T.0. 33-~DF-3&-12-11

DISTRIBUTION STATEMENT — Distribution authorized to U.S. Gov-
ernment agencies only for administrative or operational use (effective
date is date of this manual). Other requests for this document must be
referred to San Antonio ALC/MMEDT, Kelly AFB, TX 78241-5000.

THIS MATERIAL MAY BE REPRODUCED BY OR FOR THE U.S. GOV-
ERNMENT PURSUANT TO THE COPYRIGHT LICENSE UNDER THE
(DFAR) CLAUSE AT 52.227-7013 (15 MAY 1987).

HANDLING AND DESTRUCTION NOTICE — Comply with distribution
statement and destroy by any method that will prevent disclosure of
contents or reconstruction of the document.

Form No. A260 7/89

97100 Series

Applications
Manual

P/N 813840

FEBRUARY 1988 FLU KE

©1988, John Fluke Mfg. Co., Inc.

All rights reserved. Litho in U.S.A.

LIMITED WARRANTY

John Fluke Mfg. Co., Inc. (Fluke) warrants your 9100/9105A to be free from
defects in material and workmanship under normal use and service for 90 days
from the date of shipment. Software and firmware products are provided “AS
IS.” We do not warrant that software or firmware products will be error free,
operated without interruption or that all errors will be corrected. This warranty
extends to you if you are the original purchaser and does not apply to fuses,
batteries or any product which, in our sole opinion, has been subjectto misuse,
alteration or abnormal conditions of operation or handling.

To obtain warranty service, contact a Fluke Service Center or send the
product, with the description of the difficulty, postage prepaid, to the nearest
Fiuke Service Center. Fluke assumes no risk for damage in transit.

Fluke will, at our option, repair or replace the defective product free of
charge. However, if we determine that the failure was caused by misuse,
alteration, or abnormal condition of operation or handling, you will be billed for
the repair. The repaired product will be returned to you, transportation prepaid.

THISWARRANTY IS EXCLUSIVEAND IS IN LIEU OF ALL OTHER WARRAN-
TIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PAR-
TICULAR PURPOSE OR USE. FLUKE WILL NOT BE LIABLE FOR ANY
SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES OR
LOSS WHETHER IN CONTRACT, TORT, OR OTHERWISE.

9100 Series Applications Manual

by
Douglas Hazelton

John Fluke Mfg. Co., Inc.
Evereti, Washington

Acknowledgements

I would like to express my appreciation to Marshall Scott for the
original concept of this manual and for his encouragement and
support through the writing process. In addition, I would like to
thank Pat Donahoo, Bob Cuckler, Marshall Scott, and Tony
Vannelli for the "Considerations for Testing and Troubleshooting”
material presented in Section 4. I am also appreciative of the
assistance of Frank Tomlinson in developing the TL/1 programs for
the Demo/Trainer UUT and to Greg Sheahen and George Hong for
their valuable suggestions concerning the user interface graphics.
And finally, I would like to thank Ted Thwing for his editorial
suggestions and for coordinating the development of this manual.

Section Title Page
WHere am 12.... .ottt e xvil
1. INtFOUCTION ... e 1-1
1.1. ORGANIZATION OF THIS MANUAL.......ccccoiiranrnnennee. 1-1
1.2 PREPARING FOR TESTING AND
TROUBLESHOOTING........coeeeeee et 1-2
1.3. WHERE TOBEGIN......cccoiiiieee e 1-5
2, Overview of Testing and Troubleshooting............c..ccccocenineen. 241
2.1. EMULATIVE TESTING......cco oo 2-2
2.2. NODE CHARACTERIZATION........cccoeveviirmrreeenecnricenienne 2-6
23. STIMULUS AND MEASUREMENT CAPABILITIES........ 2-7
2.3.1. Pod Capabilities.......ccccceerrieriirnie et 29
2.3.2. Probe Capabilities (With The Clock Module)............... 29
2:3.3. I/O Module Capabilities..........ccccerverrrriecieeeniensieeeneenne 2-10
2.4. TESTING AND TROUBLESHOQOTING WITH
THE 9100A/B105A.......ceeeeere et 2-11
3. Developing Procedures and Programs................._ 31
3.1. UNDERSTANDING THE UUT....ccooiiicccieenceeene 3-1
3.2. PARTITIONING THE UUT ... 3-1

Section

Title Page
3.2.1. An Example of Partitioning............oceccecnnnnininieience 3-2
3.2.2. The Advantage of Partitioning.........c.cccccevveveee e, 3-6
3.8. PROGRAM DEVELOPMENT SEQUENCE.................... 3-6
3.4. STIMULUS PROGRAMS AND LEARNED
RESPONSES. ... esrenetesee e s 3-8
3.4.1. Rules for Stimulus Programs...........ccceceeeveevenvecennne. 3-10
3.4.2. The Flow of Stimulus Across the UUT...........ccccoeeeee. 3-11
3.4.3. Stimulus Program Planning..........cceccceeeeveevnieeeceecennnnn. 3-12
3.44. Suggestions about Stimulus Programs...................... 3-16
3.5. FUNCTIONAL TESTS.....oooiireeererceere e 3-21
3.5.1. Programmed Functional Tests.........cecceecnnnnnecinnenne 3-24
3.5.2. Programmed Functional Test Examples.................... 3-26
3.5.3. Keystroke Functional Tests.........cceevvveenennenneniinnenn 3-27
Functional Block Test and Troubleshooting Examples............ 4-1
41. MICROPROCESSOR BUS FUNCTIONAL BLOCK......... 4-3
411, Test Access to the Microprocessor Bus.............c........ 4-3
412, Considerations for Testing and Troubleshooting........ 4-5
413, Microprocessor Bus Examplecccceeeviiveninienns 4-10
41.4. Keystroke Functional Test...........ccccvvevrvcnneencnninennnns 410
4.15. Programmed Functional Test........cccccoeeceeveeveierene, 4-14
4.1.6. Stimulus Programs and Responses............ccocevcveunee. 417
41.7. Summary of Complete Solution for
Microprocessor BUS.........oco e iin e 4-31
42, ROM FUNCTIONAL BLOCK.......ccoceiiririe e, 4-33
421, Introduction t0 ROM........cconvvnrcinnnnnenienee s 4-33
422. Considerations for Testing and Troubleshooting........ 4-33
423, ROM EXa@mple.......covereeeriemrneeeeeneersesnnennseeeseeseeeseeeeens 4-39
4.24. Keystroke Functional Test........c.ccoovinnnneiceccinnenn. 4-39
425, Programmed Functional Test.........cccevceevineeecccennnenn. 4-44
4.2.6. Stimulus Programs and Responses.........ccceceeevevueenee. 4-46
4217. Summary of Complete Solution for ROM................... 4-57
43. RAM FUNCTIONAL BLOCK......ccoiieereeecceeee e 4-59
4.3.1. Introduction 10 RAM ... 4-59
4.3.2. Considerations for Testing and Troubleshooting........ 4-59
4.3.3. RAM EXamPle.......ccciviveirceeeiiiininrere e s 4-63
434. Keystroke Functional Test............ccccooivnininvinieninnns 4-63
4.35. Programmed Functional Test.........cccooovevvvivn e 4-66

Section

4.3.6.
43.7.

4.4.

4.41.
4.4.2.
4.43.
444,
4.45.
4.4.6.
447.

4.5.

451.
452,
453.
454,
455.
4.56.
457.

4.6.

46.1.
4.6.2.
4.6.3.
464.
46.5.
4.6.6.
486.7.

4.7.

4.71.
4.7.2.
4.7.3.
4.7.4.
4.7.5.
4.7.6.
4.7.7.

Title Page
Stimulus Programs and ResSponses.........ccoecevveeeeeeenne 4-67
Summary of Complete Solution for RAM.................... 4-74
DYNAMIC RAM TIMING FUNCTIONAL BLOCK............ 4-75
Introduction to Dynamic RAM Timing Circuits............ 4-75
Considerations for Testing and Troubleshooting........ 4-75
Dynamic RAM Timing Circuit Example...........ccoeueuuee 4-79
Keystroke Functional Test..........ccccmreecniniiiniinnnnns 4-83
Programmed Functional Test........cccovecernrniiiniinnenns 4-88
Stimulus Programs and Responses.........cccccecvviiene 4-88
Summary of Complete Solution for Dynamic
RAM TiMiNg......ccovveermre et e seeeneeceeeneenees 4-113
PARALLEL INPUT/QUTPUT FUNCTIONAL BLOCK...... 4-115
Introduction to Parallel 1/O...........ccoo i 4-115
Considerations for Testing and Troubleshooting........ 4-115
Parallel 1/O Example.........cccveeeccnrnennininensnninneenens 4-118
Keystroke Functional Test.........cccoreiiiviieiniins 4-118
Programmed Functional Test.........c..ccecviniiiiiiiiiiinns 4-124
Stimulus Programs and Responses..........ccccecvveiiuennns 4-126
Summary of Complete Solution for Parallel I/O........... 4-149
SERIAL INPUT/OUTPUT FUNCTIONAL BLOCK............ 4-151
Introduction to Serial VO......c.cccoovvrcvniniiiiiici, 4-151
Considerations for Testing and Troubleshooting........ 4-151
Serial I/O EXample.......covvveecereereenennrcenir e 4-155
Keystroke Functional Test.........cccovvvviinicicininn, 4-156
Programmed Functional Test.........ccccciiiiiniinnnne. 4-160
Stimulus Programs and ReSponses.......cc.ooeeevenieivinne 4-163
Summary of Complete Solution for Serial /O............. 4-176
VIDEO OUTPUT FUNCTIONAL BLOCK.......cc.coovrnniinenn 4-177
Introduction to Video Output Circuits.........ccocevneenes 4177
Considerations for Testing and Troubleshooting........ 4177
Video Output Circuit Example...........ccccovnnniniinns 4-180
Keystroke Functional Test........cccevnvvivirnnennninns 4-181
Programmed Functional Test.............ceninininics 4-186
Stimulus Programs and Responses...........ccceveeneeann 4-187

Summary of Complete Solution for Video Output...... 4-202

Section

Vi

4.8.

4.8.1.
4.8.2.
4.83.
484,
485.
4.8.6.
48.7.

4.9.

491.
49.2.
4.93.
4.94.
495,
4.9.6.
49.7.

4.10.

4.10.1.
4.10.2.
4.10.3.
4.10.4.
4.105.

»
—t ok
So
No

rErBABASS
-—L—A—L—L—A_A'.-L_L

S
-
N

4.12.1.
4.12.2.
4.12.3.
4.12.4.

—t ek bk b h md eh A
Nounswp=

Title Page
VIDEO CONTROL FUNCTIONAL BLOCK............c.cco...... 4-203
Introduction to Video Control Circuits.............ccccvenene. 4-203
Considerations for Testing and Troubleshooting........ 4-205
Video Control Circuit Example...........c.ccoceeeviiievenennnns 4-206
Keystroke Functional Test........cccccceeeievenireenee, 4-208
Programmed Functional Test..........cccoccveeeine e, 4-216
Stimulus Programs and Responses........c.cccccveeenenee. 4-216
Summary of Complete Solution for Video Control...... 4-229
VIDEO RAM FUNCTIONAL BLOCK.......ccceeerrrrerrceenen, 4-231
Introduction to Video RAM.........ccccvevvvireececieceea, 4-231
Considerations for Testing and Troubleshooting........ 4-231
Video RAM Circuit Example.......ccccceeevvnnvvinevennnnen. 4-233
Keystroke Functional Test...........cccceeeveeveeciivicinecenee, 4-234
Programmed Functional Test.........ccoceevvvvvrvncvninnns 4-238
Stimulus Programs and Responses..........ccccccceeneenee. 4-238
Summary of Complete Solution for Video RAM.......... 4-242
BUS BUFFER FUNCTIONAL BLOCK......cccoceoveirrcne. 4-243
Buses and Bus Buffers........cccccovereecciincinnniiennene. 4-243
Considerations for Testing and Troubleshooting........ 4-243
Bus Buffer Example......cccooee e 4-250
Keystroke Functional Test........ccceovevceeecieiiennneenenee, 4-251
Programmed Functional Test.........ccccoviiiiinninienne 4-262
Stimulus Programs and Responses...........ceeevveeennene 4-263
Summary of Complete Solution for Bus Buffer........... 4-272
ADDRESS DECODE FUNCTIONAL BLOCK.................. 4-273
Introduction to Address Decode Circuits..................... 4-273
Considerations for Testing and Troubleshooting........ 4-273
Address Decode Circuit Example.....ccccoeveericceeeeen. 4-276
Keystroke Functional Test.........cccceevenveeninscnee e 4-277
Programmed Functional Test..........ccoovvvevcieccninnen. 4-282
Stimulus Programs and Responses...........ccevveenieenne 4-283
Summary of Complete Solution for
Address DeCOde.........cccomeienieniminiccnns s 4-289
CLOCK AND RESET FUNCTIONAL BLOCK.................. 4-291
Introduction to Clock and Reset Circuits.........c.ccce..e... 4-291
Considerations for Testing and Troubleshooting........ 4-291
Clock and Reset Example.........ccovveecrciininecncnn 4-293
Keystroke Functional Test......c..eeveivvieiiininicceeee 4-294

Section Title Page
4.125. Programmed Functional Test.........ccccccviineneccnnnen 4-300
4.12.6. Stimulus Programs and Responses........cccccceeceueennen. 4-301
4127. Summary of Complete Solution for Clock and Reset.. 4-312
4.13. INTERRUPT CIRCUIT FUNCTIONAL BLOCK................ 4-313
4131, Introduction to Interrupt Circuits..........cccccecceneennnnn 4-313
4.13.2. Considerations for Testing and Troubleshooting........ 4-313
413.3. Interrupt Circuit EXample........cccocvevniniicenienie s 4-316
4.13.4. Keystroke Functional Test.........ccccomnnievicv e, 4-316
4135. Programmed Functional Test.........coovieeiiieinennenns 4-322
4.13.6. Stimulus Programs and Responses..........cooceeevnenen. 4-322
4.13.7. Summary of Complete Solution for Interrupt Circuit.... 4-329
4.14. READY CIRCUIT FUNCTIONAL BLOCK.......ccccevreernnnn. 4-331
4.14.1. Introduction to Ready Circuits.........c.ccevvnvnncicnens 4-331
4.14.2. Considerations for Testing and Troubleshooting........ 4-331
4.143. Ready Circuit Example.........cccceevveveereieenieenieesee e, 4-334
4.14.4. Keystroke Functional Test...........cccceevmmnimnennncien 4-335
4.14.6. Programmed Functional Test.........ccccoiviinnn 4-348
4147. Stimulus Programs and Responses........c.cccoeveeeeeneen. 4-349
414 8. Summary of Complete Solution for Ready Circuit....... 4-378
415, OTHER FUNCTIONAL BLOCKS AND CIRCUITS.......... 4-379
4151. Watchdog TimMerS.........veevvvceeereeeieeeeee e 4-379
4152, FOrCiNg LiNEScoi e e 4-379
4.153. Breaking Feedback LOOPS........cccecveeeiinrnc e 4-380
4154. Visual and Acoustic Interfaces.........ccoooecececcennnnnnen. 4-380
4155, In-Circuit Component TestS.......cccovveirccenrenneennnnnnne 4-381

5. UUT Go/No-Go Functional Tests.........c..cocccevrnivinniinniiinnnnn, 5-1
5.1. PROGRAMMED GO/NO-GO FUNCTIONAL TESTING.. 5-1
5.2. CREATING A PROGRAMMED GO/NO-GO

FUNCTIONAL TEST ..ot i 5-1
5.3. EVALUATING TEST EFFECTIVENESS..........cccoeeeeee. 5-3
5.4, EXECUTING UUT SELF-TESTS......cccooiiiiicreeeee 5-7
5.5. EXECUTING DOWNLOADED MACHINE CODE............ 5-8

vii

Section Title Page

6. Identifying a Faulty Functional BloCKk............c..ccccevvvvvviinnennn, 6-1
6.1. STRATEGY OF DIAGNOSTIC PROGRAMS.................. 6-3
6.2. IMPLEMENTING THE STRATEGY FOR

DIAGNOSTIC PROGRAMS..........ccooevirviecie et 6-6
6.3. DIAGNOSIS USING FAULT CONDITION HANDLERS.. 6-8
6.3.1. What are Fault Condition Handlers?........................... 6-8
6.3.2. Using Fault Condition Handlers...........cccecvveveeevnnee.. 6-9
6.3.3. A Diagnostic Test Example.........cccvvvvvernrrneenennnnen 6-9
6.4, DIAGNOSTIC PROGRAM FOR THE

DEMO/TRAINER UUT....ceiiicireeeereee s 6-11
6.5. FUNCTIONAL BLOCK TESTS FOR THE

DEMO/TRAINER UUT DIAGNOSTIC PROGRAM.......... 6-17

7. TroubleShOoting...........ccccoviiicieiveeecer e 7-1
7.1. UNGUIDED FAULT ISOLATION (UFD)....cccoeeeernnee. 7-1
7.2. GUIDED FAULT ISOLATION (GF)....covcvririeciieieee, 7-2
7.3. STIMULUS PROGRAMS........coeireirrennrrennrereese e 7-2
7.4, STIMULUS PROGRAM RESPONSES..........cccocvvveeenee. 7-4
7.41. Learning Responses From a Known-Good UUT........ 7-4
7.42. CRC Signatures.....ccccoeeeeeeeeeceee e 7-5
7.4.3. Other Characterizations.........ccccccvvveenvirvnvven v 7-7
7.4.4. Calibration of the I/O Module and Probe...................... 7-8
7.45. Adjusting Sync Timing........ccccovveiiieeeieecee e 79
7.5. THE UUT DESCRIPTION......cce et 7-11
7.51. Reference Designator List (REFLIST).......cccoccenenee 7-11
7.5.2. Part Library (Part Descriptions)........ccceceeeeeeevieeciienen. 7-12
7.5.3. Node List (Net List or Wire List).........ccccoeevvevervenrennenne 7-12
754 Bus-Master Pins in @ Node List.........ccccovvvieeniincnnnen. 7-13
7.55. Choice of Backtracing Path..........ccoccoonvrnninine 7-14
7.6. SUMMARY OF GFI COVERAGE..........ccoooiiiricieeeee 7-17
7.7. FAULT CONDITION EXERCISERS........cccoccvvevvneiinnnanns 7-23
7.8. REPAIR AFTER TROUBLESHOOTING........cccccvvvreinrae 7-24

8. GlOSSAMY.....c.oiiec e 8-1

viii

Section Title Page
Appendices

A. Demo/Trainer UUT Reflist...........ccooooeiiiiiii A-1
B. Demo/Trainer UUT Nodelist.............ccccoeviiiiiiiniiiiis B-1
C. Subprograms for Functional Test and Stimulus Programs..... C-1
D. Demo/Trainer UUT Schematics.............cocoimnivimvnn e D-1
Index

(This page is intentionally blank.)

Figures

Figure

-k
[l
-t

NN
WN =

CRNOGALRH

bbb WWWWWWwWwwow

Title Page
Recommended Programming Sequence............cccooreecrncnnienneens 1-4
Testing, Troubleshooting, and Repair............ccvvvvviiiiniiciiinnen, 2-3
Emulative Testing With the 9100A/3105A.........cocccvivenriiieree 2-5
9100A/9105A Stimulus and Measurement Capability................ 2-8
Demo/Trainer UUT......ccooiieieii e e 3-3
Demo/Trainer UUT Functional BIoCkS..........ccccoovivimniiniiniinnncnn, 3-5
Building-Block Programming..........cccceerrnmmniceeenmemeneesniensenns 3-7
Functional Test for Nodes (Level 1)........cccocviiiiinniniicienns 39
Example of Stimulus Program Planning Figure............ccccoei. 3-15
Parts of a Stimulus Program..........cccoeeocirveenneccceeceeerrerneenns 3-18
Functional Tests for Functional Blocks (Level 2).........ccccoines 3-22
Functional Test Elements..........cccoommreccninniiniciiin, 3-23
Example of Keystroke Functional Test Figure...........cccveiiiins 3-29
Conditions Reported by the BUS TEST.........ccccoiiivnivinnn 4-6
Microprocessor Bus Functional Test.........cccccvvmnininvivniicnniees 4-13
Microprocessor Bus Stimulus Program Planning............c...c....... 4-19
Stimulus Program (ADDR_OUT}...coccovniiiiiiiicccrie e 4-20
Response File (ADDR_OUT)...cccceiimiircrcrreiirienic e 4-22
Stimulus Program {DATA_OUT).....cccccmreriimiiiiniiceincienniiens 4-24
Response File (DATA_OUT)...ccooriniiiiniiin it 4-26
Stimulus Program (CTRL_OUT). 4-28
Response File (CTRL_OUTT) .ccoovirriiiiriin et 4-30

xi

Figure

e O I G LY
NOoOhWN=AO

RN
QO

b

Xii

Title Page

Typical ROM BIOCKcocviieeiiie et e e ee e 4-34
Conditions Reported by ROM Test........cccooiviiiiinciiiicie e 4-36
ROM FUNCLIONal TESL......ccoiireeiereieceiriie e 4-43
ROM Stimulus Program Planning.........cc.ccoecneerveccnninniensiencennne 4-49
Stimulus Program (ROMO_DATA).......ccccvvmnerninrcecnenrenreenees 4-50
Response File (ROMO_DATA)......ccceeriverirene e 4-52
Stimulus Program (ROM1_DATA).......cocecmminneniee e 4-53
Response File (ROM1T_DATA)......ccocivrircniireiseinnecrceceeneeseaeanens 4-55
Typical RAM BIOCK.........cooooee e e 4-60
RAM Test Failure Information............ccoccnvmneniinencicee e 4-62
RAM Functional TeSt.........cccvrviiinieiniiicic et e 4-65
RAM Stimulus Program Planning..........ccccoveecccceemmmnnnneeenennces 4-69
Stimulus Program (RAM_DATA)......ccceroureiereernrinin e seeeseen e 4-70
Response File (RAM_DATA).......ccovuimienrreeimrenrer e esceeeeeesinees 4-72
inititalization Program (RAM_FILL)........coovcciniiniieiii 4-73
Dynamic RAM Read CYCIES......cccccovvrmevcrie e 4-76
Dynamic RAM Read/Write TIMiNg........cccccvinviiiiniiniinniiinn, 4-80
RAM Refresh Timing.........cocomrvcciviiiiinmniii e, 4-82
Dynamic RAM Timing Functional Test...........cccceiiiiininncnns 4-87
Dynamic RAM Timing Stimulus Program Planning...........cc..e.... 4-91
Stimulus Program (CAS_STIM).....cccevverninccnriiinii i 492
Response File (CAS_STIM) ...coceeeevmmecccmn e 4-94
Stimulus Program (RAS_STIM).....cooeiiiiiicieeenrene e 4-95
Response File (RAS_STIM) ..o, 4-97
Stimulus Program (RAMSELECT1)....cccoinininiiinee e 4-98
Response File (RAMSELECTT).....cccccviiiiiceinee e 4-100
Stimulus Program (RAMSELECT2).......ccccovevimninicccreccie 4-101
Response File (RAMSELECT2)......c.ccccvveeniecniinee s 4-103
Stimulus Program (REFSH_ADDR).......c.ccccoecvivnnniiiininnncnnn, 4-104
Response File (REFSH_ADDR)......ccooriciivein s 4-106
Stimulus Program (REFSH_TIME)........ccccccnmmnnnniiiiiinene 4-107
Response File (REFSH_TIME)........ccocivniriimnr e 4-109
Stimulus Program (REFSH_US6).........cccooeconiiiiiciinen 4-110
Response File (REFSH_U56)ccccvvmmiiiiiini e 4-112
Parallel /0 Functional Test (Part A).......ccccoovevvvirinniniiiininns 4-121
Parallel /O Functional Test (Part B)........ccoconienccinnnniininenee 4-123
Parallel I/O Stimulus Program Planning........cccooeeeecervneniiniinnen 4-129
Stimulus Program (KEY_1).cccovei e 4-130
Response File (KEY_1)..co e 4-132

