
The Alpaca Operating System

for Z-80 based computers

Draft 0.8

Scott “Jerry” Lawrence
alpaca@umlautllama.com

August 22, 2003

Contents

1 Overview 6

1.1 This Document . 6

1.2 Hardware Limitations . 7

1.3 Project Goals . 7

2 System Architecture 8

2.1 Hardware Architecture . 8

2.2 RAM Allocation . 8

2.2.1 Sprite Ram . 10

2.2.2 Task Stacks . 10

2.2.3 Semaphores . 12

2.2.4 Message Queue . 12

2.2.5 Kernel and Task Globals 12

3 System Initialization 13

3.1 Hardware Initialization . 13

3.2 Display Splash Screen . 16

3.3 Initialize Tasks . 17

3.4 Start Runtime . 18

4 Kernel Services and API 22

4.1 RST 00H - Startup/Reboot . 22

4.2 RST 08H - Semaphores . 23

4.3 RST 10H - TBD . 23

4.4 RST 18H - TBD . 23

4.5 RST 20H - TBD . 23

1

August 22, 2003 2

4.6 RST 28H - TBD . 24

4.7 RST 30H - TBD . 24

4.8 RST 38H - VBlank handler . 24

4.9 NMI handler . 24

5 Semaphores 25

5.1 RAM allocation . 25

5.2 Locking a Semaphore . 26

5.3 Releasing a Semaphore . 27

6 Message Queue 28

6.1 Message Format . 28

6.2 Queue Implementation . 28

6.2.1 Queueing a Message . 29

6.2.2 Dequeueing a Message . 29

7 Memory Management 30

7.1 Memory Maintenance Structures 30

7.2 Memory Acquisition (malloc) . 30

7.3 Memory Release (free) . 30

8 Interrupt Service Routine 31

8.1 ISR Overall View . 31

8.2 Task Switching . 34

8.2.1 Design . 34

8.2.2 Task Slot Timing . 38

8.2.3 Task Search / Task List 39

8.2.4 Task System Initialization 39

8.3 Task Slot Management Mechanism 41

8.3.1 Control Flag Check . 41

8.3.2 Task Switch Routine . 43

9 The Core Task 46

9.1 Core Runtime Loop . 46

August 22, 2003 3

10 Task Exec 48

10.1 Task Format Header . 48

10.2 Task Entry Point . 48

10.3 Start Task (exectask) . 49

10.4 Stop Task (kill) . 50

10.5 Sleep for some time (sleep) . 51

11 Task 0: Pac Tiny User Interface (PTUI) 53

11.1 Graphics . 53

11.1.1 Cursor and Wallpaper . 55

11.1.2 Flags . 55

11.1.3 Frame and Dragbar . 56

11.1.4 Widgets . 57

11.1.5 Widget Type Flags . 58

11.2 Implementation . 58

11.3 Header . 59

11.4 Process routine . 59

12 Task 1: TBD Example 60

12.1 Header . 60

12.2 Process routine . 61

13 Task 2: TBD Example 62

13.1 Header . 62

13.2 Process routine . 63

14 Task 3: TBD Example 64

14.1 Header . 64

14.2 Process routine . 65

15 Utility Functions 66

15.1 memset256 - set up to 256 bytes of memory to a certian byte . . 66

15.2 memsetN - set N blocks of memory to a certian byte 67

15.3 cls - clear the screen . 68

15.4 guicls - clear the screen to GUI background 69

15.5 rand - get a random number . 69

August 22, 2003 4

15.6 sine - return the sine . 71

15.7 textcenter - centers text to be drawn 75

15.8 textright - right justifies text to drawn 76

15.9 Screen Region A tools . 78

15.9.1 xy2offsAC - convert X,Y into offsets in screen region A
and C . 78

15.9.2 putstrA - draw a string on region A of the screen 80

15.10Screen Region C tools . 81

15.10.1putstrC - draw a string on region C of the screen 81

15.11Screen Region B tools . 82

15.11.1xy2offsB - convert X,Y into offsets in screen region B . . 82

15.11.2putstrB - draw a string on region B of the screen 85

15.11.3mult8 - 8 bit multiply . 88

16 System Errors 89

17 Appendix 90

A Development Schedule 91

A.1 Phase 1 . 91

A.2 Phase 2 . 91

A.3 Phase 3 . 91

B Hardware memory constants 92

B.1 Pac-Man Configuration . 92

B.1.1 Sprite Hardware . 94

B.1.2 Sound Hardware . 95

B.1.3 Enablers . 96

B.1.4 Extras for Pac . 96

B.2 Pengo Configuration . 96

B.2.1 Sprite Hardware . 98

B.2.2 Sound Hardware . 99

