot be opened because it does not exist, the
error message will include the name of the file).

Normally, error numbers are invisible to the operator or
programmer, with only the error message displayed when an
error is encountered. However, some errors can be dealt with in
a TL11 program, where it is more convenient to check error
numbers than message strings when particular errors are handled
differently .

ERROR NUMBERS J.2.

Figure J-1 contains only those errors that are relevant to TW1
programming. The number of errors which can be generated by
the 9100Al9105A is much larger than this list; however, errors
not in this table cannot be intercepted by TL11

programs. Also, error numbers from 900 through 999 are
reserved for user-defined errors, which are sometimes needed in
programs which deal with both system-specific and application-
specific errors.

Error messages which are modified to reflect the actual error
parameter(s) are shown with the error parameter(s) in italics.

The error numbers that appear in the following table are the
'err_numl argument to the io-error fault. This fault is raised by
various VO statements, including print and input.

Error Number Error

Path Table full

Bad Path Number

Bad Mode

Out of Memory

End of File

File Not Accessible

Bad Path Name

Path Name Not Found

Creating Existing File

Phone hangup occurred (modem)

Out of Memory

Directory not empty

I10 error - bad disk sector number

Disk is Write Protected

Figure J-1 : List of Error Numbers

Error Number Error

10 error -- bad CRC verify

qead Error

Nrite Error

Uo disk in drive

Unreadable or unformatted disk

Disk Full

Incompatible Disk Type

I10 Device Busy

Disk ID error

File record is busy (locked out)

Non-sharable file busy

Device is format protected; cannot format

IEEE-488 output buffer not empty

Operation requires an IEEE-488 address
list

Operation requires system controller
capability

Operation requires controller-in-charge
capability

Figure J-1 : List of Error Numbers (cont.)

Error

IEEE-488 interface hardware is busy

Not configured for parallel poll

IEEE-488 transaction timed out

Operation requires controller capability

No listeners on the IEEE-488 bus

Cannot go to local in local lockout

I10 attempted before any channels
opened.

lnvalid BAUD Setting

lnvalid Parity Setting

lnvalid Number of Parity Bits

lnvalid Number of Stop Bits

file is write protected

file does not exist

Text files cannot be opened in update
mode

There is no Video Interface

There is no Operator Display

Ports and files cannot have windows

Figure J-1 : List of Error Numbers (cont.)

Appendix K
91 00- Series

Software Error Report Form

9100 SERIES SOFTWARE ERROR REPORT FORM

We would like to thank you for taking the time to let us know about any bugs you
encounter while using the 9100A or the 9105A. This information will help us in our
goal of providing the best possible products for our customers.

We suggest that you retain this form as an original and use a photocopy for reporting
a bug.

Name Date

Company

Department Mail Stop

Address

Country

Phone ()

Model: 9100A
9105A

Serial Number:

Software Version:

Pod In Use:

Description of Problem:

(Continued on next page)

What sequence of steps led to the problem? a

What was displayed on the operator's display when the problem was encountered?

Line 1:

Line 2:

Line 3: a
Was the problem intermittent? Yes No

Were you able to work around the problem? If so, how?

Please return the completed form to:

John Fluke Mfg. Co., Inc.
MRBD Sales Support
M/S 251 E
Box C9090
Everett. WA 98206

Index

NOTE

TLIl commands are not - listed in
this index. They are located
alphabetically in Section 3.

0
Address Space Options, 1-4
~nnunciator control, 8-3
Argument names, G-2, H-3
Arguments used with built-in tests, G-12
Arithmetic Operators, 2-1 2
Arrays, 2-1 1
ASCII Codes, A-1

Beeper control, 8-4
Bit mask operators, 2-1 5
Bit shifting operators, 2-1 5
Block statements, 2-22
Bus test faults, G-8

Calibration, 1-1
Case sensitive, 2-2,2-3
Case, 2-2
Comment, 2-22
Conditional expressions, 2-1 7
Control codes, B-1
Cursor control seauences. 8-2

Data types, 2-8
Device list, 2-6
Device names, 2-4
Display attributes, B-2
Display characters for the monitor, B-5
Display mode sequences, B-2
Double-quote character, 2-10

Editing control, B-3
Erasing, B-1
Error Numbers

91 OOA/9l OSA, J-1
Error table, J-1
Esc key, B-1

Fault condition
arguments, G-2, H-6
handling, G-1
messages, H-6
raising, H-1

Fault message tables, H-6
File and directory names, 2-2, 2-3
Floating-point, 2-9
Functions, 2-20