4-86:
4-87:

Title Page
Stimulus Program (KEY_2)......cccceeiveviierecreeee e 4-133
Response File (KEY_2).....coccioreccirnini i, 4-135
Stimulus Program (KEY_3).....ccccoveinniinecirne e 4-136
Response File (KEY_3).....ccoovivoriieeeeeierceeciceee s e 4-138
Stimulus Program (KEY_4)......c.evveeeeninneecinere e 4-139
Response File (KEY_4)........cooveeevenieinececrccnene et 4141
Stimulus Program (PIA_DATA)........ceiimerercerree i, 4-142
Response File (PIA_DATA).......coci e 4-144
Stimulus Program (PIA_LEDS)......c.coceriecenieninnierc e 4-145
Response File (PIA_LEDS)c.ccccocieienere i 4-146
Initialization Program (PIA_INIT).......ccooiniriniine i 4-148
Typical Serial /0 Port, With Support Circuitry...........ccccovevnnn 4-152
Serial /O Functional Tesh.....vveeevrvinemeccenieeeccece e 4-159
Serial /0O Stimulus Program Planning..........cccocvevvvccnviiiininnnnns 4-165
Stimulus Program (RS232_DATA).....ccccoccevrrnemcrineeser e 4-166
Response File (RS232_DATA).....cccrvercmr e 4-168
Stimulus Program (RS232_LVL).......ccoccrvmevincceiecneeeeecee 4-169
Response File (RS232_LVL)...cccviiivecieesirieccecenriee e 4-171
Stimulus Program (TTL_LVL) oo 4-172
Response File (TTL_LVL)..cooceiccc e 4-174
Initialization Program (RS232_INIT).....coccervvmniecicniiniiniin 4-175
Typical Video Controller CirCuit...........ccooeeeeiveenienniece e 4-178
Video Output Functional Test.........cccovvieiiiiiniiecee i 4-185
Video Output Stimulus Program Planning...........cccccoveeee i, 4-189
Stimulus Program (VIDEO_FREQ)........ccccvvvcenivicciisiiincn 4-190
Response File (VIDEO_FREQ)......coceccccermmricniiienniniieeeee 4-191
Stimulus Program (VIDEQ_OUT)...c.coveceiiieeeececee e 4-192
Response File (VIDEOQ_OUT)ccoviireiiiiniie i iceneeeriesiees 4-194
Stimulus Program (VIDEO_SCAN).......cocvevinmrriiiicniisenninns 4-195
Response File (VIDEO_SCAN)......cccccomrrrevriiiiiin e 4-197
Initialization Program (VIDEO_INIT)...cccoomriicniiiiiin, 4-199
Initialization Program (VIDEQO_FILT).cccconininiiiceeecini 4-200
Initialization Program (VIDEO_FIL2).........ccceenniivnnivivvrmnaennne. 4-201
Video Display Controller Timing..........ccceoevveriiiiiniiiiieciennens 4-204
Video Control Functional Block Timing..........ccccevinnniniiinninen. 4-207
Video Control Functional Test (Part A)........ccccocinniiiiiniiinn 4-211
Video Control Functional Test (Part B)........c.cccomviiniiiiiciinnnns 4-213
Video Control Functional Test (Pant C).......cccceninniiinin e, 4-215
Video Control Stimulus Program Planning..........cccceevveveeccenins 4-219

xiii

Figure Title Page
4-88: Stimulus Program (VIDEO_DATA)......ccccccoeeeeveeeeeeeeee e 4-220
4-89: Response File (VIDEO_DATA)........comereeieeeeeeeeceeceetere e 4-222
4-90: Stimulus Program (VIDEO_RDY).....ccc.coeveerermieeececeie e 4-223
4-91: Response File (VIDEOQO_RDY)...cooovcouiiiiieeeeeeeeeeee e 4-224
4-92: Stimulus Program (LEVELS).......cccocovviit e 4-226
4-93: Response File (LEVELS)......oooieeeeeeeeeeeeeeeeeeteeee e 4-227
4-94: Video RAM Functional Test.......ccc.ccoeemeuiieeeiieiciece e 4-237
4-95: Video RAM Stimulus Program Planning..............cccccoevvevevieeennnc.. 4-241
4-96: Bus Buffer Functional Test (Part A)........ccoocoeiieeeiiicicceeeeene 4-255
4-97: Bus Buffer Functional Test (Part B)...........ccccoveveeeiveeiviceeene. 4-257
4-98: Bus Buffer Functional Test (Part C).......ccccoevvvivevcveviiiiieee 4-259
4-99: Bus Buffer Functional Test (Part D).......c.ooevvvveevniniiieee e 4-261
4-100: Bus Buffer Stimulus Program Planning...........ccceeeevevvivcevennnnnn 4-265
4-101: Stimulus Program (CTRL_OUT2)........ccovvvviveirirecvceeeeeeee e, 4-266
4-102: Response File (CTRL_OUT2)......ccoevvmvieeeereeeeeeeeeeeeeevee e 4-268
4-103: Stimulus Program (CTRL_OUT3).....cccccceeeerevinecrierieeeise s 4-269
4-104: Response File (CTRL_OUT3)....ccvvieeeeeeeeeeeeeceee e 4-271
4-105: Typical Address Decode Functional Block.............cccoevveveeneee.. 4-274
4-106: Address Decode Functional Test.........cccceveereneeceecececeecreeenenns 4-281
4-107: Address Decode Stimulus Program Planning..........cccccvccveeunnee. 4-285
4-108: Stimulus Program (DECODE).........ccccoveiuiveiieiiesiieciree e 4-286
4-109: Response File (DECODE).........cccovvvviviieseesinssieeeeeieeeveererenn 4-288
4-110: Clock and Reset Functional Test (Part A).........ccccoeeeveeciienennn, 4-297
4-111: Clock and Reset Functional Test (Part B)........ccccoeevveieieeenne. 4-299
4-112: Clock and Reset Stimulus Program Planning............ccccceeeeuen.. 4-303
4-113: Stimulus Program (RESET_HIGH).......cccccveeececnrecn e, 4-304
4-114: Response File (RESET_HIGH).........ccceiierieeececeeceeee e 4-306
4-115: Stimulus Program (RESET_LOW).......ooeecerccicceecee e 4-307
4-116: Response File (RESET_LOW) ..ol 4-309
4-117: Stimulus Program (FREQUENCY)........cccovveieiiniererreeececieee 4-310
4-118: Response File (FREQUENCY)......ccooivvvvvvmrverernceseesirein e e 4-311
4-119: Typical Interrupt CirCU..........coevie e 4-314
4-120: Interrupt Circuit Functional Test........coooece e 4-321
4-121: Interrupt Circuit Stimulus Program Planning..........c..cccocevvveennnn. 4-325
4-122: Stimulus Program (INTERRUPT)........cccovmveeirccr e, 4-326
4-123: Response File (INTERRUPT)......cceeoiviicieeeeeecee e, 4-328

Xiv

Figure

4-124:
4-125:
4-126:
4-127:
4-128:
4-129:
4-130:
4-131:
4-132:
4-133:
4-134:
4-135:
4-136:
4-137:
4-138:
4-139:
4-140:;
4-141:

1 1 1 1
bl e

NN NNN o2 o) oo
WM =

Ohdra

Title Page
Typical Ready CirCUIt.........cccooeveeeer v 4-332
Ready Circuit Functional Test (Part A)........cccocvveneneieceecinnes 4-341
Ready Circuit Functional Test (Part B)........ccccccvevvrinevvvnenennen 4-343
Ready Circuit Functional Test (Part C)........cccovvevcceineiniincieniee 4-345
Ready Circuit Functional Test (Part D)........ccccveecevenennrenenin 4-347
Ready Circuit Stimulus Program Planning...........cccccooevvenvennennn. 4-353
Stimulus Program (READY_1)......cccoiiirieeert e 4-354
Response File (READY _1)..ccci oo veree e 4-357
Stimulus Program (READY_2)......c.oocceiiiiiniee e 4-358
Response File (READY_2)........cccovirnrirnieieeeene e 4-361
Stimulus Program (READY_3).....cccveirerereeeeeer e 4-362
Response File (READY_3).....coo it 4-365
Stimulus Program (READY_4)........ccccimiiiiieeee e 4-366
Response-File (READY_4).....ccccirreiecimncecceenerere e 4-369
Stimulus Program (READY_5)......cccooiiiiiiecciien e 4-370
Response File (READY_5)...cccceeuiriiieiiene e e 4-373
Stimulus Program (READY_6)........cccoureveermireieeecccrceennscrrsneens 4-374
Response File (READY_B).....ccccoiirriiiiiiieiccris s 4-377
UUT Go/No-Go Functional Testing (Level 3)........ccccceeceniinnen. 5-2
GO/NO-GO TESt SEQUENCE.....eeverreerrerreeeceereereeseaeereeeseeeseeesee s 5-6
Demo/Trainer UUT GO/NO-GO TeSL....cooceeceeriiiiiiicceier 5-7
Go/No-Go Test for Demo/Trainer UUT ..., 5-8
Diagnostic Programs (Level 4)...........coovvviiciiiiiiniiiiee, 6-2
Inputs to Functional BIOCKS...........cocccovieiiiciiiiiiincen e 6-4
Identifying a Faulty Functional BIocK.........c.ooevire i, 6-7
Testing for Start and Stop Stability............cocieveiivicieee 7-6
Synchronization-Pulse Delay Mechanism..............cccccceii 7-10
Direction-Control EXample...........ccovveeeccmmmmmnneiecs i 7-15
Statistical Summary Display fora UUT.........icoooiiiiinii i 7-20
Pin Coverage Display for a UUT.......ccccomminnciiiiiiiiiieee, 7-22

Xv

(This page is intentionally blank.)

XVi

Getting
Started

Automated
Operations
Manual

Technical
User's
Manual

Applications
Manual

Programmer's
Manual

TL/1
Reference
Manual

Where AmI?

A description of the parts of the
9100A/9105A, what they do, how to
connect them, and how to power up.

How to run pre-programmed
test or troubleshooting
procedures.

How to use the 9100A/9105A
keypad to test and troubleshoot your
Unit Under Test (UUT).

How to design test or troubleshooting
procedures for your Unit Under Test
(UUT).

How to use the programming station
with the 9100A to create automated test
or troubleshooting procedures.

A description of all TL/1 commands
arranged in alphabetical order for
quick reference.

xvii

(This page is intentionally blank.)

Xviii

Section 1
Introduction

ORGANIZATION OF THIS MANUAL 1.1.

This manual provides an organized approach to testing and
troubleshooting a UUT (Unit Under Test) with the
9100A/9105A. The intended reader is someone who will be
writing test programs or test procedures for use with the
9100A/9105A.

Additional information on the various parts of the 9100A/9105A
system is available in the Gerting Started booklet. More
information about using the operator's keypad for testing and
troubleshooting is available in the Technical Users’s Manual.
And more information on programming the 9100A/9105A is
available in the Programmer’s Manual and in the TL/1 Reference
Manual.

This manual is organized into three major parts:
Sections 1 to 3 give an overview of the capabilities of the
9100A/9105A and the process of developing functional tests and

automated troubleshooting procedures.

Section 4 describes some typical functional blocks for a
microprocessor-based UUT. For each typical functional block,

1-1

you will find a summary of things to consider for testing and
troubleshooting, a procedure for using the operator's keypad of
the 9100A/9105A for functional testing, a 9100A/9105A
programmed functional test, and a set of stimulus programs.

NOTE

Each of the functional blocks described in Section 4
are parts of a real UUT, the Fluke Demo/Trainer. It
is not necessary that you have the Demo/Trainer
UUT to use this manual, but you may wish to
purchase the DemolTrainer from Fluke so you can
try out the example procedures and programs.

Sections 5 to 7 show you how to build on the block functional
tests to develop functional tests for your whole UUT and how to
develop automated troubleshooting procedures using Guided
Fault Isolation (GFI).

PREPARING FOR TESTING AND TROUBLESHOOTING 1.2.

The 9100A/9105A is both a testing and a troubleshooting
system. As a test station, it determines whether functional
blocks of digital circuitry pass or fail. As a troubleshooting
station, it determines which nodes or circuit connections are
faulty.

The 9100A/9105A has many built-in functions which are useful
for functional testing, stimulation of nodes, and measurement of
node or component behavior. In addition, the 9100A has a
powerful programming language, called TL/1, that is used to
customize the capabilities of the 9100A/9105A to match the
testing and troubleshooting requirements for your UUT.

The Programmer's Interface option of the 9100A is used to enter
UUT information and to create programs that become the
building blocks for automated testing and troubleshooting. This
interface also provides an automated process for collecting and
storing node responses from a known-good UUT. When the
9100A/9105A 1is used for testing and troubleshooting,

1-2

measurements on a node are compared with these stored,
known-good node responses to determine whether the measured
node response is good or bad.

The 9100A is easily programmed. The operator's keypad and
display allow you to explore the operation of your UUT by
pressing keys on the keypad. Then, as you develop successful
test and troubleshooting procedures, you can put these
procedures into TL/1 programs to automate the process. Or, if
you prefer, you can write the TL/1 programs directly and then
check their operation with the debugger built into the 9100A.

The 9100A/9105A is very flexible; it can be used with several
different levels of investment in programming. As you increase
the level of programming, you increase the degree of automation
and the ease of testing and troubleshooting. Five typical levels
of programming effort are summarized below and are also
shown graphically in Figure 1-1.

® No programming effort: Use the keys of the operator's
keypad to initiate testing and troubleshooting actions. This
level is appropriate for testing or troubleshooting one-of-a-
kind UUTSs, where investment in programmed testing and
troubleshooting is not cost-effective. It is also valuable for
keystroke testing and troubleshooting prior to the
completion of programmed testing and troubleshooting.
Keystroke testing and troubleshooting requires a skilled
technician operator.

® Level 1 Programming: Create stimulus programs that
cause predictable activity at a node and characterize that
node activity on a known-good UUT. You may choose to
create the node list and the reference designator list at this
level also. If you do so, you will be able to backtrace from
a bad node to the fault which causes it. You do this by
pressing the GFI key on the operator's keypad and
specifying the failing node as the starting point.

® Level 2 Programming: Create functional tests for each
functional block of your UUT. These tests determine
whether the functional block passes or fails. Some block

1-3

1-4

LEVEL OF PROGRAMMING

Level 1

» Stimulus Programs for Nodes

* Learned Node Responses
from Known-Good UUT

» Node List and Reference
Designator List (Both Optional)

Level 2

Functional Tests of
Entire Functional Blocks

Level 3

Go/No-Go Test
for the Entire UUT

Level 4

Go/No-Go Test
for the Entire UUT,
with Fault Isolation

to the Block Level

TESTING AND TROUBLESHOOTING

CAPABILITY AT THIS LEVEL

= Can Determine Whether
Nodes Are Good or Bad

» Can Backtrace from a Bad
Node to the Fault (!f the Node
List and Reference Designator
List Are Complete)

= Can Use Level 1 Capabilities to
Determine Whether Functional
Blocks Pass or Fail

«Can Use Built-In Functional
Tests to Determine Whether
Functional Blocks Pass or Fail

«Includes Level 1 and
Level 2 Capabilities, and

» Can Determine Whether
the UUT Passes or Fails

*Includes Level 1, Level 2, and
Level 3 Capabilities, and

« Can Isolate the Failing
Functional Block and Generate
Hints to Start GFi

Figure 1-1: Recommended Programming Sequence

functional tests will use stimulus programs from Level 1,
and others will have independent functional test programs.

® Level 3 Programming: Create a go/no-go test for the entire
UUT, by using all of the necessary functional block tests
to create a functional test of the whole UUT. This test
determines whether a UUT is good or bad, but does not
usually isolate the fault.

® Level 4 Programming: Add procedures to the go/no-go
test that will isolate the faulty block for any UUTs that fail
the go/no-go functional test. This addition to the go/no-go
test provides efficient starting points for automated
troubleshooting with GFI. If you have not already done
so in Level 1, create the node list and the reference
designator list. Your program will then be able to
backtrace from a bad node to the fault which causes it. Or
you can backtrace by pressing the GFI key on the
operator's keypad and specifying a failing node as the
starting point.

The 9100A/9105A is the center of a expandable system. For
example, fixturing can be added to improve functional test
throughput in high-volume applications. In addition, the
9100A/9105A can be integrated with manufacturing systems or
host computers.

WHERE TO BEGIN 1.3.

The 9100A/9105A system can be operated manually from the
operator's keypad in an "immediate" (keystroke) mode, or it can
be programmed in TL/1 with functional tests and GFI
procedures using the programmer's interface of the 9100A.

A good overview of the full capabilities of the 9100A/9105A

will be helpful before you begin using it in either mode. One

good way to explore the use of the 9100A/9105A is to adopt the

techniques shown in this manual to your own UUT. While

reading Section 4, you might try some of the reads, writes, and

built-in tests on your own UUT. To try Guided Fault Isolation

v (GFI), you could treat a small portion of your UUT as if it were
” the entire system to be tested and diagnosed. Two or three

1-5

1-6

components connected to the microprocessor bus are usually
sufficient for such an introductory exploration.

This manual does not assume that you know the TL/1
programming language, although examples of TL/1 programs
are included throughout the manual. As you look over these
programs and their explanations, you will find many of them
quite understandable. However, in some places, you may want
to refer to the Technical User's Manual, the Programmer’s
Manual, or the TL/1 Reference Manual to learn how specific
keys or commands work.

Section 2
Overview of Testing and
Troubleshooting

"Testing" determines whether a circuit is good (passes) or bad
(fails). "Troubleshooting” finds the faulty component or node
causing a circuit to fail.

Before microprocessors, a circuit board was tested by applying a
sequence of patterns to inputs at the board's edges or at selected
nodes within the board's circuitry and then measuring the
output. However, for circuit boards that use microprocessors,
the most comprehensive coverage is provided by controlling the
UUT from the microprocessor bus. One common method of
doing this is to plug in a tester at the microprocessor socket.

Testers that control the microprocessor bus must be able to apply
stimuli and capture responses at specific times during the cycles.
As an example, consider a buffer on a microprocessor data bus:
since data is only stable during a small period of the bus cycle,
the outputs of the buffer must be measured at the proper time
during the bus read/write cycle.

The basic functions of a test system and the basic functions of a
troubleshooting system are similar. During either task, the
system must emulate bus cycles and measure levels and signal
patterns. But the two tasks have different goals. During testing,
the goal is to determine whether a UUT is good or bad; it is not
necessary to know where the faults are. However, in

2-1

troubleshooting the goal is to determine what component is bad
or what node is bad so that the UUT can be repaired.

Figure 2-1 shows a testing, troubleshooting, and repair cycle.
Some users consider testing and troubleshooting to be
completely separate tasks. Other users consider them to be
almost identical. In situations where volumes of each type of
board tested are high, and where many of the boards are likely to
be good, the testing and troubleshooting tasks are often
separated. But if board volumes are low or if many of the
boards tested are faulty, the testing and troubleshooting tasks are
often combined into a single process.

The 9100A/9105A can perform testing and troubleshooting as a
single task or as separate tasks. In either case, the system's
TL/1 programs are very similar because of the modular structure
encouraged by the 9100A programming environment. This
manual discusses a broad variety of test and troubleshooting
techniques; you can then determine how the techniques should
be linked and to what degree the entire process should be
automated for your application.

EMULATIVE TESTING 2.1.

2-2

The 9100A/9105A is an emulative tester and troubleshooter. By
taking control of the UUT's microprocessor bus, the
9100A/9105A can perform all operations, apply all stimuli, and
capture any responses that the UUT microprocessor could.

The 9100A/9105A is designed for testing microprocessor-based
hardware. The emulative testing approach of the 9100A/9105A
should not be confused with in-circuit emulators which also plug
into the microprocessor socket and are designed to test software.
The in-circuit emulators are difficult to use for board testing
because they work with assembly language (which is different
from one microprocessor to another). They also require the use
of breakpoints to allow examination of UUT registers and
memory to check out operation of the UUT. In contrast, the
TL/1 programming language of the 9100A/9105A has

Board To Be Tested
And/Or Repaired

Report
Failure Data

Functional Fail

Tost Troubleshoot

Pass

Report
As Good

¥
' Done)

Repair

Figure 2-1: Testing, Troubleshooting, and Repair

2-3

2-4

commands to perform read or write accesses without requiring
that you write any assembly language.

The basic elements of the 9100A/9105A system's emulative
testing are:

¢ Stimulation and response sensing at the microprocessor
bus by the pod.

¢ Stimulation of circuitry by the pod, probe, and 1/O
module.

g Measurement of stimulation responses with the pod,
probe, and I/O module as the signals propagate throughout
the UUT.

® High-level programming language (independent of the
target microprocessor) to control microprocessor accesses
and operations.

Figure 2-2 illustrates these capabilities. The method of
emulative testing allows the pod to read from and write to any
components that the microprocessor can access. The pod can
initialize and program components in the UUT, such as DMA
controllers, PIAs, serial ports, and video controllers.

In addition to controlling the UUT from the microprocessor bus,
the pod senses loaded or faulty lines at the socket where the pod
plugs into the UUT. For example, if a data line has a short to
ground, the pod will detect that the line cannot be driven when
the pod attempts to drive the line high.

The I/O modules and the probe can measure and stimulate all of
the UUT's digital circuitry, including circuits not directly
accessible by the pod. The pod, 1/O module, and probe are
used together or individually to provide a stimulus and to capture
responses.

The 9100A/9105A can characterize nodes with CRC signatures,
level histories (asynchronous or synchronous), transition
counts, and frequencies using the single-point probe or 40-line
I/O modules. I/O modules accommodate clip modules that fit

G

RS-232 Ports

P

9100A/9105A
Mainframe

External Control Pod
Lines For
Probe l l
/0
Module 1* Clock

1 Module Microprocessor

-5 Bus
40 “1 Control K\ Probe
1/10

uuT

110
Module 2~
]
51 40
Control /0

* Up to four /0O modules may be used.

<

Figure 2-2: Emulative Testing With the 9100A/9105A

2-5

various IC packages. The I/O modules can also be used in
fixturing.

When the 9100A/9105A stimulates the UUT through the
microprocessor bus, an I/O module or the probe can measure the
signals as they propagate through the UUT. Or, the I/O
modules can stimulate nodes and the pod can measure the
activity from the microprocessor bus.

A powerful feature of the 9100A/9105A is that it can perform
measurements which are synchronized to microprocessor
operations. For example, consider the microprocessor bus. It is
a flurry of activity when examined with an oscilloscope, but the
9100A/9105A can control this activity and can examine the
signals on the data bus at times when the signals are valid.

The probe and I/O modules can be synchronized to data,
address, and other pod cycles, as well as to external Clock,
Start, Stop and Enable inputs provided on the 9100A/9105A's
I/0O module and clock module. The external sync modes are
valuable for measuring events asynchronous to the
microprocessor, such as video signals and free-running
counters.

NODE CHARACTERIZATION 2.2

2-6

Node characterization is the process of finding a description of
the correct activity at a node, given an appropriate stimulus to the
UUT to exercise the node. A quality characterization is one that
is repeatable from one measurement to another, from one UUT
to another, and from one day to another. In addition, incorrect
activity at the node should result in a value that is different from
the characterization for correct node activity. The 9100A/9105A
uses the probe or the I/O module to measure five node
characteristics:

® CRC signature: This measures high and low levels relative
to a series of events (called "clock” or "sync") and then
encodes a Cyclic Redundancy Check (CRC) number
representing both level and timing. The signature, if

stable, is the most accurate characterization of a node. If
the node changes states at or near the clock transition, the
signature is considered marginal because a slight relative
time change between clock and data will change the
signature.