B.2.3 Enablers . 99

B.2.4 Extras for Pengo . 99

August 22, 2003 5

C The .asm File 100

C.1 Pac-Man ASM . 100

C.2 Pengo ASM . 100

C.3 Common Top . 101

C.4 Common Bottom . 102

D Auxiliary Data Files 106

D.1 genroms .ROMS files . 106

D.1.1 Ms. Pac-Man . 106

D.1.2 Pac-Man . 108

D.1.3 Pengo 2u . 109

D.2 turaco .INI file . 110

D.2.1 (Ms.) Pac-Man . 110

D.2.2 Pengo . 112

E Building Alpaca 114

E.1 Required software . 114

E.2 Makefile targets . 115

E.3 The Makefile . 116

F Software License 125

F.1 The Short Version . 125

F.2 The Long Version . 126

Chapter 1

Overview

1.1 This Document

This document describes and implements Alpaca. Alpaca is a multitasking
operating system designed for Pac-Man1 and Pengo2 arcade hardware.

This document contains the all-original source code (Z-80 ASM) to build the
core operating system, as well as a few example tasks. The asm file generated
by this document (alpaca.asm) is commented as well so this document is not
needed to understand what is going on in that file.3 This document can be used
alone or as the reference for the generated .asm file.

Pengo is included as well for the explanations since the basic hardware is iden-
tical to Pac-Man, albeit with its control registers and layout of the hardware
differing slightly. In fact, Pengo hardware is a superset of Pac-Man hardware.
Anything that runs on Pac hardware should run on Pengo. Pengo adds some
other hardware, like the ability to switch graphics banks, as well as some extra
ram, but those details are outside of the scope of this document.

About the only main differences is that the sound and color PROMS are layed
out differently. This will result in colors being ”off”, or the sound not sounding
right.

It should also be noted that all of the graphics used in the graphics roms are
completely original to avoid copyright issues with NAMCO, SEGA, or whomever
currently holds the copyrights for the original program and graphics code.

1Pac-Man is copyright and trademark NAMCO.
2Pengo is copyright and trademark SEGA.
3I know that this goes against the reason for using noweb, but this is meant to be used as

a learning device for others, and I feel that having fully documented asm is important for this
purpose.

6

August 22, 2003 7

1.2 Hardware Limitations

The hardware has some distinct and extreme limitations. The most important
of these limitations are:

• 1 Kb (1024 bytes) of RAM

• 16 Kb (16384 bytes) of ROM (Pac-Man hardware)

• background of 8x8 tiled characters, four colors each (1 Kb)

• 6 floating sprites (16x16 pixels, four colors) (1 Kb)

Ms. Pac-Man adds another 8Kb (8192 bytes) of non-contiguous ROM.

Pengo hardware doubles the RAM to 2 Kb, and has 36 Kb of contiguous ROM,
making for a much more flexible system. Due to the fact that we’re writing this
for Pac hardware primarilly, we will not exploit these advantages within the
kernel of this OS. If we write this for the smaller of the two, then it will work
on both.

1.3 Project Goals

The goals of Alpaca are to provide task management, messaging, basic semaphores,
simple ram management and a graphical user interface for a few tasks concur-
rently running on the arcade machine computer. The number of runnable tasks
will be fixed. This all comes together to form a fully pre-emptive multitasking
operating system can be built on such a tight hardware platform.

I fully realize that there are other multitasking OS’s for the Z80 architecture. I
know that this is not the first, but I highly doubt any other package is as fully
documented as this one.