I/O module and probe, 2-20
pod, 2-20
special, 2-20

Generating built-in fault messages, H-1
Generic faults, G-10

Handling built-in fault conditions, G-1
How to read fault message tables, H-5

I10 module cliplpin mapping, E-1

Keypad mapping to TU1 output, C-1

Logical operators, 2-1 3

Memory interface pod faults, G-9
Message variables, H-3
Monitor display, B-1

Name conventions, 2-2
Non-printing characters, 2-10
Numeric type, 2-8

Numeric type, 2-8
Numeric values, 2-8

Operator's keypad mapping, C-1
Operators, 2-1 1
Order of evaluation, 2-1 6
Organization of manual, 1-2
Other built-in test faults, G-12

Parentheses, 2-1 7
Pin names, 2-7
Pin numbers, 2-7
Pod calibration and offsets, 1-1
Pod related information, 1-2
Pod supplemental information, 1-4
Pod sync calibration data, 1-6
Pod-specific set-up information, 1-2
Pod-specific setup information, 1-4
Primitive fault conditions, G-10
Programmer's keyboard mapping to TU1 input, D-1

Ram test faults, G-4
Ref pins, 2-7
Reference designator names, 2-7
Relational Ooerators. 2-12
ROM test faults, G-7

Simple statements, 2-22
Single quote character, 2-2
Software error report form, J-6
Special display characters, B-4
String

operators, 2-1 4
Symbols, H-2

used in displaying IC's, B-5

Tab stops, B-3
TLI1

language conventions, 2-1
reserved words, F-1
statement conventions, 2-22
support programs, 1-6

Type conversion operators, 2-21

	Cover Sheet
	Table of Contents
	1 Overview
	2 TL/1 Language Conventions
	2.1 Name Conventions
	2.2 Data Types
	2.3 Arrays
	2.4 Operators
	2.5 Order of Evaluation of Operators
	2.6 Conditional Expressions
	2.7 Functions
	2.8 TL/1 Statement Conventions

	3 TL/1 Alphabetical Reference
	A
	abort
	acos
	arm
	ascii
	asin
	assign
	(assignment)
	assoc
	atan

	B
	bitmask

	C
	cflt
	checkstatus
	chr
	clearoutputs
	clearpatt
	clearpersvars
	clip
	close
	cnum
	compare
	connect
	cos
	count
	counter
	cwd

	D
	dbquery
	declare (block form)
	declare (statement form)
	define menu
	define mode
	define part
	define ref
	define text
	delete
	diagnoseram
	diagnoserom
	draw
	draw ref
	draw text

	E
	edge
	edisk
	enable
	end
	endif
	execute
	exercise

	F
	fabs
	fails
	fault
	filestat
	for
	fstr
	function
	fval

	G
	getoffset
	getpod
	getromsig
	getspace
	gfi
	goto

	H
	haltuut
	handle

	I
	ieee
	if (block form)
	if (statement form)
	input
	input using
	instr
	isflt
	isval

	L
	len
	level
	loadblock
	log
	loop
	lsb

	M
	mid
	msb

	N
	natural
	next

	O
	open

	P
	passes
	podinfo
	podsetup
	poll
	pollbutton
	polluut
	pow
	pretestram
	print
	print using
	probe
	program
	pulser

	R
	rampaddr
	rampdata
	random
	read
	readblock
	readbutton
	readdate
	readmenu
	readout
	readspecial
	readstatus
	readtime
	readvirtual
	readword
	refault
	remove
	reset
	resetpervars
	restorecal
	return
	rotate
	runuut
	runuutspecial
	runuutvirtual

	S
	setbit
	setoffset
	setspace
	setword
	shl
	shr
	sig
	sin
	sqrt
	stopcount
	storepatt
	str
	strobeclock
	sync
	sysaddr
	sysdata
	sysinfo
	sysspace
	systime

	T
	tan
	testbus
	testramfast
	testramfull
	testromfull
	threshold
	toggleaddr
	togglecontrol
	toggledata
	token

	V
	val

	W
	wait
	waituut
	winctl
	write
	writeblock
	writecontrol
	writefill
	writepatt
	writepin
	writespecial
	writevirtual
	writeword

	Appendices
	A ASCII Codes
	B Control Codes for Monitor and Operator's Display
	C Operator's Keypad Mapping to TL/1 Input
	D Programmer's Keyboard Mapping to TL/1 Input
	E I/O Module Clip/Pin Mapping
	F Reserved Words
	G Handling Built-in Fault Conditions
	H Generating Built-in Fault Messages
	I Pod-Related Information
	J 9100A/9105A Error Numbers
	K 9100 Series Software Error Report Form

	Index