¢ Asynchronous level history: This indicates whether the
node was ever at a high, low, or invalid level at any time
during a specified period.

o Clocked (synchronous) level history: This indicates
whether the node was ever at a high, low; or invalid level
at any clock or sync edge during a specified period.

¢ Transition count: This measures how many times the node
goes low-to-high during the measurement period. When a
given node is measured, a single count value is returned.
Learned responses stored in a response file, however, may
appear as a range of counts. If a range of counts is
specified, the measurement will be considered good if it is
within the specified range.

® Frequency: This measurement is done during a set time
interval and is unrelated to clock or sync modes. As with
transition counts, learned responses stored in a response
file may appear as a range of frequencies.

STIMULUS AND MEASUREMENT CAPABILITIES 2.3.

Figure 2-3 is an overview of the stimulus and measurement
capabilities of the 9100A/9105A. The devices used for this
include the:

o Pod.
® Probe (with clock module).
* I/0 module.

The following sections describe the capabilities of each of these
devices.

External Devices

A

A

PROBE
POD (With Clock Module) V'O MODULE

Function: Function: Function:
» Microprocessor « Single channel * 40 channels

bus access = Input and output « Input and output
Measurement: Measurement: Measurement:
« Read status lines « Level activity: « Level activity
* Read Asynchronous Asynchronous

: Synchronous Synchronous

Stimulus: « Transition counts « Transition counts
* Reads, writes *CRC signatures « CRC signatures

« Write control lines

Stimulus and test functions:

Bus test

ROM test

RAM tests

Ramp

Rotate

Toggle

Pod-dependent functions

= Frequency to 40 MHz

Synchronization to:

* Pod

» External (Clock, Start,
Stop, and Enable lines)

*Freerun clock

* Programmed (internal)

Stimulus:

= Drive or overdrive outputs
(Pulse low, pulse high,
or toggle)

* Frequency to 10 MHz
« Pattern recognition

Synchronization to:

» Pod

» External (Clock, Start,
Stop, and Enable lines)

* Freerun clock

« Programmed (internal)

Stimulus:
= Drive or overdrive outputs
« Output stored patterns

Figure 2-3: 9100A/9105A Stimulus and Measurement Capability

2-8

Pod Capabilities 2.3.1.

The Fluke interface pods provide the interface between the
9100A/9105A and the microprocessor bus of a UUT. The pod
has two modes of operation: normal mode (where the
microprocessor in the pod exercises the UUT microprocessor
bus while monitoring the activity on this bus) and RUN UUT
mode (where the microprocessor in the pod runs programs
stored in UUT memory). A wide variety of stimulus and
measurement commands are available either from the operator's
keypad or from programs written for automated implementation.

Additional information about pods, their use, and their
specifications is contained in section 2.4 of the Technical User's
Manual, the pod manual for the pod you are using, the
Supplemental Pod Information for 9100A/9105A Users Manual,
and section 3.5 of the Programmer’s Manual.

U Probe Capabilities (With The Clock Module) 23.2.

The probe can provide either measurement or output at any
selected node of a UUT.

The probe can measure CRC signatures, asynchronous level
histories, clocked (synchronous) level histories, transition
counts, and frequencies. It has built-in lights to show the
current asynchronous level (or levels) at the probe tip or to show
the level (or levels) last seen by the synchronous level history
latches. The probe can be set up to use one of three different
sets of logic thresholds for its measurements: TTL, CMOS, or
RS-232.

The probe can also be used as an output device to output a series
of pulses. The pulses can be high, low, or can toggle between
high and low. The probe has sufficient drive capability (200mA
for less than 10usec or SmA continuously) to overdrive most
circuit nodes.

The probe is synchronized to other events by four
:' ~ synchronization modes: freerun clock, pod data or address

sync, external sync (using the external control lines of the Clock
Module), and internal sync (for use under program control
only). The external control lines of the Clock Module use TTL-
level thresholds.

Additional information about the probe, its use, and its
specifications is contained in section 2.5 of the Technical User's
Manual, Appendix D of the Technical User's Manual, and
section 3.6 of the Programmer’s Manual.

I/0 Module Capabilities 2.3.3.

2-10

Each I/O module can make simultaneous connection with up to
40 UUT nodes. I/O module adapters provide an interface
between the general-purpose connectors on the I/O module and
components on a UUT. The smaller clip modules can be
plugged into either side A or side B of the I/O modules, and the
larger clip modules use both connectors.

An J/O module can measure CRC signatures, asynchronous
level histories, clocked (synchronous) level histories, transition
counts, and frequencies. Unlike the probe, an I/0 module can
measure multiple pins at the same time. An I/O module can be
set up to use one of two different sets of logic thresholds for its
measurements: TTL and CMOS.

In addition, I/O modules can recognize words that exist across
selected UUT nodes. Recognition of specified words generates
a Data Compare Equal (DCE) condition, sends a signal out the
DCE pin at the side of the I/O module, and terminates any RUN
UUT in progress.

I/O module outputs can be latched high or low, pulsed high or
low, or allowed to float (high-impedence). In addition, it can
use TL/1 commands to drive patterns out of each output.
Responses can be measured at any pin while the I/O module is
driving a pattern. An I/O module has sufficient drive capability
(2A for less than 10usec or 200mA continuously) to overdrive
most circuit nodes.

An I/O module is synchronized to other events by four
synchronization modes: freerun clock, pod data or address
sync, external sync (using the external control lines located on
the I/O module itself), and internal sync (for use under program
control only). The external control lines use TTL-level
thresholds.

Additional information about the I/O modules, their use, and
their specifications is contained in section 2.5 of the Technical
User’s Manual, Appendix D of the Technical User’s Manual,
and section 3.6 of the Programmer’s Manual.

TESTING AND TROUBLESHOOTING WITH
THE 9100A/9105A 2.4.

The 9100A/9105A can be used for:

¢ Functional testing.

¢ Troubleshooting.

¢ Combined testing and troubleshooting.

As a functional tester, the 9100A/9105A can determine whether
a UUT passes or fails a series of tests. As a troubleshooter, the
the system can first isolate the failing functional block and then

identify a starting location from which detailed fault isolation can
locate the node or component causing the failure.

When testing and troubleshooting are performed at the same test
station, the 9100A/9105A performs the following sequence of
operations:

1. Perform a go/no-go (pass/fail) test of the UUT.

2. Diagnose a failing UUT to determine which
functional block is failing.

3. Identify a starting point for fault isolation.

4. Locate the the node or component causing the failure.

2-11

If testing and troubleshooting are performed at separate stations,
the 9100A/9105A would perform Step 1 at the testing station
and Steps 2 through 4 at the troubleshooting station.

In situations where Step 1 is performed by another type of
tester, which identifies suspect functional blocks to the
9100A/9105A, the 9100A/9105A can verify that the problem is
really in the indicated block before detailed fault isolation is
begun. Occasionally, the real problem is in a different functional
block than that indicated by functional testing; for example, a
functional tester might indicate a fault in the interrupt circuit,
whereas the real fault may lie in the serial I/O circuit. If the
failure is not in the indicated functional block, the 9100A/9105A
at the troubleshooting station can perform its own full functional
test to determine the location of the problem.

The 9100A/9105A has very fast built-in functions to test the
microprocessor bus, ROM, and RAM, as well as powerful built-
in fault condition handling capabilities that ease the
communication between the testing functions and the
troubleshooting functions.

After stimulus programs and a reference list of parts have been
developed for a UUT, the process of testing can be greatly
simplified with the TL/1 programming language's gfi rest
command, which uses portions of the 9100A/9105A's Guided
Fault Isolation (GFI) database to automate much of the data
collection and comparison needed for evaluation of test results.

GFI Troubleshooting:

The 9100A/9105A uses the backtracing method (from bad to
good) for its built-in Guided Fault Isolation troubleshooting
capability. A functional test locates outputs that appear bad, and
GFI starts backtracing from those outputs to locate quickly the
failing node. In doing this, GFI uses its database of IC pinouts
(the part library, largely supplied by Fluke) and your node list
(with part-number references).

The built-in GFI algorithm is efficient at backtracing. However,
troubleshooting time can be further reduced by having functional
tests provide suggested starting points for GFI (called "GFI
hints") as close as possible to the failing node or component.
Hints which are close to the fault improve the efficiency of GFI
by decreasing the number of nodes that GFI must trace through
before reaching the fault.

You can improve GFI's backtracing by:

¢ Developing functional tests for intermediate functional
blocks wherever practical. If a functional test for a major
block fails, test the intermediate functional blocks and
provide hints which are close to the failure.

¢ Designing functional tests that, upon failure, measure
intermediate nodes in order to provide hints close to the
failure. Functional tests can also include fault condition
handlers that interpret diagnostic messages to determine
where the failure might be located.

2-13

(This page is intentionally blank.)

Section 3
Developing Procedures
and Programs

UNDERSTANDING THE UUT 3.1.

A UUT should be well understood before functional tests and
troubleshooting routines are developed. Taking time at the
beginning to study the UUT will result in quicker program
development, greater fault coverage, and more accurate fault
detection.

Before developing functional test programs and troubleshooting
routines:

@ Learn what each circuit does, how it works, and how to
initialize it.
® Determine the UUT memory map.

® Determine the initialization procedures for each
programmable chip.

PARTITIONING THE UUT 3.2.

Circuit partitioning involves dividing the entire circuit into a
collection of smaller functional blocks which are easier to

3-1

understand and test. It is the first step toward a divide-and-
conquer method of testing and troubleshooting and it is time well
spent. Once the task is done, the functional blocks can be
considered as components, each of which receives inputs and
generates outputs. Like an IC, a functional block is suspected of
being bad if it has good inputs and bad outputs.

Here are some guidelines for partitioning circuits:

® Group circuits by function, making the functional blocks
well-defined pieces of the UUT block diagram and as
logically distinct as possible.

® If a functional block is large, subdivide it. This will
improve troubleshooting efficiency.

® If failure of a circuit can cause failures to appear in many
other parts of the UUT, make that circuit a functional

block.
® If acircuit requires a unique test setup, make it a functional
block.
An Example of Partitioning 3.2.1

(The Demo/Trainer UUT)

3-2

The Demo/Trainer UUT (Figure 3-1) is an 80286-based system
which includes ROM, Dynamic RAM, Parallel I/O, Video, and
Serial I/O circuits. It is available from Fluke as an option and is
a good example of 16-bit microcomputer systems. Contact a
Fluke representative for information about this option.

The test and troubleshooting examples throughout this manual
relate to the Demo/Trainer UUT. With it, you can perform the
hands-on tests given in the following sections. The complete
UUT nodelist, part-reference list, and schematics are shown in
the appendices of the manual.

If you do not have a Demo/Trainer UUT, the examples provide
enough information so that you can follow the techniques and
sample programs and apply the concepts to your UUT.

@ RS-232 CONNECTOR

@ VIDEO CONNECTOR

@ TEST SWITCHES (S1 THROUGH S4)
@ STATUS LEDs

@ KEYBOARD CONNECTOR

@ RESET BUTTON

@ 80286 MICROPROCESSOR

Figure 3-1: Demo/Trainer UUT

3-3

A simple block diagram of the Demo/Trainer UUT might show
only five blocks: RAM, ROM, Parallel I/O, Serial I/O, and
Video. While this is useful as an overview of what the system
does, it is inadequate for the development of test and
troubleshooting procedures. By subdividing this diagram into
smaller sections, we arrive at functional blocks that can be more
easily understood. Figure 3-2 shows these smaller blocks,
which will be used as examples throughout this manual.

For example, the video circuitry is subdivided into three
functional blocks: Video Output, Video Control, and Video
RAM. This was done in anticipation that three distinct
troubleshooting setups would be needed for the video circuitry.
It was also done to reduce troubleshooting time by allowing
functional tests to determine which portion of the video circuit
has failed before GFI is invoked. Remember, troubleshooting
with GFI normally begins at an output node of the failing
functional block and backtraces toward good inputs to that
block. Subdivision allows GFI to begin backtracing closer to
the fault. For similar reasons, the dynamic RAM circuit is
subdivided into RAM and Dynamic RAM Timing.

The microprocessor itself is shown in Figure 3-2 as a separate
functional block for a good reason: when the pod replaces the
microprocessor, it becomes a known-good functional block. All
outputs from this circuit can be directly controlled by the
9100A/9105A. The pod checks for drivability on every UUT
access and reports if there is a loading problem.

The Bus Buffer is partitioned separately, not for reasons of
clarity, but so that it can have its own functional tests. If this
circuit has a fault in it, the fault will cause most of the other
functional blocks to also fail. So if the UUT fails a functional
test, it is more efficient to check the Bus Buffer early in the
troubleshooting process.

READY

Ul
i 7
RAM Timing

1

[

ROM Ready
Circuit

I

Clock and alngmm l
Reset
L
[— ﬁ " Video
S | video |deoAddressJ\ Video Data , Video
L Y| Control f——w——— 1 RAM |——/Cutput| _, SIRTI
| ——N isplay
L M- | nTR u

processor L {1

L] LI

Serial Interrupt
o [+ RS232 Circut

T——— Keyboard

—
[T

\L Status and

_Control

s, [T

[

fleT Ul

Aderess Timer Interrupt
[
N\ } | Pa;%llel .
Address L L—» LED Displays
Decode T

Switch Inputs

Figure 3-2: Demo/Trainer UUT Functional Blocks

3-5

The Advantage of Partitioning 3.2.2

After the partitioning is done, step back and look at the resulting
detailed block diagram. Imagine that a functional test has been
developed for each individual block. If a novice user has
nothing but this block diagram and the collection of individual
block tests, he can make a fair degree of progress toward
troubleshooting and repairing a complex system.

With thoughtful partitioning, a board may be determined to be
good without running all of its individual functional block tests;
some functional blocks can be assumed to be good if tests for
other functional blocks that depend on them are good.

Through partitioning, the large problem of testing and
troubleshooting a complex system can be subdivided into
smaller, more easily handled problems.

PROGRAM DEVELOPMENT SEQUENCE 3.3.

3-6

There are four levels in programming with the 9100A, as shown
in Figure 3-3. Each level is a building block for the next level of
programming.

The sequence shown below is the most efficient method of
developing programs if you plan to develop both functional
testing and GFI troubleshooting capability. This is because the
functional block tests in Step 2 can often use the GFI stimulus
programs developed in Step 1 to test the outputs of a functional
block (See Section 3.5.1 for additional explanation). However,
in other situations, you may need to use your 9100A/9105A for
functional testing as soon as possible, even before
troubleshooting programs can be developed. In this case you
may want to do Steps 2 and 3 before doing Step 1.

The four steps of programming are:
1. Stimulus programs for nodes are created and

responses from a known-good UUT are learned.
(Sections 3 and 4 of this manual)

Level 1

= Stimulus Programs for Nodes

« Learned Node Responses
from Known-Good UUT

*Node List and Reference
Designator List (Both Optional)

Level 2

Functional Tests of
Entire Functional Blocks

Level 3

Go/No-Go Test
for the Entire UUT

Level 4

Go/No-Go Test
for the Entire UUT,
with Fault Isolation

to the Block Level

Figure 3-3: Building-Block Programming

If the node list and reference designator list are also
created, this level will allow not only testing a node,
but also automated backtracing from a bad node to
the fault.

2. Functional tests of entire functional blocks are
created. The gfi test command can use your stimulus
programs and learned responses for fast, effortless
functional tests of these blocks. (Sections 3 and 4 of
this manual.)

3. A UUT golno-go test is built from the functional
tests of functional blocks. (Section 5 of this manual)

4. Diagnostic programs are created by adding fault
handlers and gfi hint commands to the UUT go/no-
go test. The diagnostic program traps faults and
initiates tests of functional blocks that may be
responsible for the fault, thereby isolating the
functional block that is causing the UUT to fail.
When the failing output of the block is found, then a
GFI hint is generated and GFI will begin backtracing
the failing circuitry. (Section 6 of this manual)

After the fourth programming level, the go/no-go test will isolate
the failing functional block and then will start GFI
troubleshooting (Section 7 of this manual) to backtrace to the
bad node or component.

STIMULUS PROGRAMS AND LEARNED
RESPONSES 3.4.

Stimulus programs and learned responses constitute the first of
the four levels in programmed testing and troubleshooting, as
shown in Figure 3-4.

Stimulus programs create predictable node activity so that one or

more nodes can be characterized. When properly designed,
these programs are usually short and simple. With the 9100A,

3-8

Level 2 l

Functional Tests of
Entire Functional Blocks

Level 3

Go/No-Go Test
for the Entire UUT

Level 4

Go/No-Go Test
for the Entire UUT,
with Fault Isolation

1o the Block Level

Figure 3-4: Functional Tests for Nodes (Level 1)

3-9

the most difficult task related to writing stimulus programs is
understanding how the UUT operates.

Learned responses are the responses of a known-good UUT to
the stimulus programs. The 9100A/9105A can store these
responses from a known-good UUT for use in testing other
identical UUTs.

Rules for Stimulus Programs 3.4.1.

3-10

Stimulus programs must follow these rules, to ensure that GFI
troubleshooting reaches correct conclusions:

Measure Outputs. Use stimulus programs to characterize
signal sources (outputs) only.

Provide Initialization. 1If a circuit ever requires
initialization, place an initialization procedure in the
stimulus program. The initialization must be performed
before the measurement is started. The best place for
initialization is near the beginning of the stimulus program.

A Separate Program for Each Signal Source on a Node.
Create a separate stimulus program for every signal source
(output) on a node. A bidirectional line between two
components should have at least two stimulus programs,
one for each direction of data flow. Buses should have at
least one stimulus program for every component that can
output on the bus.

A Separate Program for Each Mode of Output. Create a
separate stimulus program for each way that an output is
operated in normal UUT operation. For example, if a
buffer on an address bus is stimulated by the
microprocessor and also by a DMA controller, create two
stimulus programs for the outputs of the buffer: one from
the microprocessor, and one from the DMA controller.

Keep It Simple. If a stimulus program becomes complex,
find a way to split it up into more than one program. For
example, consider a PIA chip connected to a data bus and a
keypad that can be read through the PIA. The stimulus

program that enables the PIA data lines onto the data bus
should initialize registers at the beginning of the program,
then the program should read the registers in the PIA chip.

The Flow of Stimulus Across the UUT 3.4.2.

Stimulus programs are unrelated to functional blocks.
Functional blocks are only defined to help with functional
testing.

Stimuli generally flow from the microprocessor kernel toward
the outputs of the UUT. Some stimulus programs may
characterize the outputs of many components while other
stimulus programs may characterize only a few outputs.

The key to efficient stimulus programs is to begin at some
outputs of the microprocessor kernel that can be stimulated.
Stimulate these outputs and trace through the circuit to see how
many other output nodes can be characterized. Find nodes that
have not been characterized, and decide what is needed to
stimulate them. Then, see how many nodes are covered.
Continue this process until each node is covered by at least one
stimulus program.

A good way to keep track of which nodes have been covered is
to use a set of colored markers. Using a separate color for each
stimulus program, color in a small region around the output
nodes which will be stimulated by that program (remember,
stimulus programs only apply to signal sources). Even for a
complex UUT, the strategy for creating stimulus programs for
an entire UUT can be "mapped out" in a few hours. The time
spent will promote better software organization and speed up
both the writing of stimulus programs and the process of
learning the responses.

Keep in mind the rules described in the Section 3.4.1, and
remember that some outputs will be characterized by more than
one stimulus program.

Stimulus Program Planning 3.4.3.

3-12

Stimulus programs and their matching response files are used by
the 9100A/9105A Guided Fault Isolation (GFI) to backtrace
through a failing circuit in a UUT to find the fault. The stimulus
programs exercise a portion of the UUT circuitry in order to
produce repeatable activity at circuit nodes to be measured. This
activity at each node is measured on a known-good UUT and a
characterization of this known-good response is stored in a
response file. Each response file stores characterizations of how
some circuit nodes on a good UUT perform as a result of its
matching stimulus program. There is one response file for every
stimulus program.

Each of the fourteen functional blocks in Section 4 includes a
figure titled "Stimulus Program Planning.” Figure 3-5 shows an
example of such a figure.

The purpose of the stimulus program planning diagrams is to
illustrate how to design the stimulus programs for a UUT. In
general, you should begin the process of creating stimulus
programs by identifying outputs from the microprocessor that
can be exercised (such as the address bus, data bus, and control
lines). Characterize all those nodes that are stimulated, then find
some nodes that are not characterized and design stimulus
programs to stimulate them. In general, start at the
microprocessor and work outwards to the I/O devices. Continue
until all nodes in the UUT are characterized.

The left-hand page of Figure 3-5 shows six blocks that represent
six stimulus programs and their matching response files. Each
of these stimulus program/response file pairs are used to
stimulate and characterize nodes in this functional block.

The block for the addr out stimulus program shows that it
stimulates the outputs of the address buffers: U16, U2, and
U22. As you examine each of the stimulus program planning
figures in Section 4 of this manual, you will notice that the
addr out stimulus program stimulates nodes in many of these
functional blocks. This is because the stimulus programs are not

(This page is intentionally blank.)

3-13

Example

Stimulus Program Planning

PROGRAM: CTRL.OUT1

EXERCISES CONTROL LINES FROM THE
MICROPROCESSOR USING POD ADDRESS
SYNCHRONIZATION

MEASUREMENT AT:

u22-56
Us7-8
u1s-16
U45-8

3-14

Example

READY
CIACUIT
L
i
—— LK == CLOCK AND RESET |

5 ALSI0
uSE
Ls3z2
= s ¢
ALEDD 16| Lan e ALATEH
.! by | e
|

£
ConTHTE T o1

L=
=]
g |

P DYNAMIC
w/ TG 317 6 45w

ADDAESS
DECO0E

Inl8
OE
< uz
INTERRUPT -
CIRCUIT
| an7 -
406
A0S B
e
A3
:g? BARALLEL
noé | 1/0
015 o -— SEALAL
Dtz o | 10
LTE] o
o1z - D
[T D3
) FH)
[oos 1008)
oos TC0E
VIDED
AAM
1005
3 VIDED
ez " CONTROL |
= |
=

Figure 3-5: Example of Stimulus Program Planning Figure

3-15

limited by functional block boundaries and typically will
stimulate nodes over several functional blocks.

Figure 3-5 shows that the data out stimulus program stimulates
the bidirectional data bus when the microprocessor is sending
out data (a write operation). The figure also shows that the
roml data stimulus program is used to stimulate the data bus
buffers U3 and U23 when data is flowing into the
microprocessor (a read operation).

The other three stimulus programs shown (ctrl_outl, ctrl_out2,

and ctrl_out3) stimulate the control line outputs from the
microprocessor and bus controller IC (an 82288 chip); ctrl_outl
stimulates the control lines using pod data synchronization;
ctrl_out2 stimulates the control lines using pod address
synchronization; ctrl_out3 generates an interrupt acknowledge
cycle and stimulates the control lines using interrupt
acknowledge synchronization.

When planning the stimulus programs for your UUT, you can
use colored pens to map out which outputs in your UUT will be
covered by which stimulus programs. You should start with the
address signals, data signals, and control signals. After that, you
can plan what is required for stimulus programs for other
outputs in your UUT, working from the kernel toward the I/O of
the UUT.

Suggestions about Stimulus Programs 3.4.4.

3-16

The actual stimulus programs used for the Demo/Trainer UUT
are listed in Section 4 of this manual. Some stimulus programs
stimulate nodes in several functional blocks and other stimulus
programs stimulate only a few nodes. The fact that, in Section
4, stimulus program coverage is organized by functional blocks
does not imply that the stimulus programs observe functional-
block boundaries. Stimulus programs do not care about
functional block boundaries and usually will exercise nodes
across functional-block boundaries.

Each of these stimulus programs in Section 4 follows a standard
form that can be divided into five parts:

¢ Initialize the circuit and define the measurement device.
¢ Set up the stimulus and measurement devices.