The design of the architecture is detailed in §2.

The footprint of the OS Kernel is designed to be very small to allow for user
code and data to be as large as possible.

Being that the OS is currently in development, I’m shooting for no more than
1Kb (1024 bytes) of space to be used by the kernel, library functions and data,
allowing for 15Kb (15360 bytes) of program space for applications and games
to be implemented. I’m also trying to keep the number of sprites and tiles
used down to a minimum as well for similar reasons. The OS uses upper and
lowercase character sprites, but this can always be reduced down to just one or
the other to gain back 26 character positions.

Chapter 2

System Architecture

This chapter explains how the kernel and memory of the system are arranged.

2.1 Hardware Architecture

First of all, we’ll start with how the hardware is arranged. If you look at
figure 2.1, you will see the memory map for Pac-Man based games on the left,
and Pengo on the right. Pengo is only really shown as reference since it was
mentioned earlier in this doc. All of the design described here will focus on
Pac-Man hardware.

In a nutshell, there is some ROM on the system, shown in green. There also
are some control registers which allow the program to get input from the user
(joystick, coin switches, etc) which are shown in blue. This group also contains
things like a flag to flip the screen, as well as the watchdog timer.

The watchdog timer is a device that resets the system completely unless it has
been cleared within 16 screen refreshes. This is made for when a game might get
into some unpredicted behavior where it might crash or hang. When the game
gets to that state, it will reboot itself using this mechanism. We will essentially
disable it by clearing it within the interrupt routine which happens once every
screen referesh.

2.2 RAM Allocation

There are three groups of RAM, shown in pink in figure 2.1. These are the screen
color and character RAM, as well as User RAM. The screen color and character
RAM are for drawing things on the screen. The hardware has a character-based
background, where you put the character to draw in the character RAM and
the color to draw it in the color RAM.

8

August 22, 2003 9

0x0000

0x2000

0x4000

0x6000

0x8000

0xA000

0xC000

0xE000

0xFFFF

Common
ROM

Ms Pac/Ponpoko
Extra ROM

Ponpoko
Extra ROM

Screen Character RAM
Screen Color RAM

User RAM
Control Registers

ROM

Screen Character RAM
Screen Color RAM

User RAM
Control Registers

Pac-Man Hardware
Memory Map

Pengo Hardware
Memory Map

Figure 2.1: Hardware memory map

August 22, 2003 10

The other RAM is the User Ram, which is general purpose, for whatever the
program/programmer wants to use it for. The exception is the uppermost 16
bytes, which is used to draw floating sprites on the screen.

Figure 2.2 shows just the User Ram on the system. This shows how Alpaca
uses the ram. It is broken up into 6 sections. This diagram assumes that there
are four tasks concurrently running. More about those in §8.

The sections shown are: (from top to bottom)

• Sprite Ram (16 bytes)

• Task 0 Stack (192 bytes)

• Task 1 Stack (192 bytes)

• Task 2 Stack (192 bytes)

• Task 3 Stack (192 bytes)

• Semaphores (16 bytes)

• Message Queue (64 bytes)

• Kernel and Task Globals (160 bytes)

2.2.1 Sprite Ram

This is a section of RAM that is used by the sprite video hardware. This is
where the positions, colors, sprite numbers and flags are placed by the software
to have the video hardware draw the sprites on the screen.

2.2.2 Task Stacks

Each task will have its own stack pointer and stack. Figure 2.2 shows four task
stacks in the system for up to four tasks running. If we had more ram or a disk
for virtual memory, we could probably increase this to be virtually unlimited,
but for now, we’ll stick to four.

When each task is enabled by the task switcher1 it needs to be within its own
stack frame. Each task thinks that only itself is running. There are some
rudimentary communications methods by which one task can talk to another,
and that is via the Message Queue, which is discussed next. Other than the
Message Queue, the task has no idea if there is one other task, or thirty other
tasks running on the system.

1See §8 for more information.