¢ Start the measurement.

¢ Stimulate the circuit.

¢ Stop the measurement.

® Restore any conditions changed by the setup, above.

Figure 3-6 shows a simple stimulus program with each of the
six parts labeled. Circuits that contain programmable
components require initialization. Any circuit that needs
initialization should have it provided in the stimulus program.
This is necessary since there is no way to determine the order in
which stimulus programs will be run when GFI or UFI
troubleshooting is performed. Therefore, each stimulus
program should perform any initialization the circuit needs.

Defining the Measurement Device

Most stimulus programs use the I/O modules and the probe as
measurement devices. When GFI or UFI is using the 1/O
module as a measurement device, a message is displayed which
prompts the operator to clip onto the component and to push the
Ready button on the clip module. When the operator does this,
the 9100A/9105A identifies the /O module and the side (A or B)
being used.

GFI or UFI can tell a stimulus program which device is being
used. It is a good idea to write your stimulus programs so that
the measurement device name is obtained from GFI or UFI
rather than specifying the device name in the stimulus program.
Getting the name from GFI or UFI has the advantage that the
operator can connect a clip to either side of any of the four I/O
modules. The operator can use several I/O modules, each with a

3-17

program data bus

if (gfi control) = "yes"™ then ! DEFINE THE MEASUREMENT
devname = gfi device { DEVICE
else
devname = "/modl”
end if
podsetup ‘'enable ~ready® "off" ! SET UP THE MEASUREMENT
podsetup ‘report power® "“off" ! AND STIMULUS DEVICES

podsetup 'report forcing' "off"

podsetup ‘'report intr' “off"

podsetup 'report address' "off"

podsetup ‘report data' “off"

podsetup ‘report control' “off"

setspace space (getspace space "memory", size "word")
reset device devname

sync device devname, mode "pod"

sync device "/pod", mode "data"

arm device devname ! START THE MEASUREMENT
rampdata addr 0, data 0, mask SFF ! STIMULATE THE CIRCUIT
rampdata addr 0, data 0, mask $FF00

readout device devname ! STOP THE MEASUREMENT

podsetup 'enable ~ready' "on" 1 RESTORE READY

end program

Figure 3-6: Parts of a Stimulus Program

3-18

O

different size of clip, and the stimulus program will still work
with any of these configurations.

The stimulus program shown in Figure 3-6 uses the TL/1 gfi
control command to determine that GFI or UFI is executing the
stimulus program. If GFI or UFI is executing the program, the
gfi device command is used to return the name of the
measurement device.

Using the /O Module as a Stimulus Device

Each I/O module can be used to overdrive a limited number of
components. The same I/O module or a different I/O module
may be used to measure circuit response.

For example, suppose an I/O module is used to perform a truth-
table test of a 7400 NAND gate. The I/O module is clipped to
the 7400. Pins 1 and 2 of the 7400 are inputs and pin 3 is the
output. The same I/O module drives the inputs and measures
CRC signature responses on the output. Each time the pattern is
driven on the inputs, the output's CRC signature is sampled.

In this example, the same I/O module is used as the stimulus
device and as the measurement device. In some cases, more
than one clip is used in stimulating and measuring circuit
response. The gfi device command returns the device name of
the measurement device being used.

The stimulus program should use the clip command or the assoc
command to identify the stimulus device. This command will
prompt the operator to clip to the component and push the Ready
button on the clip module. Using this method to identify the
stimulus device creates a program that allows the operator to use
any I/O module for the measurement device and any other I/O
module for the stimulus device.

Two steps are necessary to drive a pattern on a set of inputs.
First, a storepatt command is written for each input pin to be
driven. If five inputs are to be driven, five storepatt commands
are needed. After the patterns are defined by storepatt, a

3-19

3-20

writepatt command is used to clock out all the defined patterns in
parallel.

The 1/O module has 40 lines. Clips have 14 to 40 pins. Each
clip maps to the I/O module lines in a different way. The 40-pin
clip is one for one (clip-pin 1 is mapped to I/O module-line 1,
etc.). The other clips have a different mappings (shown in
appendix B of the Technical User's Manual).

The TL/1 commands that involve an I/O module refer to pin
numbers in three different ways. These TL/1 commands have a
parameter that specifies the device name. If the device name is
an I/O module name (such as "/mod1"), any pin numbers in that
command will be treated as I/O module line numbers. If the
device name is a clip module name (such as "/mod1A"), any pin
numbers in that command will be treated as clip module pin
numbers. And, if the device name is a reference designator
(such as "U14"), any pin numbers in that command will be
treated as component pin numbers.

If the device name is a reference designator, the component must
have been clipped in response to a request from GFI, or in
response to a TL/1 clip command prior to being used in an I/O
module command.

Consider the example of a 7400 that is to have pins 1 and 2
driven by the I/O module. The reference designator for the 7400
is U3. The following TL/1 commands will perform a truth table
test on one gate in the 7400:

dev = clip ref "U3"™, pins 14
storepatt device "U3", pin 1, patt "1010"
storepatt device "U3", pin 2, patt "1100"
arm device dev

writepatt device dev
readout device dev

The clip command must be used here to define the I/O module
and the I/O module side (A or B) that is clipped to U3. The two
storepatt commands define the pattern to drive on pins 1 and 2 of
U3. Because a reference designator was used as the device
name (rather than a clip module name like "/mod1A") in the

G

Storepatt commands, any size of clip can be connected to U3.
Suppose a 16-pin clip is connected to U3. The 9100A/9105A
knows, from the clip command, that the part has 14 pins. As
Iong as pin 1 of the 16-pin clip is placed on pin 1 of the
component, the 9100A/9105A will map the pins correctly. GFI
and UFI are also able to use clips larger than the component they
clip over to measure the response of that component.

The arm and readout commands start and stop the measurement.
Inside the measurement, the writepatt command sends the
defined patterns to the specified pins. Because the writepatt
command is surrounded by the arm and readout commands, a
CRC signature can be gathered on the input pins or the output
pins of the component, as determined by GFL

In general, stimulus programs can be written so that any I/O
module can be used either for stimulus or measurement. To do
this, use the device name returned by the TL/1 gfi device
command for measurement devices. If the stimulus program
uses the 1/0 module as a stimulus device, use the clip statement
and reference names for device names in the TL/1 commands
(pin-number parameters) that interact with the I/O module.

FUNCTIONAL TESTS 3.5.

Functional tests of blocks are the second of the four modular
levels in programming the 9100A, as shown in Figure 3-7. In
this second level, tests of functional blocks are created from
stimulus programs and response files.

The goal of a functional test is to evaluate the performance of the
functional block and to decide whether the entire block is good
(passes) or bad (fails). As shown in Figure 3-8, such a test can
be divided into the following steps:

1. Initialize the circuits in the block (if necessary).

2. Stimulate the inputs to the block.

3. Measure the outputs from the block.

Level 1 I

« Stimulus Programs for Nodes

«Learned Node Responses
from Known-Good UUT

= Node List and Reference
Designator List (Both Optional)

Level 3

Go/No-Go Test
for the Entire UUT

Level 4

Go/No-Go Test
for the Entire UUT,
with Fault Isolation

to the Block Level

Figure 3-7: Functional Tests for Functional Blocks (Level 2)

3-22

G

Initialize

Stimulate

Measure

Evaluate
(Passes or Fails)

Figure 3-8: Functional Test Elements

3-23

4. Evaluate each output and decide whether the output
passes or fails. If all outputs pass, the block is
good, otherwise it is bad.

Programmed Functional Tests 3.5.1.

Programmed functional tests perform all four functional test
steps automatically. There are three basic methods of writing
functional tests for each functional block in the UUT:

® Using the TL/1 built-in functional test commands - Use for
testing the microprocessor bus, RAM, and ROM.

® Building on stimulus programs - Use the gfi test command
to build on stimulus programs and learned responses.

. Writing TL/1 programs which are independent of GFI -
These programs must perform all four functional test
steps.

Using Built-In Functional Test Commands

For some functional blocks, such as the microprocessor bus,
ROM, and RAM, you should not use the gfi test command.
Instead, these blocks can be tested with the built-in TL/1
functional test commands testbus, testramfast, testramful, and
testromfull.

Building On Stimulus Programs

3-24

Stimulus programs and learned responses are used to decide if a
node passes or fails. The TL/1 programming language has a
command called gfi test, which performs Steps 1 through 3 of
functional testing and part of Step 4 (see Figure 3-8).

The gfi test command tests an entire component (if the I/O
module is the measurement device) and returns a passes or fails
result. The command runs all stimulus programs associated
with all pins on the component and compares the responses to

G

the learned responses. It returns a "passes” result if all pins on
the component are good.

Suppose the buffers of a 24-bit microprocessor address bus are
tested as a functional block. If the functional test is written
without the gfi test command, the test would perform the
following operations:

1. Stimulate the address bus.
2. Capture signatures on the 24 address lines.

3. Compare captured signatures with known-good
signatures (24 if/then statements).

The same functional test using the gfi test command would
require only three gfi test commands. Using this command
decreases the time required to write functional test programs.

Using the gfi test command provides an additional important
advantage. When it is used, the known-good responses are
automatically retrieved from the the 9100A/9105A's response
files. Whenever a board is revised, the response files must be
updated. If a functional test contains known-good response
information built into the program, rather than stored in response
files, both the response file and the functional test program must
be updated if the board is revised.

You may need to develop a test quickly for just one functional
block and avoid writing stimulus programs or learning
responses for the entire UUT. In this case, the following
procedure will help ensure that the functional test you write will
later integrate well into the functional test for the entire UUT:

1. Make a plan for the stimulus programs you will need
to cover the entire UUT. This usually takes several
hours.

2. Write the stimulus programs needed to test the block
in question.

3-25

3. Write the functional test for the block using the gfi
test command wherever possible.

4. After the test for the block is finished, you can
continue with the process of writing stimulus
programs and learning responses for the rest of the
blocks in the UUT.

Functional Tests That Are Independent of GFI

You can also write functional tests that do not require the use of
stimulus programs and response files. If so, these tests should
also contain the functional test elements shown in Figure 3-8.

Programmed Functional Test Examples 3.5.2.

3-26

The programmed functional tests for each functional block in the
Demo/Trainer UUT are listed in Section 4 of this manual. The
simplicity of these functional tests results from using the gfi test
command and the built-in test functions.

It is tempting to write a functional test without first writing
stimulus programs. However, a penalty is paid for this
approach in two ways: it can actually take longer if stimulus
programs are not created first, since the 9100A/9105A already
has built-in functions to do much of the functional testing once
stimulus programs are created. Second, stimulus programs will
have to be written anyway before GFI troubleshooting can be
used.

The sequence of steps shown in Figure 3-7 will in most cases
give you the best results in the shortest time. Each increment of
programming investment will result in better performance and
productivity.

O

Keystroke Functional Tests 3.5.3.

A UUT may be tested using only 9100/9105A front panel
keystrokes. Keystroke testing also involves each of the four
functional test steps (initialization, stimulation, measurement,
and evaluation) shown previously in Figure 3-8, but the operator
performs these steps rather than having the 9100A/9105A do
them with TL/1 programs. If you wish, these steps can be
stored in keystroke sequences by using the SEQ key on the
operator's keypad.

Each of the fourteen functional blocks in Section 4 has a
"Keystroke Functional Test" figure like the example shown in
Figure 3-9. The purposes of these figures are the following:

® Show the schematic diagram for that functional block.

¢ Show the inputs to the functional block from other
functional blocks.

® Show the outputs of the functional block to other
functional blocks.

¢ Identify the 9100A/9105A measurement and stimulus
devices used to test the block and to identify where those
devices are connected.

¢ Show the expected node response information from
performing the functional test sequence for that block.

Figure 3-9 is a typical example of a Keystroke Functional Test
figure that you will see for each of the functional blocks
described in Section 4 of this manual. In most cases, the
functional blocks to the left of the schematic are those which
provide input to the functional block shown in schematic form.
In most cases, any functional blocks to the right of the schematic
are receiving the outputs of the functional block shown in
schematic form. The arrows show the direction of the signals
between the functional block boxes and the functional block
shown in schematic form.

Notice the left-hand page of Figure 3-9. At the top of the page is
a box labeled CONNECTION TABLE. The left column of this

3-27

Example

Keystroke Functional Test

CONNECTION TABLE

MEASUREMENT CONTROL

NN Lol -

CLOCK U78-33 ure
START UBg-13
STOP uBe-13
ENABLE ure-12

RESPONSE TABLE

CLOCK AND RESET ELK 80286 BUS
MICROPROCESSOR BUFFER
RESET FEMHZ
1 FERDY
READY ADDAESS | VIDSLT
CIRCUIT DECONE TRAH
TVE&HED\’

3-28

Example

AOVANCED VIDEQ DISFLAY

CONTROLLER (avDC) VIDED
PR A R TELK ouT
45V 36 4oL cTAL: 4 BC AT -
= : DADD10
DADDOT [
ADDOE
. DADOOS
DaOD1E| 22 NE JB DADDO4
DAOD11
0ano1n :4 DADD1O .
DADOS -
DA008 ¥ VIDEQ
DADO? I RAM
DADOS ~
papps [@8—_DAboes} | g -
nanoa
DA003
DADDZ
DAOO1
DADDD
cuRsgal_7_ CURSOR
L ank |17 BLANK
Serk L5 EEIR
EvNE | 4T HSYNC
vayne |18 VSYHC I
ura
|
CCLK
| BE 3 L5810
| L500]
_— L _r> iy
1 TELR 22, U70 h2i
TCLK
S Ga 1
|

| RESET

LS GC|

i1
1
.Eg BELECTR

Figure 3-9: Example of Keystroke Functional Test Figure

3-29

3-30

table, labeled STIMULUS, shows what 9100A/9105A device is
used to provide stimulus to the functional block shown in
schematic form and where the connection is made. In the
example shown in Figure 3-9, no stimulus is provided because
this diagram is part of the video circuit and, once initialized, the
video circuit constantly runs with no additional stimulus. In
many of the keystroke functional test diagrams in Section 4, the
STIMULUS column will indicate that the pod or I/O module is
used.

The right column of the CONNECTION TABLE, labeled
MEASUREMENT, shows which 9100A/9105A device is used
to measure circuit response for the Keystroke Functional Test.
The measurement device can be the probe, the pod, or an I/O
module. This column also shows the components or nodes in
the circuit that are to be measured.

When the I/O module is the measurement device and its external
control lines are used, a third column, labeled
MEASUREMENT CONTROL, shows where to connect the
START, STOP, CLOCK, and ENABLE lines.

The RESPONSE TABLE shows the names of the signals to be
measured, the component and pin numbers to be measured, the
corresponding pin numbers used by the I/O module, and the
known-good measurement value for each signal.

Section 4
Functional Block Test and
Troubleshooting Examples

This section is organized into fifteen sub-sections. The first
fourteen sub-sections each contain the following information:

® General discussion of a kind of functional block.

¢ Testing and troubleshooting approaches.

¢ Keystroke testing procedure for Demo/Trainer UUT.

® Functional test program listing for Demo/Trainer UUT.
¢ Stimulus programs and responses for troubleshooting.

. Summary of solution showing all files and programs
needed to test and troubleshoot the functional block.

The last sub-section covers types of circuits not found in the
Demo/Trainer UUT and is therefore organized differently than
the above.

For the purpose of learning how the 9100A/9105A works, each
of the fourteen functional blocks can be considered to be a self-
contained portion of the UUT. The Summary of Solution page
at the end of each sub-section shows all of the files required to
test or troubleshoot that functional block.

Only a subset of all the functional blocks in a UUT needs testing
to determine whether the UUT is good or bad. This is because
testing the major functional blocks indirectly tests the other
blocks as well. (See Section 5 for more details on functional

4-1

testing strategy for a complete UUT). For the Demo/Trainer
UUT, testing the following major functional blocks will be
sufficient for a UUT go/no-go test functional test:

Microprocessor Bus.
ROM.

RAM.

Parallel I/O.

Serial I/O.

Video Output.

The remaining functional blocks covered in this section are
useful for troubleshooting the UUT if it fails the go/no-go UUT
functional test:

Dynamic RAM Timing.
Video Control.

Video RAM.

Bus Buffer.

Address Decode.
Clock and Reset.
Interrupt Circuit.
Ready Circuit.

You will find that the Dynamic RAM Timing, Video Control,
and Video RAM functional blocks come from subdividing the
RAM and Video blocks into smaller-size blocks.

C

Microprocessor Bus

MICROPROCESSOR BUS FUNCTIONAL BLOCK 4.1.

Test Access to the Microprocessor Bus 4.1.1.

The term "test access" refers to the point at which the pod
connects to the Unit Under Test (UUT). In most cases, a
UUT's microprocessor or microcontroller is replaced in its
socket by the pod, but this is not always the case. For example,
if the microprocessor is soldered in, the UUT can be designed to
allow a bus-cycle emulation pod to access the bus through a test
connector.

The test access allows the 9100/9105A pod to perform reads and
writes on the microprocessor bus. The pod can selectively
ignore inputs which normally would go directly to the
microprocessor. Thus, any faults that would stop the
microprocessor can be ignored by the pod, and testing can
proceed as though the microprocessor were in a good circuit and
functioning properly.

The pod uses microprocessor bus emulation as the primary
means of testing and troubleshooting. It can generate stimuli to
the UUT and capture the responses in conjunction with other
9100/9105A stimulus and measurement devices, thereby
providing excellent troubleshooting capability for all
microprocessor signals. The pod can perform basic
microprocessor read and write operations, various stimulus
functions built from multiple reads and writes, and built-in tests
such as bus, RAM, and ROM. The pod also verifies that the
microprocessor power supply is within tolerance, and that all
power supply pins are connected.

A little foresight in the design of test access can make testing
much easier. Here are some general guidelines to facilitate
testing:

¢ Provide clearance around all devices. This allows access
for the pod connectors (to replace the microprocessor or
plug in a test socket), for a component extraction tool (if
components are hard to remove, especially pin-grid array

4-3

Microprocessor Bus

4-4

(PGA) types), and for I/O module clips (especially if
adjacent components must be clipped simultaneously).

Provide some means to access the microprocessor bus if
the microprocessor is soldered in. An additional micro-
processor socket or card edge connector can provide this
access. Consider providing some form of test access even
though the factory or service center may use test fixturing,
since this allows testing in field situations where no test
fixturing is available.

Use resistors to the power supply or ground to establish
static logic levels on unused inputs instead of directly
connecting inputs to power supplies or ground. This
allows the 9100/9105A to drive these inputs.

If there are microprocessor inputs that will force most of
the microprocessor outputs to a high-impedance state,
design the UUT so that the 9100/9105A can drive these
inputs.

If there are microprocessor outputs that cannot be placed in
a high-impedence state, design the UUT so that these
outputs are buffered and the buffer outputs can be turned
off or overdriven by the 9100/9105A.

Allow the UUT clock to be suppressed to permit the UUT
to operate with an external clock.

Ensure that vendors' specifications for load and timing
margins are not violated and, if possible, allow for a
further margin.

Design so that all signals at a ROM chip can be latched by
the I/O module with DATA synchronization.

Pull up all lines carrying data signals to a logic 1 through
resistors.

O

Microprocessor Bus

Considerations for Testing and
Troubleshooting 4.1.2.

Kernel Testing

The combination of the microprocessor, ROM and RAM is
collectively referred to as the kernel. The primary advantage of
Fluke test and troubleshooting equipment for microprocessor-
based UUTs over equipment from other vendors is its ability to
troubleshoot dead kernels.

If any part of the kernel malfunctions, very little else works
properly. One basic strategy is to test the kernel first, then test
the other functional blocks surrounding the kernel.

The 9100/9105A has a comprehensive built-in test for the
unbuffered microprocessor bus. This bus test is a series of
reads and writes at different addresses while monitoring
microprocessor outputs for faults. The bus test is described in
detail in Section 6.2.1 of the Technical User's Manual. With
this bus test, the 9100/9105A can determine stuck or tied lines
on all outputs from the microprocessor bus. During a bus test,
active interrupts or forcing signals that cause the microprocessor
to malfunction will be intercepted by the pod and reported to the
9100/9105A unless they have been specifically disabled with the
podsetup command in TL/1 or the SETUP POD command on
the operator's keypad. The bus test will also report a bad power
supply or an inactive clock.

Figure 4-1 summarizes the major conditions reported by the bus
test. Faults such as stuck bus lines, missing clocks, and low
UUT voltages must be cleared before further testing can
proceed.

Finding the source of bus faults may be complicated by multiple
bus-master and intervening buffers. For example, a buffer may
be loading the bus because its enable line is asserted due to
faulty circuitry back several logic gates from the bus. If there
are several bus masters, it may be unclear where the fault is.
Bus masters may be identified as *masters in the node list. The

4-5

Microprocessor Bus

Signal Group Condition Example Message

Address Lines stuck, tied addr line A9 pod pin 22 stuck high

Data Lines stuck, tied data line D8 pod pin 37 tied
data line D9 pod pin 39 tied
Control Lines stuck, tied control line HLDA pod pin 65 not drivable
Interrupt Lines active interrupt ~INTR pod pin 57 active
Forcing Lines active forcing signal RESET pod pin 29 active
i Clock inactive pod timeout bad UUT clock
| Power Lines out of bad UUT power supply
tolerance

Figure 4-1: Conditions Reported by the BUS TEST

4-6

Microprocessor Bus

N
U *masters identification, combined with independent stimulus
programs for each bus master, assist GFI in backtracing faults
identified on buses.

For more information on *masters, stimulus programs, and
response files, see Section 7 of this manual and Section 5.5 of
the Programmer's Manual.

Basic Bus Cycles

It is often useful to perform a series of reads and writes to verify
proper operation of basic bus cycles. To do this, you need the
address map of the UUT. You can verify bus-cycle operation
with reads from and writes to RAM, ROM, or other memory-
mapped VLSI devices such as PIAs, DMA controllers, SCSI
controllers, and UARTs. If your UUT's microprocessor allows
transfers of different data widths (byte, word, long word),
transfers with these different data widths should be verified.

U If reads do not return the correct data when no major bus faults
are indicated by BUS test, try the built-in RAM test or ROM
test. RAM test checks the ability to read and write all RAM cells
specified in the address range. ROM test checks the ability to
read from ROM and verifies the ROM signature. Other kernel-
related functional blocks, such as Address Decode, Bus Buffers,
or Ready circuitry should also be tested, as described later in
Section 4 of this manual.

Synchronization Modes

When you are troubleshooting faults related to bus cycles, it is
useful to synchronize the probe or I/O module to pod operations.
The pod itself can be synchronized to different parts of the bus
cycle that may be appropriate for a particular test. For example,
a microprocessor with multiplexed address and data will output
the address only during the first part of a bus cycle. To test for

4-7

Microprocessor Bus

address faults, an I/O module or the probe can be synchronized
to the address using these TL/1 sync commands:

sync device "/pod", mode "addr"™
sync device "/modl"™, mode "pod"

or from the operator's keyboard using the SYNC key:
SYNC I/0 MOD 1 TO POD ADDR

With the above synchronization, the I/O module can capture
address or other information in functional blocks related to the
address. In a similar way, the probe or I/O module can be
synchronized to data, or to other microprocessor-specific bus-
cycle phases implemented by the pod.

Other Microprocessor Cycles

4-8

Other microprocessor cycles may be exercised as part of the
microprocessor functional block, such as interrupts, bus
exchanges, DMA transfers, or coprocessor cycles. Usually,
however, implementation of these cycles involves circuitry that
is complex enough to be partitioned separately. Here are a few
considerations to keep in mind when testing:

¢ Interrupts are reported by the pod as "active interrupt
lines". When a RUN UUT command is entered at the
operator's keypad, control is returned to the
microprocessor. The operator should be sure that the
software needed to set interrupt priorities and handle
interrupts is present so that RUN UUT operates properly.
Some designs employ a watchdog timer, which asserts a
non-maskable interrupt or reset unless the microprocessor
performs a write within a certain period of time. When
you use pod breakpoints, the watchdog timer should be
disabled, the pod should be set up to ignore the watchdog
timer output, or software should be written to handle the
interrupt.

Microprocessor Bus

Bus Exchanges take place when the microprocessor
gives control of its bus to a requesting component. Pods
allow this capability to be enabled or disabled. When
enabled, the pod will grant bus requests just as the
microprocessor would. The pod may appear to take an
abnormally long time to perform certain tests, such as
RAM test, if other components take control of the bus or if
a fault condition causes bus requests. Disabling bus
requests will command the pod not to grant the bus request
and will cause bus requests to show up as forcing signal
conditions. If the RUN UUT command is entered at the
keypad, control is returned to the microprocessor and the
bus request line will be re-enabled. Further
troubleshooting with RUN UUT may require that the line
be physically disabled.

DMA controllers are integrated with some
microprocessors, such as the 64180. The DMA channels
operate semi-autonomously and interact with the bus
exchange capability. Cautions similar to those used with
bus exchanges should be used for DMA channels.

Dynamic RAM Refresh capability is included on some
microprocessors, such as the Z80 and the 64180. At
regular intervals, a refresh cycle is performed and an
address is placed on the address bus. The Z80 and 64180
have refresh signals (RFSH and REF, respectively) which
indicate when refresh activity occurs. The frequency of
these signals may be monitored with the probe to
determine if refresh is working properly.

Coprocessors work in conjunction with some 16- and
32-bit microprocessors. These coprocessors usually have
a unique set of signals which control the transfer of data
with the main processor. Inputs are called status lines and
may be read and reported by the pod. Outputs are called
control lines and may be written to check drivability or to
send information to the coprocessor.

4-9

Microprocessor Bus

Other Input and Output

There are other types of inputs and outputs specific to each
microprocessor which do not fall into the four basic
classifications, address, data, control, and status. These are
classified as miscellaneous and include signal types such as
bit/parallel, serial, and analog I/O. Each pod treats these lines in
a manner appropriate to the specific microprocessor. Refer to
the particular pod manual for information on how to handle these
signal types.

Microprocessor Bus Example 4.1.3.

The Demo/Trainer UUT uses an 80286 microprocessor, which
has a 16-bit data bus and a 24-bit address bus. The
Demo/Trainer UUT uses only the least significant 20 bits of the
address bus.

The 80286 microprocessor remains in the UUT at all times, so
the Demo/Trainer UUT includes a test access socket to provide
access to the microprocessor bus. Most of the lines in the test
access socket are directly connected to the microprocessor,
although a few lines such as HOLD and HOLDA are buffered
,, with three-state buffers. The test access switch, S5, selects
1 either the 80286 microprocessor in the pod or the 80286
microprocessor on the UUT to control operation of the UUT.

Keystroke Functional Test 41.4.

Use the BUS TEST key to enter the following command:
TEST BUS AT ADDR 0
The above command is the entire procedure; the Microprocessor

Bus functional block (Figure 4-2) can be tested fully with this
single test.

Microprocessor Bus

The microprocessor bus test is built-in. It is convenient to run
first because:

¢ It's easy.
® It's fast.
® It provides excellent diagnostic information.

. A bus fault will cause almost all other functional tests to
fail, so it should be tested first.

The bus test uncovers all drive problems that may occur at the
microprocessor socket. These faults will cause other tests to
fail, but the diagnostics for bus faults are best with BUS TEST.
If a fault is uncovered, a message will be displayed to the
operator. See Appendix F in the Technical User's Manual for a
list of fault messages.

4-11

Microprocessor Bus

Keystroke Functional Test

CONNECTION TABLE

TEST ACCESS SOCKET TEST ACCESS SOCKET

RESPONSE TABLE

READY INTERAUPT
CIRCUIT ELOCK AN AESET CIRCUIT
i I} -
T READY CLK | RESET INTR
1

4-12

Microprocessor Bus

READY |63 M IO
ok (31 =0
RESET 29| B1
. LA7S 4 con/TNTA
10K BUSY 54 BUEY 223 |17 e BUS
F— AZZ B EE
- o D FES
ERRDR 83} FRROR 421 (10 BUFFER
— A20 |41 S
PEACK B |FEack s1a (48 418
TOER 88 | e A18 (43 AiB
S Lotk BB TocK 217 14 AL7
A16 |18 AiB
PEREG B4 pppeg]
45 _1.?\3\8, 2 Rao
1on 330
A15
~ Al 45V
a13
M1 58 | yut a1 4
| All SwWa-3
$:|77 ALD
330 A09 ang 3
Cl | A0E AcH
R |
4
SW2-4
13
A07
NTR [A0B
87 1uta A08 ADS
a04 AD4
4 A03 I3
SH3-4 a02 SWa-5
AQ1
13 a00 1z
‘BHE
5
SW2-6
+5Y B
. . |
HLDA 85y pa 015 |54 D15 ae
HoLD 184 o p o1« [48 D14 SWa-7
o EE]
o1z S pazl oz 7
o131 43 D11
010 ;;
) 009
. SWi-G ygy_ 300 .ay pos |37 o
eV B g1t B2 ey
3 | GnD
35 | grp
S| N
ooy (S0 o7
7 bos |48 00
52 -ap oos |48 oos DoS
3 1 cs Ooa 44 D04 La
SWI-3 oo3 (421 oo3 SH3-1
L0a7uF poz f 401 00000 | ooz §
44 po1 |28 . dow | 18
. | poo |28 noo
L |

Microprocessor Bus

Programmed Functional Test 4.1.5.

4-14

The Demo/Trainer UUT is determined to be good if functional
tests for the Microprocessor Bus, ROM, RAM, Parallel 1/O,
Serial I/O, and Video Output functional blocks all pass. In order
to make the testing as efficient as possible, the buffered bus,
address decode, and ready circuitry should be exercised early in
the testing. Furthermore, this testing should happen quickly,
minimizing the amount of clipping of I/O modules to
components.

To meet these goals, the Microprocessor Bus functional test
program, test bus, checks the microprocessor bus up to the
buffers and also performs an access to every decoded address
space (such as ROM, RAM, or Video I/O). These accesses
indirectly check the Buffered Bus, Address Decode, Ready, and
Interrupt Circuit functional blocks. If a ready or active interrupt
problem exists, these accesses to the decoded address spaces
will result in an improper ready or active interrupt condition that
can be detected by the test.

The test_bus program also performs a check for bus contention.
Bus contention occurs when a component continually outputs
onto the data bus and it is usually caused by faulty enable inputs
into a component. The test bus program detects bus contention
by reading at a spare address location, which is decoded and can
be read from but has no component located at that address to
output data onto the data bus. In normal operation, only high
bits (logic 1s) are returned on the data bus when the spare
address is read. When bus contention drives data bits low, the
read at the spare address will detect the problem. In order to
detect bus contention that drives data bits high, the test bus
program writes all-zero data to RAM and then reads the RAM.
If the data read is not all-zero, either the RAM is bad or there is
bus contention. To make sure the problem is bus contention, the
test _bus program reads from two other components on the data
bus that are decoded separately. The test bus program uses the
ROMs from bank zero and the ROMs from bank 1. If both
ROM banks read zero data correctly, the problem is assumed to
be a RAM problem (when bus contention occurs, most of the
components on the bus will fail). When both ROM banks read

O

Microprocessor Bus

zero data correctly, the test_bus program concludes that the
problem is not bus contention and leaves further fault isolation to
a later test.

If a bus contention problem is detected, a separate bus
contention test program called tst_conten is executed (see
Appendix C for a listing of this program). The tst_conten
program tests the enable lines for each component that is
connected to the data bus. All other information about good or
bad data and address lines is ignored by the bus contention
program.

The entire test_bus functional test runs quickly, but it detects
most kernel faults not in the RAM or ROM components.

program test_bus

! FUNCTIONAL TEST of the Microprocessor Bus.

! This program tests the unbuffered microprocessor bus, performs an

! access at each decoded address of the buffered bus, and checks the

! data bus for bus contention (where a component cutputs onto the data

{ bus at incorrect times). If bus contention is detected then the

! program TST CONTEN is executed. TST CONTEN checks for incorrect i
! enable line conditions on all the components on the buffered data bus.!

1 1
1 1
1 1
1 1
1 1
i 1
1 1
1 1
! 1
{ TEST PROGRAMS CALLED: i
! tst_conten (addr, data bits) Test for bus contention on
! the data bus by checking the
t enable lines of all devices
t on the data bus. !
! 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1

! Local Constants:

2ERO_AT ROMO Address of zero data in RCMO
ZERO AT ROM1 Address of zero data in RCM1
IO _BYTE 1/0 BYTE address specifier

MEM WORD MEMORY WORD address specifier !

! Local Variables Modified:
X value returned from a read

! Main Declarations !
IR R R R R R R R R RN RN NN

declare numeric ZERO AT ROMO = $E002A !Location in ROMO where 0 exists
declare numeric ZERO AT ROM1 = $F0022 !Location in ROM1 where 0 exists

4-15

Microprocessor Bus

4-16

! Setup Statements

podsetup ‘enable ~ready' "on"

podsetup 'report forcing' "on*

IO BYTE = getspace space "i/o", size "byte"

MEM WORD = getspace space "memory", size "word"
! Test the Unbuffered Microprocessor Bus.

testbus addr 0O

! Test the Extended Microprocessor Bus and Address Decoding.

setspace (MEM WORD)

read addr O ! RAM BANK O

read addr $10000 ! RAM BANK 1

write addr $20000, data O ! VIDEO RAM {write only)
read addr $30000 ! INTERRUPT POLL

read addr $E0000 ! ROM BANK 0

read addr $F0000 ! ROM BANK 1

setspace (IO_BYTE)

read addr O ! VIDEO SELECT

read addr $2000 ! RS232 SELECT

read addr $4000 ! PIA SELECT

! Test for Bus Contention driving lines low by accessing unused address space

setspace (MEM WORD})
X = read addr $50000 ! SPARE-2 ADDRESS SPACE
if x <> $FFFF then
execute tst conten($50000, cpl(x) and SFFFF)
return
end if

! Test for Bus Contention driving lines high by reading and writing RAM
! If failure then check for bad RAM by reading zeros from 2 other devices.

write addr 0, data 0 ! WRITE and READ RAM addr O
X = read addr 0 I If fails then check for bad RAM
if x <> 0 then ! by reading 0's at ROMO and ROML

if (read addr ZERO AT ROMO) <> 0 then
if (read addr ZERO_AT_ROMl) <> 0 then
execute tst_conten(0, x)
return
end if
end if
end if

end program

O

Microprocessor Bus

Stimulus Programs and Responses 4.1.6.

Stimulus programs are TL/1 programs that are executed by GFI
for the purpose of troubleshooting faulty circuits. A stimulus
program response file should be associated with each stimulus
program in order to store the known-good response for each
node to be stimulated by the stimulus program. In this
functional block, the microprocessor is the only component and
its outputs are stimulated in three groups: address lines, data
lines, and control lines.

Figure 4-3 is the stimulus program planning diagram for the
Microprocessor Bus functional block. It shows three stimulus
programs that are used to exercise the outputs in the
microprocessor functional block. These stimulus programs (and
their associated response files by the same name) exercise and
characterize nodes to be measured in the Microprocessor Bus
functional block and in other functional blocks as well.

There are several rules for stimulus programs and response files.
One is that only outputs are characterized. Another is that data
must be characterized while flowing in only one direction.

Therefore, the data_out stimulus program measures only data
coming out from the microprocessor. Other stimulus programs
will measure data coming in to the microprocessor.

After the stimulus program planning diagram, the stimulus
programs, and the response files, there is a summary page in the
form of a UUT Directory. It shows the entire set of stimulus
programs, response files, and other files needed to perform
testing and troubleshooting on this functional block. The
summary page also shows where each of the stimulus programs
and response files can be found in this manual. You will notice
that each stimulus program and its associated response file (with
the same name) are shown in only one location, although the
pair will often be used with more than one functional block.

Microprocessor Bus

Stimulus Program Planning

PROGRAM: CTRL_OUT1

EXERCISES CONTROL LINES FROM THE
MICROPROCESSOR USING POD ADDRESS SYNG

READY INTERRUPT
CIRCUIT CLOCK aND RESET CIRCUIT
s |51 READY CLK |RESET INTR

4-18

Microprocessor Bus

COO/TNTA|
+5 —
A231 7 e aus
aze [8 -
8 ac FF
AZ1 (1D NG Bu ER
20 [11 NE -
= Al9 2 AL
A18 = A8
a817 _4_
A16 |45
B . i
i ! |
5V 1R7ERS D] | |
10K 330 | |
| | SWi-a
L | 15 4616 .~ 11 A15
~ Atd 147 Ald +5V
| 413 (48 A13
NMI 59 1 I
;ﬂ I A12 [49 A1Z 4
I Al1 |20 Al aWEos
a10 [24 A10
apa [22 205 AT k
a08 [23 ADE A0E
SWE-4
13
NTH
I 57 | intR A0S
. ﬂ?‘_.__l
12
&
SWE-5
+5v 11
HLDa 88|y p, 015 (B4 015 | 10
_HOLD _ Balpgp Dus (48 D14 | \EWa-7
naa [AZ 013
nes [45 01z o:2 7
ey 43 011
nap [A1 010 SWE-8
0 nos [29 008 oog B .8
_ wsv 300 ey noa |27 GEE] 008
+5v 5 62 | 1my
GND
GND
GND
ooz
- DOE
o B2leap Dos oos ,
Ca ooa l
g 0o SWi-1
L 047UF poz 40
Do4 16
Doo
L S

Microprocessor Bus

program addr out

Stimulus programs and response files are used by GFI to back-trace
from a failing node. The stimulus program must create repeatable UUT !
activity and the response file contains the known-good responses for
the outputs in the UUT that are stimulated by the stimulus program.

1
1
1
1
1
1
!
This stimulus program is one of the programs which creates activity !
in the kernel area of the UUT. These programs create activity with t
or without the ready circuit working properly. Because of this, all !
the stimulus programs in the kernel area must disable the READY input !
to the pod, then perform the stimulus, then re-~enable the READY input !
to the pod. The 80286 microprocessor has a separate bus controller; !
for this reason, disabling ready and performing stimulus can get the !
bus controller out of synchronization with the pod. Two fault !
handlers trap pod timeout conditions that indicate the bus controller !
is out of synchronization. The recover() program is executed to !
resynchronize the bus controller and the pod. i
1

TEST PROGRAMS CALLED: !
recover () The 80286 microprocessor has a!
bus controller that is totally!

separate from the pod. 1In !

some cases the pod can get out!

of sync with the bus control- !

ler. The recover program !

resynchronizes the pod and the!

bus controller. !

GRAPHICS PROGRAMS CALLED:
{none}
devname Measurement device

Global Variables Modified:

1
1
1
1
Local Variables Modified: !
1
1
1
recover times Reset to Zero !

Trprrtrerrrrrrr et Rrt I I rIIIIITI TN ELIIIIOIIIIIIIILIILIILIILIY

declare global numeric recover times

(continued on the next page)

Figure 4-4: Stimulus Program (addr_out)

Microprocessor Bus

trerrrrrrrrrp R ELLRILEIELELLIILE LI LI RO EILIOLI LI LI IO LITLEIEIIT I LISLTIT RIS RITTIEIIIOLILILIGEITTILILIIILIILIILIIOLY

! FAULT HANDLERS: 1
RS R RN R N R N R RN R N R N R R R R R S S S R R R RN NS

handle pod_timecut_enabled line
recover ()

end handle

handle pod timeout recovered
recover{)

end handle

trrrrrrrrrrrrrrr IR r P LR LT LT TR T ITIRIIIITIITILIOLIIIIEILRILITIEITIIISLISELITIIITIIIGIIELITILILILIILILIYL

recover times = 0
! Let GFI determine the measurement device.

if (gfi control) = "yes" then
devname = gfi device

else
devname = "/modl"

end if

print *Stimulus Program ADDR OUT"

! Set addressing mode and setup measurement device.

podsetup ‘*enable ~ready' "off"
o podsetup ‘report power' "“off"
§ podsetup 'report forcing' "off"
U podsetup 'report intr' "“off"
podsetup 'report address' "off"
podsetup ‘report data' "off"
podsetup 'report control' "off"
mem byte = getspace space "memory", size "byte"
setspace (mem_byte }
reset device devname
sync device devname, mode “"pod”
sync device "pod"”, mode "addr"

! Present stimulus to UUT.

arm device devname ! Start response capture.
rampaddr addr 0, mask $1F
rampaddr addr 0, mask $1FO
rampaddr addr 0, mask $1F00
rampaddr addr 0, mask $1F000
rampdata addr $20000, data 0, mask $FO
rampaddr addr $30000, mask $F00
rampaddr addr $E0000, mask $1F000
readout device devname ! End response capture.

podsetup ‘enable ~ready' *on"
end program

(' ™ Figure 4-4: Stimulus Program (addr_out) - continued

4-21

Microprocessor Bus

STIMULUS PROGRAM NAME: ADDR_ OUT
DESCRIPTICN: SIZE: 1,194 BYTES

Response Data

Node Learned Async Clk Counter Priority
Signal Src With SIG IVL LVL Mode Counter Range Pin
Ule-19 I/0 MODULE DEBE8 10 TRANS
Ule-l6 PROBE 4768 10 TRANS
Ulé6-16 I/0 MODULE 4A68 10 TRANS
Ule-15 PROBE 421D 10 TRANS
Ul6~15 I/0 MODULE 421D 10 TRANS
Ul6-12 PROBE BFDC 10 TRANS
Ulé6-12 I/0 MODULE BFDC 10 TRANS
Ulée-9 PROBE 1138 10 TRANS
Ule-9 I/0 MODULE 113E 10 TRANS
Ule-6 I/0 MODULE 8F00 10 TRANS
Ul6-5 I/0 MODULE 8300 10 TRANS
Ule-2 I/0 MODULE B300 10 TRANS
U2-19 I/0 MODULE AED2 10 TRANS
U2-16 I/0 MODULE 88CD 10 TRANS
U2-15 I/0 MODULE 8296 10 TRANS
U2-12 1/0 MODULE 3B3%0 10 TRANS
Uz2-9 1/0 MODULE O09E8 10 TRANS
U2-6 I/0 MODULE O0OD9C 10 TRANS
U2-5 I/0 MODULE 56D3 10 TRANS
U2-2 I/0 MODULE 9CA7 10 TRANS
Ul4-1 PROBE 60CD 10 TRANS
Ul4-1 I/0 MODULE 60CD 10 TRANS
Ul4-34 PROBE DEB8 10 TRANS
Ul4-34 I/0 MODULE DEB8 10 TRANS
U14-33 PROBE 4A68 10 TRANS
U14-33 I/0 MODULE 4A68 10 TRANS
U14-32 PROBE 421D 10 TRANS
Ul4-32 I/0 MODULE 421D 10 TRANS
Ul4-28 PROBE BFDC 10 TRANS
Ul4-28 I/0 MODULE BFDC 10 TRANS
Ul14-27 PROBE 113E 10 TRANS
Ul4-27 I/0 MODULE 113E 10 TRANS
Ul4-26 PROBE 8F00 10 TRANS
Ul4-26 I/0 MODULE 8F00 160 TRANS
Ul4-25 PROBE 8300 10 TRANS
Ul4-25 I/0 MODULE 8300 10 TRANS
Ul4-24 PROBE B300 10 TRANS
Ula-24 I/0 MODULE B300 10 TRANS
U14-23 PROBE AED2 10 TRANS
U14-23 I/0 MODULE AED2 10 TRANS
Ul4-22 PROBE 88CD 10 TRANS
U14-22 I/0 MODULE 88CD 10 TRANS
Ul4-21 PROBE 8296 10 TRANS
Ul4-21 I/0 MODULE 8296 10 TRANS

(continued on the next page)

Figure 4-5: Response File (addr_out)

4-22

Microprocessor Bus

PROBE
I/0 MODULE
PROBE
I/0 MODULE
PROBE
I/0 MODULE
PROBE
I/0 MODULE
PROBE
I/0 MODULE
PROBE
I/0 MODULE
PROBE
I/0 MODULE
PROBE
I/0 MODULE
PROBE
I/0 MODULE
1/0 MODULE
I/0 MODULE
I/0 MODULE
I/0 MODULE
I/0 MODULE
I/0 MODULE

3B920
3B90
09E8
09E8
0oDoC
0boc
56D3
56D3
9CA7
9CA7
8E87
8E87
A70C
A70C
3951
3951
3951
3951
8E87
A70C
3951
3951
60CD
8724

PR B REBRRRP R RS e e e

(= eleReloNeNeoNeoNoNoNoNoNoNoNoNoNoNolNoNoNoNolNol el

TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS

Figure 4-5: Response File (addr_out) - continued

4-23

Microprocessor Bus

program data_out

STIMULUS PROGRAM for data bus buffers U3 and U23.

Stimulus programs and response files are used by GFI to backtrace

from a failing node. The stimulus program must create repeatable UUT !
! activity and the response file contains the known-good responses for
! the outputs in the UUT that are stimulated by the stimulus program.

1 1
1 1
1 1
1 1
1 1
1 1
! 1
! This stimulus program is one of the programs which creates activity !
! in the kernel area of the UUT. These programs create activity with !
! or without the ready circuit working properly. Because of this, all !
! the stimulus programs in the kernel area must disable the READY input !
! to the pod, then perform the stimulus, then re-enable the READY input !
! to the pod. The 80286 microprocessor has a separate bus controller; !
! for this reason, disabling ready and performing stimulus can get the !
! bus controller out of synchronization with the pod. Two fault !
! handlers trap pod timeout conditions that indicate the bus controller !
! is out of synchronization. The recover() program is executed to

! resynchronize the bus controller and the pod. !
1 i
1
1
1
1
1
i
1
1
1
1
b
1
1
1
1
1
1
1

TEST PROGRAMS CALLED: !
recover {) The 80286 microprocessor has al!
bus controller that is totally!

separate from the pod. In !

some cases the pod can get out!

of sync with the bus control- !

ler. The recover program 1

resynchronizes the pod and the!

bus controller. !