August 22, 2003 11

Alpaca Kernel Ram Usage Map

Sprite RAM

Kernel and Task Globals

Task 0 Stack

Task 1 Stack

Task 2 Stack

Task 3 Stack

Semaphores

Message Queue

0x4ff0

0x4fff

0x4f30

0x4e70

0x4db0

0x4cf0

0x4c00

0x4ce0

0x4ca0

192 bytes

192 bytes

192 bytes

192 bytes

16 bytes

16 bytes

64 bytes

160 bytes

Figure 2.2: Kernel RAM memory map

August 22, 2003 12

2.2.3 Semaphores

This is the ram where the kernel will keep track of the state of all of the
semaphores that are in use in the system. More about those in §5.

2.2.4 Message Queue

The message queue is a small amount of memory (256 bytes) that contains
rudimentary messages (TBD) that allow for a task to communicate with the
kernel or with other tasks.

More details about the message queue can be found in §6.

2.2.5 Kernel and Task Globals

This section of memory contains all of the variables used by the kernel itself as
well as all of the tasks themselves. Since there is no memory protection at all
all of this has to be cooridinated such that multiple tasks are prevented from
assuming control of RAM that another task or the kernel is using. Obviously,
this cannot be enforced, so it is the obligation of the task to “play nice” with
the other tasks, and stay within its own sandbox.

The memory allocation routines are discussed in §7.

Chapter 3

System Initialization

This chapter describes what the system does as it starts up, and how it initializes
all of the hardware and software modules.

1. Hardware Initialization - zero all ram

2. Splash Screen Display

3. Initialize Tasks

4. Start Runtime

13a 〈.start implementation 13a〉≡
.start:

〈start hardware init 13b〉
〈start initialize tasks 17b〉
〈start enable interrupts 15b〉
〈start splash screen 16〉

This code is used in chunk 102.

3.1 Hardware Initialization

This gets called immediately from the RST 00 call, as defined in §4, which
basically is simply a jp to here at memory location 0x0000, which is where
execution starts when the processor is turned on.

Okay, so the first thing that happens is that we head over to the .startup
block, where lots of things will be setup.

13b 〈start hardware init 13b〉≡
di ; disable processor interrupts

This definition is continued in chunks 14 and 15a.
This code is used in chunk 13a.

13

August 22, 2003 14

We setup the “initial” stack pointer because this will change around once we
get into starting up the multiple threads later.

14a 〈start hardware init 13b〉+≡
ld sp, #(stack) ; setup the initial stack pointer

This code is used in chunk 13a.

Interrupt mode 1 sends all interrupts through vector 0x0038, which is what we
will use for the IRQ timer.

14b 〈start hardware init 13b〉+≡
im 1 ; setup interrupt mode 1

This code is used in chunk 13a.

For the next bit, we will use a memset function which we define in §15.

Let’s clear the watchdog timer, along with all of the other special hardware. All
of the control registers are within the range of 0x5000 through 0x50c0.

14c 〈start hardware init 13b〉+≡
;; clear the special registers

ld a, #0x00 ; a = 0x00

ld hl, #(specreg) ; hl = start of special registers

ld b, #(speclen) ; b = 0xC0 bytes to zero

call memset256 ; 0x5000-0x50C0 will get 0x00

This code is used in chunk 13a.

Now clear the sprite registers...

14d 〈start hardware init 13b〉+≡
;; clear sprite registers

ld a, #0x00 ; a = 0x00

ld hl, #(sprtbase) ; hl = start of sprite registers

ld b, #(sprtlen) ; b = 0x10 16 bytes

call memset256 ; 0x4ff0-0x4fff will get 0x00

This code is used in chunk 13a.

Now clear the screen/video ram...

14e 〈start hardware init 13b〉+≡
;; clear the screen ram

call cls ; clear the screen RAM

This code is used in chunk 13a.

August 22, 2003 15

Next, we will need to clear the user ram. This should look very similar, since it
needs to do something similar. This is a one-time use thing, so we won’t bother
making it a callable method. (You will never need to do this once the system is
running.)

Similalarly to the above, we need to clear 4 blocks of 256 bytes of ram.