! GRAPHICS PROGRAMS CALLED:
{none}
devname Measurement device

Global Variables Modified:

1

1

1

1

Local Variables Modified: !
1

1

1

recover times Reset to Zero !

declare global numeric recover_times

(continued on the next page)

Figure 4-6: Stimulus Program (data_out)

Microprocessor Bus

handle pod timeout enabled line
recover ()

end handle

handle pod_timeout recovered
recover ()

end handle

recover times = 0
! Let GFI determine the measurement device.

if (gfi control} = "yes" then
devname = gfi device
else
devname =
end if
print "stimulus Program DATA OUT"

“/modl"

! Set addressing mode and setup measurement device.

podsetup 'enable

~ready' "off"

podsetup 'report power' "off"
podsetup 'report forcing' "off"
podsetup ‘report intr' “off"
podsetup 'report address' "off"
podsetup 'report data' "off"
podsetup 'report control' "off"

setspace space (getspace space "memory", size "word")
reset device devname

sync device devname, mode "pod"

sync device "/pod", mode “data"

! Present stimulus to UUT.
arm device devname ! Start response capture.
rampdata addr 0, data 0, mask S$FF
rampdata addr 0, data 0, mask SFF00

readout device devname ! End response capture.

podsetup ‘enable ~ready' "on"
end program

Figure 4-6: Stimulus Program (data_out) - continued

4-25

Microprocessor Bus

STIMULUS PROGRAM NAME: DATA OUT
DESCRIPTION:

Response

Node Learned Async Clk
Signal Src With SIG VL IVL
U3-11 PROBE AAG6L 10
U3-11 I/0 MODULE AA6Gl 10
U3-12 PROBE 99DF 10
U3-12 I/0 MODULE 99DF 10
U3-13 PROBE 8793 10
U3-13 I/0 MODULE 8793 10
U3-14 PROBE E618 10
U3-14 I/0 MODULE E618 10
U3-15 PROBE 8793 10
U3-15 I/0 MODULE F513 10
U3-l16 PROBE 4FFB 10
U3-16 I/0 MODULE 4FFB 10
U3-17 PROBE 3600 10
U3-17 I/0 MODULE 3600 10
U3-18 PROBE B259 10
U3-18 I/0 MODULE B259 10
U23-11 I/0 MODULE 96EC 10
U23-12 I/0 MODULE 725B 10
U23-13 1/0 MODULE ESED 10
U23-14 I/0 MODULE 5BEO 10
U23-15 I/0 MODULE 7E25 10
U23-186 I/0 MODULE 8SEA 10
U23-17 I/0 MODULE 77C7 10
U23-18 1/0 MODULE 6ERBE 10
Ul4-51 PROBE 6EBE 10
U14-51 I/0 MODULE 6ERE 10
Ul4-49 PROBE 77C7 10
U14-49 I/0 MODULE 77C7 10
U14-47 PROBE 85FA 10
U14-47 I/0 MODULE 85EA 10
Ul4-45 PROBE TE25 10
U14-45 I/0 MODULE 7E25 10
Ul4-43 PROBE SBEO 10
U14-43 I/0 MODULE 5BEO 10
Ul4-41 PROBE ESED 10
Ul4-41 I/0 MODULE E5SED 10
U14-39 PROBE 725B 10
U14-39 I/0 MODULE 725B 10
Ul4-37 PROBE 96EC 10
U14-37 I/0 MODULE 96EC 10
U14-50 PROBE B259 10
Ul4-50 I/0 MODULE B259 10
Ul4-48 PROBE 3600 10

4-26

SIZE: 982 BYTES

Data
Counter Priority
Mode Counter Range Pin

TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS

TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS

(continued on the next page)

Figure 4-7: Response File (data_out)

Microprocessor Bus

I/0 MODULE
PROBE
I/0 MODULE
PROBE
1/0 MODULE
PROBE
I/0 MODULE
PROBE
I/0 MODULE
PROBE
I/0 MODULE
PROBE
I/0 MODULE

3600
4FFB
4FFB
F513
F513
E618
E6l8
8793
8793
99DF
99DF
AA61
AA6L

RPRRPHRBRPEBSBPRE B

COO0OO0OOQOCOCOOO0OOOOQ

TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS

Figure 4-7: Response File (data_out) - continued

4-27

Microprocessor Bus

program ctrl outl

STIMULUS PROGRAM for bus controller, UlS & uP ctrl lines.

Stimulus programs and response files are used by GFI to backtrace

from a failing node. The stimulus program must create repeatable UUT !
! activity and the response file contains the known-good responses for
! the outputs in the UUT that are stimulated by the stimulus program.

1 1
1 1
1 1
1 1
1 1
1 1
I 1
! This stimulus program is one of the programs which creates activity !
! in the kernel area of the UUT. These programs create activity with !
! or without the ready circuit working properly. Because of this, all !
! the stimulus programs in the kernel area must disable the READY input !
! to the pod, then perform the stimulus, then re—enable the READY input !
! to the pod. The B0286 microprocessor has a separate bus controller; !
! for this reason, disabling ready and performing stimulus can get the !
! bus controller out of synchronization with the pod. Two fault !
! handlers trap pod timeout conditions that indicate the bus controller !
! is out of synchronization. The recover () program is executed to !
! resynchronize the bus controller and the pod. !
i 1
i
!
1
1
1
1
1
1
1
1
1
1
1
1
1

! TEST PROGRAMS CALLED: !
recover () The 80286 microprocessor has a!

bus controller that is totally!

separate from the ped. In !

some cases the pod can get out!

of sync with the bus control- !

ler. The recover program !

resynchronizes the pod and the!

bus controller. !

GRAPHICS PROGRAMS CALLED:
{none}

Global Variables Modified:
recover times Reset to Zero

handle pod timeout enabled line
recover ()
end handle

(continued on the next page)

Figure 4-8: Stimulus Program (ctrl_out1)

4-28

Microprocessor Bus

handle pod_timeout recovered
recover ()

end handle

handle pod_timeout no_clk

end handle

recover_times = 0
! Let GFI determine the measurement device.

if (gfi control) = "yes" then
devname = gfi device

else
devname = "/modl”

end if

print "Stimulus Program CTRL_QUT1"

! Set addressing mode and setup measurement device.

podsetup ‘'enable ~ready' "off"

podsetup 'report power' "off"

podsetup 'report forcing' "off"

podsetup ‘'report intr' "off"

podsetup 'report address' "off"

podsetup 'report data' "off"

podsetup ‘report control' "off"

io_byte = getspace space "i/o", size "byte"
mem word = getspace space “memory"”, size "word"
reset device devname

sync device devname, mode "pod"

sync device "/pod", mode "addr"

old cal = getoffset device devname

setoffset device devname, offset (1000000 - 42)

! Present stimulus to UUT.

arm device devname ! Start response capture.
setspace (mem_ word)
rampaddr addr $E0000, mask $1E
rampdata addr $50000, data 0, mask SF
setspace (io_byte)
rampaddr addr 0, mask $5F00
rampdata addr $2000, data 0, mask S$F
readout device devname ! End response capture.

setoffset device devname, offset old cal

podsetup ‘enable ~ready' "on"
end program

Figure 4-8: Stimulus Program (ctrl_out1) - continued

4-29

Microprocessor Bus

STIMULUS PROGRAM NAME: CTRL OUT1
DESCRIPTION: SIZE: 267 BYTES

Response Data

Node Learned Async Clk Counter Priority
Signal Src With SIG IVL IVL Mode Counter Range Pin
Ul4-5 PROBE 5632 10 TRANS
Ul4-5 I/0 MODULE 5632 10 TRANS
Ul4-4 PROBE ECCF 10 TRANS
Ul4-4 I/0 MODULE ECCF 10 TRANS
Ul4-66 PROBE B70D 10 TRANS
Ul4-66 I/0 MODULE B70D 10 TRANS
Ul4-67 PROBE ODF0 10 TRANS
Ul4-67 I/0 MODULE ODFO 10 TRANS
U45-8 1/0 MODULE 92FB 10 TRANS
Ul5-16 I/0 MODULE 2BES 10 TRANS
U57-8 I/0 MODULE 9118 10 TRANS
U22-5 1/0 MODULE B70D 10 TRANS
U22-6 I/0 MODULE ODFO 10 TRANS

Figure 4-9: Response File (ctrl_out1)

4-30

Microprocessor Bus

Summary of Complete Solution for
Microprocessor Bus 417.

The entire set of programs and files needed to test and GFI
troubleshoot the Microprocessor Bus functional block is shown
below. The format below is similar to a 9100A/9105A UUT
directory (you could consider the functional block to be a small
UUT), but in addition shows the use of each program and the
location in this manual for each file.

UUT DIRECTORY
(Complete File Set for Microprocessor Bus)
Programs (PROGRAM):
TEST_BUS Functional test Section 4.1.5
ADDR_OUT Stimulus Program Figure 4-4
DATA_OUT Stimulus Program Figure 4-6
CTRL_OUT1 Stimulus Program Figure 4-8
LEVELS Stimulus Program Figure 4-92
Stimulus Program Responses (RESPONSE):
ADDR_OUT Figure 4-5
DATA_OUT Figure 4-7
CTRL_OUT1 Figure 4-9
LEVELS Figure 4-93
Node List (NODE):
NODELIST Appendix B
Text Files (TEXT):
Reference Designator List (REF):
REFLIST " Appendix A
Compiled Database (DATABASE):
GFIDATA Compiled by the 9100A

4-31

Microprocessor Bus

(This page is intentionally blank.)

4-32

ROM

o

ROM FUNCTIONAL BLOCK 4.2

Introduction to ROM 4.2.1.

The typical ROM block consists of the ROMs, an address path
from the microprocessor to the ROMs, a data path from the
ROM:s to the microprocessor, and a ROM-select scheme. There
are often hardware buffers separating the address and data paths
from the microprocessor and ROMs; your UUT may or may not
include these buffers. A simplified diagram of a typical ROM
functional block is shown in Figure 4-10.

Figure 4-10 shows the microprocessor's Read/Write strobe as
an input to the ROM-select circuitry. Many UUTs use the
Read/Write strobe to make sure the ROM is selected only during
Read cycles. This prevents potential data-bus contention
between the ROM and the microprocessor during erroneous
Write cycles to the ROM's address space.

Considerations for Testing and
Troubleshooting 4.2.2,

Testing ROM

To test ROM thoroughly, every data bit read from the ROM
(i.e., every cell in the ROM) must be verified. Of course, you
could compare the contents of every location with known-good
contents, but this would be slow and would require that the
9100A/9105A store the known-good contents of all ROM chips.
In practice, it is easier and faster to read every ROM address,
compress the data into a CRC signature, and compare this
signature with the signature from a known-good UUT.

The 9100A/9105A’s built-in ROM test performs the operation
described above. The test is first used to capture the signature

4-33

ROM

4-34

Micro-
processor

'\ Data
< Data Bus A Bufter
'\ Address r\
Address Bus I/ Buffor I/
L N
b1 Decode ROM Chip Select
R/W Strobe & Select

ROM(s)

Figure 4-10: Typical ROM Block

ROM

response of a known-good UUT. Then, the test can be
performed on a suspect UUT.

Refer to Section 6.2.3 of the Technical User’'s Manual for more
information about the built-in ROM test.

ROM-Test Diagnostic Messages and Troubleshooting
Techniques

If the built-in ROM test finds a fault, one of several diagnostic
messages will be displayed. Figure 4-11 summarizes the types
of conditions reported, with example messages. Here are some
details about the various types of messages:

Incorrect Signature

This means that the ROM test could not identify the data or
address lines at fault. It may indicate that the ROM chip itself is
bad or that the wrong ROM chip is inserted. However, it could
also indicate faulty ROM-select circuitry, especially if the
circuitry allows ROM to be selected over only part of the proper
address range. This type of fault would allow the test to read
enough addresses to generate a signature, albeit an incorrect one.
Here are some troubleshooting tips for this situation:

® Check that the correct ROM chip is plugged in.

® Perform the test on a known-good UUT with an I/O

module clipped over the ROM chip. Write down the
signatures of the individual lines from the I/O module.

¢ Perform the test on the suspect UUT, again with the I/O
module clipped over the ROM chip.

¢ Compare the signatures for the individual lines. Trace any
faulty inputs back toward the microprocessor, giving
priority to tracing faults in chip-select lines and then in
address lines.

4-35

ROM

Signal Example
Group Fault Message
ROM Chip bad data cells read incorrect sig XXXX expected YYYY

ROM-Select Lines

Data Lines

Address Lines

Undetermined
Fault

open or stuck

open or stuck

tied

open or stuck

tied

read incorrect sig XXXX expected YYYY
all ROM data bits stuck iow

all ROM data bits stuck high

data line <name> stuck high
data line <name>stuck low

data line <name> tied to data line <name>

address line <name>stuck

address line <name>tied to address line <name>

read incorrect sig XXXX expected YYYY

Figure 4-11: Conditions Reported by ROM Test

4-36

ROM

All Data Bits Stuck High or Low

This means that the ROM test found all ones or all zeroes on
every data line throughout the test. Most probably, it means that
the ROM chip is not being properly selected, that the ROM chip
is missing (or unprogrammed), or that an intervening bus buffer
is faulty.

To troubleshoot these faults, first check that the ROM chip is
present and that it is the right part. If so, you can then trace the
ROM-select path back to the microprocessor. Use a
9100A/9105A read operation on the address at which the failure
occurred as a stimulus for the probe or I/O module. If the ROM-
select path is good, verify that the address and data buffers are
good.

Data or Address Line Stuck High, Stuck Low, or Tied

When an individual address or data line is at fault, use the probe
to trace from the ROM socket back to the microprocessor and
compare each node response with the known-good response.

If the faulty line is an address line, synchronize the probe to
address and stimulate the line with the STIM key using the
TOGGLE ADDR command on the operator's keypad. Use the
LOOP key while probing to verify both low and high levels at
each point on the address line until the fault is isolated.

If the faulty line is a data line, synchronize the probe to data, run
a ROM test and press the LOOP key to repeat the ROM test
while probing. Again, look for both low and high levels until
the fault is isolated.

4-37

ROM

Additional Considerations

4-38

Here are some additional suggestions to consider when testing
and troubleshooting ROM:

Multiple ROM Chips: If you have more than one
ROM chip on your UUT, test each chip separately. This
will speed the troubleshooting process if a fault is found.

If there is more than one ROM chip on the same data bus
(or, in systems wider than 8 bits, on the same portion of
the data bus) be careful that an erroneously enabled output
buffer of one ROM is not corrupting the test results for
another ROM. For example, consider an 8-bit
microprocessor system with two ROM chips, A and B, in
which chip A's output-enable input pin is tied low (a
fault). Chip A will pass its ROM test, because the data in
the ROM can still be read with the output-enable line tied
low. ROM chip B, however, will fail its test with an
incorrect-signature fault, even though there are no faults
directly associated with chip B. When chip B is read by
the test, the fault on chip A causes both ROMs to contend
for the data bus, resulting in an incorrect signature. See
the microprocessor bus functional block for suggestions
on how to check for bus contention.

Unprogrammed ROM: Be sure that the ROM being
tested has been programmed. An unprogrammed ROM
may result in an "all ROM data bits stuck high" or an "all
ROM data bits stuck low" message during a ROM test.

Data Tied to Address: If a ROM test results in a bad
signature, it is a good idea to make sure that a data line is
not tied to an address line. You can do so by clipping an
I/O module to the ROM chip that produced the incorrect
signature.

If address line or data line failures are identified by a ROM
test but not by a BUS test, the fault is on the ROM side of
the address or data buffers.

ROM

® Proper Sync Mode: Generally, the data sync mode
should be used to trace back faults in the ROM-select path,
even though the ROM-select signal may be created from
address lines. This is because the ROM-select signal
should normally be asserted at the time the microprocessor
reads in data from the ROM. This is also normally the
situation for probing the address signals at the ROM
socket.

ROM Example 4.2.3.

The operating system code for the Demo/Trainer UUT is stored
in four 32K x 8 EPROMs, U27, U28, U29, and U30, shown in
Figure 4-3. Since a 16-bit system is used, ROM is organized as
64K x 16 bits. The ROMO bank covers the even addresses
E0000 through EFFFE and is contained in U29 and U30. The
ROM1 bank covers the even addresses FOO00 through FFFFE
and is contained in U27 and U28. Both banks can only be
accessed in 16-bit mode. IAOQ1 is connected to AQ on the
ROMs, and the least significant address bit, IAOO, is not
connected to ROM. IAQO is always low in word accesses.
A20-A23 are not used. At reset, 80286 code execution begins at
the reset address (FFFFF(0). ROM accesses do not require wait
states.

Keystroke Functional Test 4.24.

Use the ROM TEST key to enter the following commands,
and compare the measured signature with the response table
in Figure 4-12.

GET SIG ROM REF U29 ADDR E(0000 UPTO EFFFE ...
. DATA MASK FF ADDR STEP 2
(ADDR OPTION: MEMORY WORD)

4-39

ROM

4-40

The measured signature (shown on the operator's display)
should be 8EGE.

GET SIG ROM REF U30 ADDR E(0000 UPTO EFFFE
. DATA FF00 ADDRSTEP 2
(ADDR OPTION: MEMORY WORD)

The measured signature (shown on the operator's display)
should be F387.

GET SIG ROM REF U27 ADDR F0000 UPTO FFFFE
. DATA FF ADDRSTEP 2
(ADDR OPTION: MEMORY WORD)

The measured signature (shown on the operator's display)
should be F387.

GET SIG ROM REF U28 ADDR F0000 UPTO FFFFE
. DATA FF00 ADDRSTEP 2
(ADDR OPTION: MEMORY WORD)

The measured signature (shown on the operator's display)
should be 8E6E.

ROM

(This page is intentionally blank.)

4-41

ROM

Keystroke Functional Test

CONNECTION TABLE

TEST ACCESS SOCKET TEST AGUESS SOCKET

RESPONSE

READY
CIRCUIT

BUS
BUFFER

ADDRESS =
DECODE _

4-42

ROM

27856
AD: 30 [0
ADZ 8],y
A03 B 4n
Al 7] a3
A0S 6|44
A0E 5,5
a07 a AB
508 3|~
LU B Y-)
A 241 a9
A 21) n10
L)
A 2| a1z
Ala 26 A1
41527 a4
+5Y] ypp
- T
S
— o
| uzg
I3 =
\§w4—3 Wi-2 27258

a0 oo A4 008
wi n: 221008
w2 oo |A3_I1010
15 1011

v oi[Ee_ioiz
o= [A7__1IDa3

os [1B__IDi4
o7 180 1045

14 15

Dln{}-)))hhhhhh
mimfe e e e e e dp s
T s WD

Ls32

4

5

-
AOMIAOY _uag
HOMOADY .
DATA & ADORESS BUS

AOHT

Figure 4-12: ROM Functional Test

4-43

ROM

Programmed Functional Test 4.2.5.

4-44

The test_rom program is the programmed functional test for the
ROM functional block. It uses the testromful command to test
the ROMs. This command will generate one of seven built-in
fault conditions if testromful fails. The test_rom program then
handles all seven built-in fault conditions and categorizes them
into one of two new fault conditions called rom _comp for a
component failure or rom_address for an address failure. The
seven built-in testramfull faults are redirected as follows:

New Fault Condition Built-in Fault Condition

rom_comp rom_sig_incorrect
rom_data_high_tied_all
rom_data_low_tied_all
rom_data_fault
rom_data_data_tied

rom_address rom_addr_addr_tied
rom_addr_fault

The new fault condition rom_comp uses the gfi test command to
clip the I/O module onto the ROMs and to test all inputs and
outputs of a ROM. If a failure is detected, the test passes control
to GFI. GFI backtraces to find the circuit problem that is
causing the failure.

The new fault condition rom_address checks the address bus,
and if a failure is detected control is passed to GFI. GFI then
backtraces to the circuit problem which is causing the failure.

ROM

program test rom

1

b

! This program tests the ROM functional block of the Demo/Trainer. The
! TL/1 testromfull command is used to test the ROMs. If the ROMs are

! found to be faulty, then one of seven built-in fault conditions is

1

1

generated.

podsetup 'enable ~ready' "on"

podsetup 'report forcing' "on"

setspace space {getspace space "memory", size "word")
! Main part of Test.

testromfull addr $F0000, upto S$FFFFE, addrstep 2, sig $156F
testromfull addr $E0000, upto SEFFFE, addrstep 2, sig $B6lE

end program

4-45

ROM

Stimulus Programs and Responses 4.2.6.

4-46

Figure 4-13 is the stimulus program planning diagram for the
ROM functional block. The outputs in the ROM functional
block are the outputs of U45 and the outputs of the ROM chips
onto the data bus.

The stimulus programs to exercise these outputs are rom(_data
(which reads data from U29 and U30), rom! data (which reads
data from U27 and U28), and decode (which accesses each
decoded address space in the Demo/Trainer UUT).

One of the rules for stimulus programs is that when dealing with
a data bus, every component that is decoded separately to output
onto the data bus must have a separate stimulus program to read
data from that component. For this reason, two stimulus
programs are required: rom(data and roml data.

ROM

(This page is intentionally blank.)

4-47

ROM

Stimulus Program Planning

PROGRAM: DECODE

PERFORMS AN ACCESS FOR EACH DECODED
BLOCK

4-48

MEASUREMENT AT:
U45-36
READY FEADY 80286 BUS
CIACUIT MICROPROCESSOR BUFFER
ADDRESS -
DECODE -

ROM

Wa-3 “SH1i-2

AO1 40
a02__ 3
AD3 =]
A04__ 7
A05__ 6
A6 &
AD7 4|
ADB 3
ADS_25
ALD 24
ALl 21
at2_23
YERN
Al4 26
A15_ 27
+5V i

14 15 AO4
AD2
AD3
AD4
ADS
ADB
+5Y AT4 207
B .
4, 7K ADB 3 | 1a08
A08 25 [Tno09
ALD 24 A10
ALl 21 A1d
Alz 3 AlZ
y a13 2 A13
Ala 26 Ls32 A1d
a15 27 A15
+5V 1 5V
20
EEN
22y
ROM1AO0Y
ROMOADY
DATA & ADDRESS BUS
AOMO

Figure 4-13: ROM Stimulus Program Planning

4-49

ROM

program romO_data

STIMULUS PROGRAM to exercise data out of ROMs U29 and U30.

TEST PROGRAMS CALLED:
recover ¢}

GRAPHICS PROGRAMS CALLED:
{none})

Global Varilables Modified:
recover_times
devname

Stimulus programs and response files are used by GFI to backtrace

from a failing node. The stimulus program must create repeatable UUT !
activity and the response file contains the known-good responses for
the outputs in the UUT that are stimulated by the stimulus program.

1
1
1
1
1
1
1
This stimulus program is one of the programs which creates activity !
in the kernel area of the UUT. These programs create activity with !
or without the ready circuit working properly. Because of this, all !
the stimulus programs in the kernel area must disable the READY input !
to the pod, then perform the stimulus, then re-enable the READY input !
to the pod. The 80286 microprocessor has a separate bus controller; !
for this reason, disabling ready and performing stimulus can get the !
bus controller out of synchronization with the pod. Two fault !
handlers trap pod timeout conditions that indicate the bus controller !
is out of synchronization. The recover() program is executed to 1
resynchronize the bus controller and the pod. !
1

The 80286 microprocessor has a!
bus controller that is totally!
separate from the pod. In !
some cases the pod can get out!
of sync with the bus control- !
ler. The recover program !
resynchronizes the pod and the!
bus controller. i

Reset to Zero
Measurement device

declare global numeric recover times

(continued on the next page)

Figure 4-14: Stimulus Program (rom0_data)

4-50

ROM

! FAULT HANDLERS: !

handle pod_timeout_enabled line
recover ()

end handle

handle pod_timeout recovered
recover ()

end handle

recover_times = 0
! Let GFI user select which I/O module to use

if (gfi control) = "yes" then
devname = gfi device

else
devname = "/modl"

end if

print "Stimulus Program ROMO_DATA"

Set desired measurement modes

setspace space {getspace space "memory", size "word")
reset device devname

sync device devname, mode "pod"

sync device "/pod", mode “data"

Present stimulus to the UUT

arm device devname ! Start response capture.
rampaddr addr $E0000, mask S1FE
readout device devname ! End response capture

end rom0 data

Figure 4-14: Stimulus Program (rom0_data) - continued

4-51

ROM

STIMULUS PROGRAM NAME: ROMO DATA
DESCRIPTION: SIZE: 454 BYTES

Response Data

Node Learned Async Clk Counter Priority
Signal Src With SIG ILVL 1VL Mode Counter Range Pin
U29-11 PROBE 45DD 1 0 TRANS
U29~11 I/0 MODULE 43DD 1 0 TRANS
U29-12 PROBE CF83 1 0 TRANS
029-12 I/0 MODULE CF83 1 0 TRANS
U29-13 PROBE BD79 1 0 TRANS
U29-13 I/0 MODULE BD79 1 0 TRANS
U29-15 PROBE 8A76 1 O TRANS
U29-15 I/0 MODULE 8A76 1 0 TRANS
U29-16 PROBE 66F3 1 O TRANS
U29-16 1/0 MODULE 66F3 1 O TRANS
U29-17 PROBE FABS 1 O TRANS
U29-17 I/0 MODULE FABS5S 1 0 TRANS
U29-18 PROBE 534E 1 0 TRANS
U29-18 I/0 MODULE 534E 1 O TRANS
U29-19 PROBE 8DOA 1 0 TRANS
U29-19 1/0 MODULE 8DOA 1 O TRANS
U30-11 I/0 MODULE 73ES 1 O TRANS
U30-12 I/0 MODULE AC84 1 0 TRANS
U30-13 I/0 MODULE SOBB 1 0 TRANS
U30-15 I/0 MODULE 5B3B 1 0 TRANS
U30-16 I/0 MODULE O6EF 1 O TRANS
U30-17 ' 1I/0 MODULE 00AQ 1 0 TRANS
U30-18 I/0 MODULE 6BFO 1 0 TRANS
U30-19 I/0 MODULE 52EE 1 0 TRANS

Figure 4-15: Response File (rom0_data)

4-52

ROM

program roml data

STIMULUS PROGRAM to exercise data out of ROMs U29 and U30.

! Stimulus programs and response files are used by GFI to back-trace
from a failing node. The stimulus program must create repeatable UUT !

! activity and the response file contains the known-good responses for

! the outputs in the UUT that are stimulated by the stimulus program.

1 1
1 1
1 1
! {
1 1
1 1
H 1
! This stimulus program is one of the programs which creates activity t
! in the kernel area of the UUT. These programs create activity with !
! or without the ready circuit working properly. Because of this, all !
! the stimulus programs in the kernel area must disable the READY input !
! to the pod, then perform the stimulus, then re-enable the READY input !
! to the pod. The 80286 microprocessor has a separate bus controller; !
! for this reason, disabling ready and performing stimulus can get the !
! bus controller out of synchronization with the pod. Two fault 1
! handlers trap pod timeout conditions that indicate the bus controller !
! is out of synchronization. The recover() program is executed to !
! resynchronize the bus controller and the pod. !
1 1
1 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

! TEST PROGRAMS CALLED: !
recover () The 80286 microprocessor has a!

bus controller that is totaly !

separate from the pod. In !

some cases the pod can get out!

of sync with the bus control- !

ler. The recover program !

resynchronizes the pod and the!

bus controller. !

! GRAPHICS PROGRAMS CALLED:
(none)

! Global Variables Modified:

recover_times Reset to Zero

1
1
1
1
1
1
devname Measurement device !

declare global numeric recover_ times

(continued on the next page)

Figure 4-16: Stimulus Program (rom1_data)

4-53

ROM

handle pod timeout enabled line
recover ()

end handle

handle pod_timeout recovered
recover ()

end handle

recover times = 0
! Let GFI user select which I/O module to use

if (gfi control) = "yes" then
devname = gfi device

else
devname = "/modl”

end if

print "Stimulus Program ROM1_ DATA™

! Set desired measurement modes

setspace space {getspace space "memory”, size "word")
reset device devname

sync device devname, mode “pod"

sync device "/pod", mode "data"

! Present stimulus to the UUT

arm device devname ! Start response capture.
rampaddr addr $F0000, mask $1FE
readout device devname ! End response capture

end program

Figure 4-16: Stimulus Program (rom1_data) - continued

4-54

ROM

STIMULUS PROGRAM NAME:

DESCRIPTION:

Node
Signal Src

U27-11
U27-11
U27-12
U27-12
U27-13
U27-13
U27-15
U27-15
U27-16
U27-16
027-17
U27-17
U27-18
U27-18
U27-19
U27-19
U28-11
U28-12
U28-13
U28-13
U28-16
U28-17
U28-18
U28-19
U23-2

U23-2

ROM1_DATA

Learned
With

PROBE
I/0 MODULE
PROBE
I/0 MODULE
PROBE
I/0 MODULE
PROBE
I/0 MODULE
PROBE
I/0 MODULE
PROBE
I/0 MODULE
PROBE
I/0 MODULE
PROBE
I/0 MODULE
I/0 MODULE
I/0 MODULE
I/0 MODULE
I/0 MODULE
I/0 MODULE
I/0 MODULE
I/0 MODULE
I/0 MODULE
PROBE
I/0 MODULE

Figure 4-17: Response File (rom1_data)

Response
Async Clk
SIG IVL IVL

73E9
73E9
ACg4
AC84
50BB
S0BB
SB3B
5B3B
06EF
06EF
00A0
O00AQ
6BFO
6BFQ
52EE
52EE
45DD
CF83
BD79
8A76
66F3
FABS
534E
8DOA
52EE
52EE

e e e e e el e el T g Sy Sy S py i Sy W S P
COO0OCOCOCO0COOOCOOO0OOOOOOO0ODO OO

Data

SIZE:

Counter
Mode

TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS

Counter Range

(continued on the next page)

982 BYTES

Priority
Pin

4-55

ROM

U23-3
U23-3
U23-4
U23-4
U23-5
U23-5
U23-6
U23-6
U23-7
023-7
U23-8
U23-8
U23-9
U23-9
U3-2
U3-2
U3-3
U3~-3
U3-4
U3-4
U3-5
U3-5
U3-6
U3-6
U3-7
U3-7
U3-8
U3-8
U3-9
U3-9

4-56

PROBE
I1/0 MODULE
PROBE
I1/0 MODULE
PROBE
I/0 MODULE
PROBE
I/0 MODULE
PROBE
1/0 MODULE
PROBE
1/0 MODULE
PROBE
1/0 MODULE
PROBE
1/0 MODULE
PROBE
I/0 MODULE
PROBE
I/0 MODULE
PROBE
I/0 MODULE
PROBE
I/0 MODULE
PROBE
I/0 MODULE
PROBE
I/0 MODULE
PROBE
I/0 MODULE

Figure 4-17: Response File (rom1_data) - continued

6BFO
6BF0
00A0
00AO0
O6EF
06EF
5B3B
5B3B
SOBB
S0BB
AC84
AC84
73E9
73E9
8DOA
8DOA
534E
534E
FABS
FABS
66F3
66F3
8A76
B8A76
BD79
BD79
CF83
CF83
45DD
45DD

RFREBRPRPRERPHRERERREBREREEBREREBRERRRR BB S E

[N eleNoNoRelNoNoNeNeNeoNeoNo oo oo No o BoNoNo oo NoNoRoRoBo No

TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS

TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS

ROM

Summary of Complete Solution for ROM 4.2.7.

The entire set of programs and files needed to test and GFI
troubleshoot the ROM functional block is shown below. The
format below is similar to a 9100A/9105A UUT directory (you
could consider the functional block to be a small UUT), but in
addition shows the use of each program and the location in this
manual for each file.

UUT DIRECTORY
(Complete File Set for ROM)

Programs (PROGRAM):

TEST_ROM Functional Test Section 4.2.5

ROMO_DATA Stimulus Program Figure 4-14

ROMI1_DATA Stimulus Program Figure 4-16

DECODE Stimulus Program Figure 4-108
Stimulus Program Responses (RESPONSE):

ROMO_DATA Figure 4-15

ROMI1_DATA Figure 4-17

DECODE Figure 4-109
Node List (NODE):

NODELIST Appendix B
Text Files (TEXT):
Reference Designator List (REF):

REFLIST Appendix A
Compiled Database (DATABASE):

GFIDATA Compiled by the 9100A

4-57

ROM

(This page is intentionally blank.)

RAM

RAM FUNCTIONAL BLOCK 4.3.

Introduction to RAM 4.3.1.

The typical RAM block consists of the RAM chips, an address
1 path from the microprocessor to the RAMs, a bidirectional data
| path between the microprocessor and the RAMs, and RAM-
select circuitry. There are often hardware buffers between the
microprocessor and the RAM chips.

There are two basic types of RAM: static and dynamic. Static
RAM chips are faster and require no refresh circuitry. They are
also more expensive and take more room for a given memory
size. Dynamic RAM chips use a capacitor for charge storage
and therefore must be periodically refreshed to maintain data
storage. However, dynamic RAM chips provide more memory
for a given size chip.

A simplified diagram of a typical RAM functional block is
shown in Figure 4-18.

Considerations for Testing and
Troubleshooting 4.3.2.

Speed and accuracy are the most critical factors in RAM testing,
and RAM tests are typically a compromise between these two
factors. To further complicate the issue, different hardware
configurations bring with them different failure mechanisms
which may require specialized testing.

The built-in RAM tests offers a number of choices to better
match the test to the testing needs. While the RAM FULL,
RAM FAST and pod-dependent RAM QUICK tests directly
address the speed and accuracy compromise, they are different
from each other.

Section 5 of the Technical User's Manual describes the various
RAM tests in detail.

RAM

Micro-
processor

4-60

RAMs

Data ’\
Data Bus Buffer < /
R/W Strobe
| "
: Address MUX :
and Refresh N
Address Bus Agg;g:s y Circuitry .y
: (Dynamic
—l\ Decode RAM Control
/] & Select

Figure 4-18: Typical RAM Block

RAM

Many types of faults can occur in RAM functional blocks.
Address lines or data lines can be stuck or tied to other lines.
Individual memory cells can be stuck low or high, or cells can
be aliased (they respond to more than one address). Transition
faults can exist (where a cell can change from one state to
another, but not back again). Coupling faults can cause the
contents of one cell to be disturbed when the contents of another
cell is changed. If this coupling depends on the contents of
several neighboring cells, the fault is called a pattern sensitive
fault. Chip select address decoding logic can be faulty. Row or
column decoders might not select when they should or they
might select when they shouldn't. In dynamic memory, refresh
logic can fail, causing cells to lose their contents.

Although failure mechanisms are different between dynamic and
static RAM, both types of RAM may be functionally tested with
exactly the same built-in RAM tests; only the delay parameter is
of unique concern for dynamic RAM. The delay parameter
provides a means of testing the refresh circuitry by specifying
the number of milliseconds to wait for refresh-related faults to
occur.

The first step in troubleshooting RAM is to run a built-in
functional test. Besides confirming a RAM fault, the functional
test often provides excellent clues for where to begin fault
isolation. Figure 4-19 illustrates typical fault information
provided by the RAM tests.

In general, the following procedure will work for
troubleshooting any RAM faults discovered by the
9100A/9105A:

1. Create a combination of reads and writes to confirm
the failure.

2. Synchronize the probe as needed.

3. Perform looping reads and writes while tracing with
synchronized probe.

4-61

RAM

Fault TEST RAM FAST TEST RAM FULL

Condition coupling coupling
enabled disabled

Stuck cells always found always found always found

Aliased cells
Stuck address lines

Stuck data lines

Shorted address lines

Multiple selection
decoder

Dynamic coupling

may be found

always found

always found

Shorted data lines

Aliasing between
bits in same word

may be found

always found

may be found

Pattern-sensitive
faults

not found

not found

not found

Refresh problems

4-62

always found, if delay is sufficiently long and standby reads do

not mask the problem.

Figure 4-19: RAM Test Failure Information

RAM

RAM Example 4.3.3.

The Demo/Trainer UUT, Figure 4-20, uses 128K bytes of
dynamic RAM, organized as 64k x 16 bits, and composed of
sixteen 1-bit wide 4164 chips.

Keystroke Functional Test 4.3.4.
Use the RAM TEST key to enter the following command:

TEST RAM FAST ADDR 0 UPTO 1FFFE DATA MASK ...
. FFFF ADDR STEP 2 DELAY 250 SEED 0
(ADDR OPTION: MEMORY WORD)

4-63

RAM

Keystroke Functional Test

CONNECTION TABLE

TEST ACCESS SCOCKET TEST ACCESS SOCKET

RESPONSE

CLOCK AND RESET ChK BUS

BUFFER
READY]

READY ADORESS
CIACUIT DECODE
DYMAMIC

| FAMAGT RAM
TIMING

4-64

RAM

RELLE
a7 3 [A a
RAE 13|, A A
RAS 10 | .z A A
IY VY P A A
AZ 12| a3 A E
A2 B | an A A
TY P A B
A0 5 | no A A
4 JFam
A5 TRT
R
2 lo @
TU3a
1015 1014 1013 1012
f
RAT RAAT Aa7
| |Ras AA A6
| |Ras AA A5
| e EX 2
RA i
RA HA
RA Ra A
RA FAA A =]
s
=] '_"';_5‘
2 |
| 1010 1009
{ AAg
_31684
| a7 g [a
AAE 1 A
ab
EEERE) E
A5
Bea 13,4 A
L 12 | 43 A
AAE 6 A
A2
AA1 7 |y]
A0 5 |40 A
A _JFAE
—15iEEE
_‘2 W
Z 1o a
uag |
J
1007 1006
ArS
| TASL |
| FAH-RATTE
4164
aa7] A7 8 Ra7 AaT a7
45 | RAS 13 "5 A B
AT RAS 10 Li] L. AS
44 R A E N)
A3 AA A A3
A2 5 Ak A wa
| 1 7 R A 1
A0 5 A B AAD 5 |ag
4 4
i e
| —15] 15 | 1
| —3 2 2
= =
‘ RAT
J ooz 1001 1000
1
| HATTE B

Figure 4-20: RAM Functional Test

4-65

RAM

Programmed Functional Test 4.3.5.

4-66

The test_ram program is the programmed functional test of the
Dynamic RAM functional block. This program uses the
testramfast command to test the RAM. This command will
generate one of eleven different fault conditions if the testramfast
fails. All eleven fault condition handlers pick up some
parameters and redirect the fault condition to a new fault
condition called ram_component. The fault condition handler
for the ram_component fault condition accepts a parameter called
data_bits that indicates which data bit positions are faulty.

The ram_component fault condition handler first checks the
Ready circuit to make sure that a ready fault condition is not
causing RAM failures. If the Ready circuit is good, one of the
failing RAMs (as indicated by the data_bits parameter) is
checked using the gfi test command. If a failure is found, GFI
takes control and backtraces to the circuit fault causing the
failure.

If the RAM component is good, the ram_component fault
condition handler uses the gfi test command to check the data
bus at the bus buffers. If a failure is detected, GFI begins
backtracing from the bus buffers.

program test_ram

! FUNCTIONAL TEST of the RAM functional block. !
1 t
! This program tests the RAM functional block of the Demo/Trainer. The !
! TL/1 testramfast command is used to test the RAMs. If the RAMs are !
t found to be faulty, then one of twelve built-in fault conditions is !

1

1

! generated.
1

! Setup

podsetup 'enable ~ready' "on"

podsetup 'report forcing' "“on"

setspace space (getspace space "memory", size "word")
! Main part of test

testramfast addr 0, upto $1FFFE, delay 250, seed 1

end program

RAM

Stimulus Programs and Responses 4.3.6.

Figure 4-21 is the stimulus program planning diagram for the
RAM functional block. There is one stimulus program and a
matching response file for RAM. The stimulus program
ram_data outputs data from RAM onto the data bus.

One rule for a stimulus program is that data should flow in only
one direction during the measurement portion of the stimulus
1 program. Although ram_data executes ram_fill in order to fill
: RAM with known data, ram_fill is executed before the
measurement is started in the ram_data stimulus program.
Therefore data will flow only in one direction during the
measurement portion of ram_data.

4-67

RAM

4-68

Stimulus Program Planning

INITIALIZATION PROGRAM: RAM_FILL

INITIALIZES RAM BY FILLING THE FIRST 512
LOCATIONS OF RAM WITH STANDARD DATA

CLOCK AND RESET

MEASUREMENT AT:
(NONE)
80286 BUS
MICROPAROCESSOR BUFFER

T
m
=
E

READY
CIRCULT

.

ADDRESS

AaRADY

DECODE

DYNAMIC
AaM
TIMING

T

RAM

1014 1013
! 4154 A164 4164
! A7 AAT A7 RA7 8 a7
46 L. AB
| i AS GLERELEEY
Al a4 4, A4
A a3 X A3
Aa aZ A Az
| Ll At | sl 7 1.y
| | EDI'EEE AD A
| s |
| 15]5aE |
| 24w
2o a _
=)
SHi-5
1040 D09 1008 3 i2
- _—

uas
-
| 1007 1006 1005 o4
HED — l
N O O R Y- N]
Aap-WAITE 4
] AA AA7 9
A RAE 13
A AAS
15 [Fad 11
[Fa3_ a2
e
RAt
RAD
-I,_‘¢
15]
3
| AsO-RAT
] 1002 ooz | [1061 tooa
1 AAS i
L CASL l
1 FAR-WALTE

Figure 4-21: RAM Stimulus Program Planning

4-69

RAM

program ram data

STIMULUS PROGRAM to exercise data out of the dynamic RAM.

1

!

! Stimulus programs and response files are used by GFI to backtrace

! from a failing node. The stimulus program must create repeatable UUT !
activity and the response file contains the known-good responses for
the outputs in the UUT that are stimulated by the stimulus program.

1
1
1
1
1
1
1
This stimulus program is one of the programs which creates activity !
in the kernel area of the UUT. These programs create activity with !
or without the ready circuit working properly. Because of this, all !
the stimulus programs in the kernel area must disable the READY input !
to the pod, then perform the stimulus, then re-enable the READY input !
to the pod. The 80286 microprocessor has a separate bus controller; !
for this reason, disabling ready and performing stimulus can get the !
bus controller out of synchronization with the poed. Two fault 1
handlers trap pod timeout conditions that indicate the bus controller !
is out of synchronization. The recover () program is executed to !
resynchronize the bus controller and the pod. !
1

1

1

1

TEST PROGRAMS CALLED:
dram filll () Initialize data in the RAM

recover ¢} The 80286 microprocessor has a!
bus controller that is totaly !
separate from the pod. In !
some cases the pod can get out!
of sync with the bus control- !
ler. The recover program !
resynchronizes the pod and the!
bus controller. !

GRAPHICS PROGRAMS CALLED:
{none})
devname Measurement device

Global Variables Modified:

1
i
1
1
Local Variables Modified: !
1
1
1
recover times Reset to Zero !

declare global numeric recover times

(continued on the next page)

Figure 4-22: Stimulus Program (ram_data)

4-70

RAM

handle pod_timeout_enabled line
recover ()

end handle

handle pod_timeout recovered
recover (}

end handle

recover_times = 0
! Let GFI user select which I/0 module to use

if (gfi control) = "yes" then
devname = gfi device

else
devname = "/modl"

end if

print "Stimulus Program RAM DATA"

! Set desired measurement modes

reset device devname

execute ram fill()

setspace space (getspace space "memory", size "word")
sync device devname, mode “pod"

sync device "/pod", mode *data"

! Present stimulus: Read data out of RAM

arm device devname ! Start response capture.
rampaddr addr 0, mask S1FE
readout device devname ! End response capture

end program

Figure 4-22: Stimulus Program (ram_data) - continued

4-71

RAM

STIMULUS PROGRAM: RAM DATA

DESCRIPTION:

Response

Node Learned Async Clk
Signal Src With SIG INL LVL
U34-14 I/0 MODULE 95Al1 10
U35-14 I/0 MODULE 6F97 10
U36-14 I/0 MODULE 7744 10
U37-14 I/0 MODULE 5AES 10
U38-14 I/0 MODULE AS54D 10
U39-14 I/0 MODULE 797B 10
U40-14 I1/0 MODULE ASF7 10
U41-14 I/0 MODULE 3BEF 10
U48-14 PROBE COA6 10
U48-14 I/0 MODULE COA6 10
U49-14 PROBE 1338 10
U49-14 I/0 MODULE 1338 10
U50-14 PROBE 66F9 10
U50-14 1/0 MODULE 66F9 10
US51-14 PROBE 6CF8 10
U51-14 I/0 MODULE 6CF8 10
U52-14 PROBE BEOS 10
U52-14 1/0 MODULE BEOS 10
U53-14 PROBE 3C7C 10
US3-14 I/0 MODULE 3C7C 10
U54-14 PROBE 70F3 10
US54-14 I/0 MODULE 70F3 10
U55-14 PROBE DACC 10
U55-14 I/0 MODULE DACC 10

SIZE: 454 BYTES
Data
Counter Priority
Mode Counter Range Pin

TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS
TRANS

Figure 4-23: Response File (ram_data)

4-72

RAM

program ram fill

! INITIALIZATION PROGRAM fills Dynamic RAM with a pattern of data.

1

! TEST PROGRAMS CALLED:
{none})

Text Files Accessed: !
dram fi111 !

1

1
1 t
! !
! GRAPHICS PROGRAMS CALLED: !
! {none}) !
1 1
1 1
1 1
1

setspace space (getspace space "memory”, size "word")
writeblock file "dram filll", format “motorola"

end program

Figure 4-24: Inititalization Program (ram _fil})

4-73

RAM

Summary of Complete Solution for RAM 4.3.7.

The entire set of programs and files needed to test and GFI
troubleshoot the RAM functional block is shown below. The
format below is similar to a 9100A/9105A UUT directory (you
could consider the functional block to be a small UUT), but in
addition shows the use of each program and the location in this
manual for each file.

UUT DIRECTORY
{Complete File Set for RAM)

Programs (PROGRAM):

TEST_RAM Functional Test Section 4.3.5

RAM_DATA Stimulus Program Figure 4-22

RAM_FILL Initialization Program Figure 4-24
Stimulus Program Responses (RESPONSE):

RAM DATA Figure 4-23
Node List (NODE):

NODELIST Appendix B
Text Files (TEXT):

DRAM _FILL1 Initialization Data File
Reference Designator List (REF):

REFLIST Appendix A
Compiled Database (DATABASE):

GFIDATA Compiled by the 9100A

Dynamic RAM Timing

DYNAMIC RAM TIMING FUNCTIONAL BLOCK 4.4.

Introduction to Dynamic RAM Timing Circuits 44.1.

Unlike static RAM, dynamic RAM chips use a capacitor for
charge storage and therefore must be periodically refreshed to
maintain the data in memory. Refreshing does not require that
data be re-written at memory locations; it requires only that
every row be accessed within a certain time period (typically at
least every 2 milliseconds). This is sufficient to restore the
charge on the memory cells.

In addition, dynamic RAM uses multiplexed address signals.
The row address is clocked into the internal decoder of the
dynamic RAM chip with the falling edge of the Row Address
Strobe (RAS), and the column address is clocked with the
falling edge of the Column Address Strobe (CAS). Multiplexed
addressing decreases the pin count and package size, but it also
makes dynamic RAM more difficult to test and troubleshoot than
static RAM.

Considerations for Testing and
Troubleshooting 4.4.2.

The thought process used to test and troubleshoot dynamic RAM
is very similar to that used for static RAM, but the actual
measurements for dynamic RAM are more difficult because of
row and column strobing for multiplexed addresses, because of
refreshing, and because there are more failure mechanisms.

Consider, for example, a dynamic RAM with 64K memory
locations addressed by eight address inputs (MA7-MAOQ). A
multiplexer allows the 16 address lines to be brought to the eight
RAM address lines, using RAS to strobe the row address and
CAS to strobe the column address. Typical timing for a read
cycle of such a system is shown in Figure 4-25.

With static RAM, the microprocessor's address lines can be
tested by making measurements using the probe or an I/O

4-75

Dynamic RAM Timing

Pod Address Pod Data
Sync Sync

s \I i
oo TN WIIC (I

|

| |
DATA } Data Valid

|

| |
~WRITE NH/HHNNH/NNNN :

Dynamic RAM Read Cycle, Without Refresh

j¢&——— Refresh Cycle e Read Cycle —————]

we-we TN XN XTI NI

DATA @
ewe [T i

Dynamic RAM Read Cycle, With RAS-Only Refresh

Figure 4-25: Dynamic RAM Read Cycles

4-76

Dynamic RAM Timing

module synchronized to the pod address while performing
looping reads or writes. With dynamic RAM, however, the
RAM's address inputs are multiplexed between row and column
addresses. It is important to be able to separate row addressing
from column addressing. To test dynamic RAM addressing
requires the ability to control the timing of the clock strobe for a
measurement. The 9100/9105A has this capability; under
program control, it can adjust the timing for when the probe or
I/O module actually clocks data. Using the getoffset and
setoffset commands, you can create a program to measure the
address line activity on the RAM chips at the RAS strobe (or at
the CAS strobe). Typically, it makes sense to have two separate
programs: one to measure activity for RAS address timing and
one to measure activity for CAS address timing.

For the top example of Figure 4-25, the TL/1 setoffset and
getoffset commands are used to adjust the sync timing from Pod
Data Sync (or Pod Address Sync) to the RAS and CAS
positions. One program could be used to measure at RAS time
and another to measure at CAS time. The I/O module or probe
used to measure the RAS and CAS address activity would be
synchronized to Pod Data Sync or Pod Address Sync.
However, the setoffset command provides an offset from Pod
Data Sync or Pod Address Sync that determines when the
clocking for measurements actually occurs.

For some designs, more than one RAS cycle can occur during a
read or write cycle. The bottom half of Figure 4-25 shows
typical timing for such a situation. RAS goes low first for a
refresh and then again later for the read. In this case, it is not
sufficient to clock measurements on address lines with RAS
alone. If you want to examine the row address signals on the
address lines, you could use the Refresh signal to qualify
clocking for the appropriate address information.

Measuring the RAS and CAS Lines

An easy check for RAS and CAS lines is to look for activity on
the lines. With the probe or I/O module synchronized to the
FREERUN clock, an asynchronous level history for RAS
should always show high and low levels and never an invalid

4-77

Dynamic RAM Timing

4-78

level. An asynchronous level history for CAS will be the same
as RAS if it is being accessed at the time. When the RAM is not
being accessed, CAS may be similarly active or it may remain
high, depending on the UUT.

Although the absence of the proper levels described above will
indicate some types of faults, these simple checks cannot
determine if the lines are definitely good. Subtle timing
problems are common with some dynamic RAM designs.

To analyze the exact timing of RAS and CAS, use the
0100A/9105A to generate the appropriate sync signal and to
display the UUT waveforms on an oscilloscope:

1. Use the SYNC key on the operator's keypad to select
the Pod Address Synchronization mode:

SYNC TO POD ADDR
or SYNC I/O MOD <number> TO POD ADDR

2. Use the READ key on the operator's keypad to enter
the following command:

READ FAST FOREVER ADDR <ram address>

3. Synchronize an oscilloscope to the TRIGGER
OUTPUT sync output on the rear panel of the
9100A/9105A.

4. Study the oscilloscope waveforms at the dynamic
RAM chips.

Once the timing of RAS and CAS (as well as other dynamic
RAM signals) is understood from the above procedure, two
options are available. The first is to troubleshoot directly with a
synchronized oscilloscope, and the second is to write a TL/1
program to automate the procedure.

Dynamic RAM Timing

O Determining If Refresh Signals Are Working

Typical dynamic RAM must access every row address for cell
refresh at least every 2 milliseconds. The ability of the
9100A/9105A to measure frequency min-max is the simplest
tool for troubleshooting the circuitry that implements this
refresh. No matter how the refresh circuitry is designed, the
refresh signals (refresh address, RAS, and related timing
signals) are on a regular schedule of one full cycle in less than 2
milliseconds. For a first-cut characterization of these signals, try
measuring frequency min-max.

For a more precise characterization of the refresh signals, use the
external synchronization capabilities (start, stop, clock) of the
9100A/9105A. Characterize all related signals during the
start/stop interval of one refresh cycle, and then characterize the
signals used for start/stop/clock with frequency min-max.

Dynamic RAM Timing Circuit Example 4.43.

A diagram of read/write timing for the Demo/Trainer UUT's
RAM timing circuit is shown in Figure 4-26. The circuit
schematic is shown in Figure 4-28.

Accessing

To select RAM, U65 and U66 multiplex 16 address lines into
eight lines. The multiplexed address is then latched into the

i RAM chips by two externally applied clock pulses. The first,
: the negative-going edge of the row-address strobe (~RAS),
1 latches the eight row-address bits. The second, the negative-

going edge of the column-address strobe (~CAS), latches the
' eight column-address bits. Timing for RAS and CAS is
1 determined by delay line U60. CAS is a delayed RAS signal; it
goes low 55 nsec after RAS goes low.

4-79

Dynamic RAM Timing

|
|

~CASL | \
~CASU [
|
]

RAO-RA7 'HHNN* Ao XZZZZZX Column Address
RAM-WRITE /NNNNHHHNHN/

DATA (Data Valid

-

L

IF

Read Cycle

J

~CASL

~CASU \I
e 111 P 11 e 1 1

wnsre I TN [
o TN

READY \

||

Write Cycle

Figure 4-26: Dynamic RAM Read/Write Timing

4-80

Dynamic RAM Timing

The 80286 can access upper and lower bytes separately, or
together as a word. RAM is organized as 128K bytes,
addressed from 00000 to 1FFFE. Access is accomplished by
gating ~CASL and ~CASU (U58D). IAO0O (internal buffered
address bit zero) selects DO-D7 and ~IBHE (Internal Buffered
Bus High Enable) selects D8-D15. The low byte is accessed
when JAQO is low. The high byte is accessed when IBHE- is
low. The entire word is accessed when both TAOO and ~IBHE
are low. The 80286 determines the type of access based on the
instruction being executed.

Refreshing
RAM Refresh timing is illustrated in Figure 4-27.

To maintain data, each of the 128 RAS addresses must be
refreshed (or read) every 2 msec. The Demo/Trainer UUT uses
the RAS-only refresh method for this purpose. A RAS-only
refresh cycle asserts only the RAS line to strobe in the refresh
address.

A single Demo/Trainer UUT row refresh occurs every 15 psec.
A complete refresh entails 128 row refreshes, requiring about
1.9 msec.

The RFRQ (Refresh Request) signal both marks the need for a
refresh cycle and increments the refresh address counter U67.
U42 and U43 are used to divide PCLK (4 MHz) by 16 to
produce RFRQ.

RAM refresh and RAM access are mutually exclusive. U61D
insures that a refresh cannot occur if a RAM access is in
progress. Conversely, if a refresh is in progress and the
processor asks for a RAM access, US8B prevents Ready from
being returned, causing the addition of a wait state. The
processor is thus put on hold until the refresh is completed.

4-81

Dynamic RAM Timing

8 MHz CLK
Refresh
Request RFRQ
Refresh
Grant RFGT
Refresh
Address ~RFAE
Enable
Refresh
RAS RRAS
Refresh Address

4-82

Refresh Refresh
Begins Ends

V___

‘ JLL

7

TIITTTTTITTIN rowrsomss XUTTTAACLLLN

Refresh request occurs every 15 psec (67 KHz) and requires 600 ns to complete.

Figure 4-27: RAM Refresh Timing

Dynamic RAM Timing

RAM refresh is performed as follows:

1. If ~RAM s high (no RAM access in progress) and
refresh is being requested, U61D outputs RFGT
(Refresh Grant).

2. RFGT high enables the U44A/U44B state machine.
This circuit times the output of Refresh Address
Enable (RFAE) to U67. After the proper refresh
address setup time, it also enables Refresh RAS
(RRAS) to strobe in the refresh address.

3. After the refresh address is strobed in, RFGT goes
low, allowing the processor access to the RAM.

i Keystroke Functional Test 444.

; 1. Use a 16-pin clip module on side A of I/O module 1 to check
f CAS addresses and select line. Use the the EXEC and I/O
! MOD keys with the commands below for each of the
following parts: U65, U66 and U26. The correct
measurement for each pin is shown in the table below.

EXECUTE UUT DEMO PROGRAM CAS STIM
SHOW I/0O MOD 1 PIN <see table> CAPTURED ...
. RESPONSES

NOTE

1 The SHOW command requires a clip module pin
number rather than a part pin number. This requires
you to translate part pin numbers to clip module pin
numbers (see Appendix B of the Technical User's
Manual). For your convenience, this translation has
1 been done for you in this example, and the results are
: shown in the "I!I0 MOD PIN” column of the
response table in the next figure.

4-83

Dynamic RAM Timing _

SIGNAL PART/PIN I/0 PIN SIGNATURE

] RAO U65-4 4 0140
; RA1 -7 7 02AF
1 RA2 -9 13 0150
: RA3 -12 16 0349
RA4 U66-4 1 00D3

RA5 -7 7 0222

RAG -9 13 0151

RA7 -12 16 0263

RAM-WRITE U26-8 14 0352

2. Use a 16-pin clip module on side A of I/O module 1 to check
RAS addresses. Use the the EXEC and I/O MOD keys with
the commands below for each of the following parts: U65
and U66. The correct measurement for each pin is shown in
the table below.

EXECUTE UUT DEMO PROGRAM RAS STIM
SHOW I/0 MCOD 1 PIN <see table> CAPTURED
. RESPONSES

SIGNAL PART/PIN I/0 PIN SIGNATURE

RAO U65-4 4 02BF
RAl -7 7 0154
RA2 -9 13 0227
RA3 -12 16 01D1
RA4 U66-4 4 022A
RAS =1 7 0150
RA6 -9 13 022B
RA7 -12 16 0114

3. The next step is measuring refresh signals that are active
with no stimulus. Use a 16-pin clip module on side A of I/O
module 1 to test refresh signals on RAQ-RA7. Connect the
external control lines as follows:

Start to U67-9
Stop to U67-9
Clock to U63-8

4-84

Dynamic RAM Timing

Use the the SYNC and I/O MOD keys with the commands
below to measure refresh signals. The correct measurement
for each pin is shown in the table below.

SYNC I/0 MOD 1 TO EXT ENABLE ALWAYS
crock | starT T sTop T

ARM I/O MOD 1 FOR CAPTURE USING SYNC

SHOW I/0 MOD 1 PIN <see table> CAPTURED
RESPONSES

SIGNAL PART/PIN I/0 PIN SIGNATURE

RAO Ues-4 4 968C

RAL -7 7 AFC1

RA2 -9 13 4A2C

RA3 ~12 16 25AF

RA4 U66-4 4 ACDE

RA5 -7 7 122D

o RA6 -9 13 EEA6
' RA7 -12 16 68F8

4. Use a 14-pin clip module on side A of I/O module 1 to check
the select logic. Use the the EXEC and /O MOD keys with
the commands below. The correct measurement for each pin
is shown in the response table in Figure 4-28.

EXECUTE UUT DEMO PROGRAM RAMSELECT1
SHOW I/O MOD 1 PIN 14 CAPTURED RESPONSES

5. Use a 14-pin clip module on side A of I/O module 1 to check
the select logic. Use the the EXEC and I/O MOD keys with
the commands below. The correct measurement for each pin
is shown in the response table in Figure 4-28.

EXECUTE UUT DEMO PROGRAM RAMSELECT2
SHOW I/O MOD 1 PIN 14 CAPTURED RESPONSES
SHOW I/0O MOD 1 PIN 17 CAPTURED RESPONSES

4-85

Dynamic RAM Timing

Keystroke Functional Test

CONNECTION TABLE

TEST ACCESS SOCKET

RESPONSE TABLE

BUS
BUFFER

‘ CLOCK AMD AESET i-|— e

PCLK CLK

READY

READY ADRESS
CIRCUIT DECODE -

4-86

Dynamic RAM Timing

ALATCH

naL:
ADOAESS BUS

|
L
Raz 33 A0
Ra3 33
R B -
Raa 33 asz
i
Ras 33 s
SHa-8
YEV B LT, B
| RaE 33 1 i
i NG 13 46 5ns, | 32 NG Ra? o3 AAS
| LED R4E 33 naG
|
| 75""'70 | R 33 AT
1
- s Tl 1
| L Sn5-2 J
i 2 0/0 15
=7
ALEOO |
RTINS e Y . ALSOO |
[UsE 3
] 1
| | |
| |

Figure 4-28: Dynamic RAM Timing Functional Test

4-87

Dynamic RAM Timing

Programmed Functional Test 445.

The tst_refrsh program is the programmed functional test for the
Dynamic RAM Timing functional block. This program checks
the outputs at U65, US58, U63 and U25 using the gfi test
command. If the gfi test command fails, the abort_test program
is executed and GFI troubleshooting begins. (See the Bus
Buffer functional block for a discussion of the abort test

program).

program tst_refrsh

TrrrrrrrnrprtpttILLILILELLLOLLIILILILLITIO IO LI TI IR EITTI LI LIIOGITIRITITILILIIIIGI I TITLIRLrIrrrrrnn

! FUNCTIONAL TEST of the DYNAMIC RAM REFRESH functional block.

1

! This program tests the DYNAMIC RAM REFRESH functiocnal block of the

! Demo/Trainer. The gfi test command and I/0 module are used to perform
! the test.

1
! TEST PROGRAMS CALLED:

! abort_test (ref-pin) I1f gfi has an accusation

! display the accusation else
! create a gfi hint for the

! ref-pin and terminate the test!
! program {(GFI begins trouble- !
! shooting}. !
{

print "\nlTESTING RAM TIMING & REFRESH Circuit"®
podsetup 'enable ~ready' "on"

if gfi test "U65~1" fails then abort_test ("U65-1")
if gfi test "U66-1" fails then abort_test ("U66-1")

print “RAM TIMING & REFRESH TEST PASSES"
end program

Stimulus Programs and Responses 4.4.6.

Figure 4-29 is the stimulus program planning diagram for the
Dynamic RAM Timing functional block. The ras stim and
cas_stim stimulus programs both perform read and write
accesses to various addresses in RAM. However, the getoffset
and setoffset commands are used to adjust the timing when the
data is measured, so that cas_stim measures data when CAS
addresses are valid and ras_stim measure data when RAS
addresses are valid.

Dynamic RAM Timing

The ramselect] and ramselect2 programs provide stimulus for
measurement of a number of logic outputs. The refsh_addr,
refsh_time, and refsh_u56 programs provide stimulus for
measurement at various ICs that perform the RAM refresh
function. The frequency program measures frequency at a
number of nodes.

4-89

Dynamic RAM Timing

Stimulus Program Planning

U19-6
U24-6
U64-10

Ug0-2,7,14

PROGRAM: RAMSELECT2

EXERCISES THE RAM SELECT LOGIC

MEASUREMENT AT:

us7-12
ugz-8
US58-8,11

CLOCK AND AESET cLs 80286 BUS
MICROPAOCESSORA BUFFER

[PCLEK CLK

READY ADRESS
CIARCUIT OECOOE

4-90

Dynamic RAM Timing

Eng

®
m

e

HaMADY

BOLK

&
RFGT g-/

ALSO2

12] UBa

Figure 4-29: Dynamic RAM Timing Stimulus Program Planning

4-91

Dynamic RAM Timing

program cas stim

TrrrnprrLLLLL LTI LTI LI RTIRIRILIRILILITI IO I NII R R LRI ITIIII R LI RISEILITIITI I LIRS LITILIOIILITISLISLEIIIIII T LIt itett

STIMULUS PROGRAM characterizes CAS address lines.

Stimulus programs and response files are used by GFI to back-trace
from a failing node. The stimulus program must create repeatable UUT
activity and the response file contains the known-good responses for
the outputs in the UUT that are stimulated by the stimulus program.

This stimulus program is one of the programs which creates activity
in the RAM area of the UUT. This stimulus program uses the setoffset
and getoffset commands to adjust the timing to CAS address valid.

TEST PROGRAMS CALLED:

GRAPHICS PROGRAMS CALLED:
{none}

Local Variables Modified:
devname Measurement device

bias Offset value to use
frirrrrrrrrLLLLLILILLLILIIOEROLEELCLCIOIOLITIOLIO LRI LI RILPITLIOTTILITIOILIT T PITPITLITTITTITRITTITPITLTITTITEITTITTITTITTITITLIEIITILTIIILITILIILTYL

! Main Declarations !
LAR SRR U O U O O O T U 2 O T A O O O O O O AN O O O A |

declare numeric bias = 999957

frirrrrrrrrrtrLLLLLLILIOLILIOLIRILIERLILIIILIILII LI IR RIRRILI LI I IO LI I IERRTITILILIIITI R LIIIIIIIIILILILIYL

f Main part of STIMULUS PROGRAM
SRR RN R S A RN RN N R R R R RS R R RS E SRS NS U R RN RS

! Let GFI determine the measurement device.

if {(gfi control) = "yes" then
devname = gfi device

else
devname = "/mocdl"

end if

print "Stimulus Program CAS_ STIM"

(continued on the next page)

Figure 4-30: Stimulus Program (cas_stim)

4-92

Dynamic RAM Timing

! Set addressing mode and setup measurement device.

podsetup 'report power' "off*"

podsetup 'report forcing' *off"

podsetup 'report intr' "off*

podsetup 'report address' “off"

podsetup 'report data' "off"

podsetup ‘report control*® "“off"

setspace space (getspace space "memory", size "word")
reset device devname

sync device devname, mode "pod"

sync device "/pod", mode "data"

! Store calibration offset, set new offset
! Display warning message if setting new offset fails

cal offset = getoffset device devname

if (setoffset device devname, offset bias) = 0 then
fault ‘'setoffset returned a bad status, fatal error'

end if

! Present stimulus to UUT.

arm device devname
read addr $AB54 ! This addr gives complmentary CAS address
read addr $1549A
write addr $1234, data $4320
read addr $55AA
write addr $AB54, data $AARA
read addr $156A8
write addr $AAS4, data $55RA
read addr $1ADS0
write addr $1FFFE, data $FFFE
read addr $2AD4

readout device devname

! Restore calibration offset

setoffset device "/modl", offset cal offset
end cas_stim

Figure 4-30: Stimulus Program (cas_stim) - continued

4-93

Dynamic RAM Timing

STIMULUS PROGRAM NAME: CAS_STIM
DESCRIPTION: SIZE: 199 BYTES

Response Data

Node Learned Async Clk Counter Priority
Signal Src With SIG IVL 1VL Mode Counter Range Pin
U65-4 I/0 MODULE 0140 10 TRANS
U65-17 I/0 MODULE O02AF 10 TRANS
U65-9 I/0 MODULE 0150 10 TRANS
U65-12 I/0 MODULE 03A9 10 TRANS
U6e-7 I/0 MODULE 022A 10 TRANS
U66-9 I/0 MODULE 0151 10 TRANS
U6e6-12 I/0 MODULE 0263 10 TRANS
u66-4 I/0 MODULE 00D3 10 TRANS
u26-8 I/0 MODULE 0352 10 TRANS

Figure 4-31: Response File (cas_stim)

4-94

Dynamic RAM Timing

program ras_stim

trivrrrrrrrrnbrbbLLLLLLLLOLLLOELLLLLO LI EIPIOEELIIEEIPIOLIEILITEILITIOLITITTIGERITRITLITTITTITTITTIOIIITITTISLILEILILILILILLL

! STIMULUS PROGRAM characterizes RAS address lines.

1 1
! stimulus programs and response files are used by GFI to backtrace !
! from a failing node. The stimulus program must create repeatable UUT !
! activity and the response file contains the known-good responses for !
! the outputs in the UUT that are stimulated by the stimulus program. !
1 1
! TEST PROGRAMS CALLED: !
! {none) 1
1 1
! GRAPHICS PROGRAMS CALLED: !
! {none} !
1 1
! Local Variables Modified: !
! devname Measurement device
TrrrrrrrrrrrTITEILIEIE RN RIGRTELILLII LI LIIIISLIRIE I LIIEIIITITILIETIPITITITITIIEITTITITITIIITIIITIITITITIIITITILY

! Main Declarations !
TrirrebbrbsrLELLELLLLILLLOLLEO IO LI LTI TIOGLITYR RN LIOLILIOTIPIT I LITRILTITLITTITTITPITLIITRITLITTITRILTITEITITITTISLTITTIEITLILILIIILITIIIL

declare numeric bias = 999964

L0000 0 1 O A A A A 0 A A A A O A O O O O

! Main part of STIMULUS PROGRAM
SRR R R R R R N R R R R RN RN R R R SRR N NS RO R R RN

! Let GFI determine the measurement device.

if (gfi control) = "yes" then
devname = gfi device

else
devname = "/modl"

end if

print “Stimulus Program RAS STIM"

! Set addressing mode and setup measurement device.

setspace space {getspace space "memory"”, size "word"}
reset device devname

sync device devname, mode “"pod"

sync device "/pod", mode *"addr"

(continued on the next page)

Figure 4-32: Stimulus Program (ras_stim)

4-95

Dynamic RAM Timing

! Store calibration offset, set new offset
! Display warning message if setting new offset fails

cal_offset = getoffset device devname

if (setoffset device devname, offset bias) = 0 then
fault ‘setoffset returned a bad status, fatal error?

end if

! Present stimulus to UUT.

arm device devname
read addr $AB54 ! This addr gives complementary CAS address
read addr $1549A
write addr $1234, data $4320
read addr $55AA
write addr $AB54, data SARRA
read addr $156A8
write addr $AAS54, data $55AA
read addr $1AD50
write addr $1FFFE, data $FFFE
read addr $2AD4
readout device devname

! Restore the calibrated offset value.
setoffset device devname, offset cal offset

end ras stim

Figure 4-32: Stimulus Program (ras_stim) - continued

4-96

Dynamic RAM Timing

STIMULUS PROGRAM NAME: RAS STIM
DESCRIPTION: SIZE: 182 BYTES

Response Data

Node Learned Async Clk Counter Priority
Signal Src With SIG IVL LVL Mode Counter Range Pin
Ue5-4 I/0 MODULE 02BF 10 TRANS
U65-7 I/0 MODULE 0154 10 TRANS
U65-9 I/0 MODULE 022A 10 TRANS
U65-12 I/0 MODULE 01D1 10 TRANS
U66~-4 I/0 MODULE 022A 1¢0 TRANS
U667 I/0 MODULE 0150 10 TRANS
U66-9 I/0 MODULE 022B 10 TRANS
U66-12 I/0 MODULE 0114 10 TRANS

Figure 4-33: Response File (ras_stim)

4-97

Dynamic RAM Timing

program ramselectl

ISR R R O N AR SRS E N

STIMULUS PROGRAM to wiggle RAM select circuitry.

1
1
Stimulus programs and response files are used by GFI to backtrace !
from a failing node. The stimulus program must create repeatable UUT !

! activity and the response file contains the known-good responses for !
! the outputs in the UUT that are stimulated by the stimulus program. !
1

1

1

1

1

! Ramselectl is used to stimulate the RAM select circuitry after the
! decoders. The stimulus is a combination of reads that will ensure
! the decoder and related circuitry is working properly.

1

1

1

1

1

1

1

1

1

1

! !
! TEST PROGRAMS CALLED: !
! recovexr ¢} The 80286 microprocessor has al
! bus controller that is totally!
! separate from the pod. 1In

! some cases the pod can get out!
! of sync with the bus control- !
! ler. The recover program

! resynchronizes the pod and the!
! bus controller. !
1
1
1
i
1
1
1

GRAPHICS PROGRAMS CALLED:
{none}

! Global Variables Modified:

recover_times Reset to Zero
IR R R R R R RN N SRS N R SRR R NN

! FAULT HANDLERS: !
IR N R R e R AR RN R S S S SR R R R R RS S S S R DR RN
handle pod timeout_enabled line

recover (}

end handle

handle pod timeout_recovered
recover (}
end handle

! Let GFI determine the measurement device.

if (gfi control) = "yes" then
devname = gfi device

else
devname = *"/modl"

end if

print "Stimulus Program RAMSELECT1"

(continued on the next page)

Figure 4-34: Stimulus Program (ramselect1)

4-98

Dynamic RAM Timing

. ! Set addressing mode and setup measurement device.

setspace space (getspace space "memory”, size "word")
reset device devname

sync device devname, mode "pod*

sync device "/pod", mode "data"

! Present stimulus to UUT.

arm device devname
read addr $1A5A4
read addr $F0000
read addr $F0000
read addr $5A5A
read addr $F0000
read addr $F0000
write addr $7BDE, data $1234
read addr $F0000
write addr $15A5A, data $9876
read addr $F0000
readout device devname

end program

Figure 4-34: Stimulus Program (ramselect1) - continued

4-99