15a 〈start hardware init 13b〉+≡
;; clear user ram

ld hl, #(ram) ; hl = base of RAM

ld a, #0x03 ; a = 0

ld b, #0x02 ; b = 2 blocks of 256 bytes to clear

call memsetN ; clear the blocks

This code is used in chunk 13a.

Once we’re done with everything, we need to do some pac-specific setup for the
interrupt hardware on the machine. Basically we just need to set an interrupt
vector and turn on the interrupts externally.

15b 〈start enable interrupts 15b〉≡
;; setup pac interrupts

ld a, #0xff ; fill register ’a’ with 0xff

out (0x00), a ; send the 0xff to port 0x00

ld a, #0x01 ; fill register ’a’ with 0x01

This definition is continued in chunk 15c.
This code is used in chunk 13a.

Now we just need to enable interrupts, both in the cpu and in the external
mechanism.

15c 〈start enable interrupts 15b〉+≡
ld (irqen), a ; enable the external interrupt mechanism.

ei

This code is used in chunk 13a.

August 22, 2003 16

Okay... at this point, we’re ready to do something real on the machine. Every-
thing has been set up to a state that is now known.

3.2 Display Splash Screen

We just want to display a little something while we wait for things to start up.

(80 bytes code, 67 bytes data)

16 〈start splash screen 16〉≡
; Splash screen!

.splash:

call guicls

; draw out the llama!

ld hl, #(llama1) ; top half of llama

ld bc, #0x0d09

ld a, #(LlamaC)

call putstrB

ld hl, #(llama2) ; bottom half of llama

inc c

call putstrB

; draw out the copyright notice and version info

ld hl, #(cprt1)

ld bc, #0x060f

ld a, #0x00 ; black text

call putstrB ; top black border

ld bc, #0x0611

call putstrB ; bottom black border

ld hl, #(cprt1)

ld a, #0x14 ; yellow text

ld bc, #0x0610

call putstrB ; ’Alpaca OS...’

ld hl, #(cprt2)

ld a, #0x0b ; cyan text

ld bc, #0x041e

call putstrB ; ’(C) 2003...

ld hl, #(cprt3)

ld bc, #0x0200

call putstrC ; email addy

This code is used in chunk 13a.

August 22, 2003 17

17a 〈Init splash data 17a〉≡
llama1:

.byte 0x02, (LlamaS+0), (LlamaS+1) ; first row of llama

llama2:

.byte 0x02, (LlamaS+2), (LlamaS+3) ; second row of llama

cprt1:

.byte 0x10

.ascii " Alpaca OS v0.8 "

cprt2:

.byte 0x14

.ascii "/2003 Jerry Lawrence"

cprt3:

.byte 0x18

.ascii "alpacaOS@umlautllama.com"

This code is used in chunk 102.

3.3 Initialize Tasks

This is covered in /S/refsec:tasksysinit. This just serves as a hook into that
section of this document.

17b 〈start initialize tasks 17b〉≡
〈Task System Initialization 39b〉

This code is used in chunk 13a.

August 22, 2003 18

3.4 Start Runtime

Eventually replace this with the task executor.

18 〈start runtime 18〉≡
;; start runtime

; set up sprite 1 as the flying llama

ld ix, #(sprtbase)

ld a, #(LlamaFS*4)

ld 0(ix), a

ld a, #(3) ; decent llama color

ld 1(ix), a

;; set up sprite 2 and 3

ld ix, #(sprtbase)

ld a, #4 ;(hardcoded for now)

ld 2(ix), a

ld 4(ix), a

ld a, #(3) ;0x12

ld 3(ix), a

ld 5(ix), a

foo:

jp overfoo

; fill the screen with a random character

ld hl, #vidram

ld b, #0x02

call rand

and #0x0f ; mask

add #0x30 ; base character

call memsetN

foo42:

; draw a text string

ld hl, #(tstr)

ld bc, #0x0101

ld a, #0x09

call putstrB

ld bc, #0x1c01

ld a, #0x18

call textright

call putstrA

call putstrC

ld hl, #(tstr)

ld bc, #0x0000

ld a, #0x12

call textcenter

August 22, 2003 19

call putstrA

call putstrC

jp foo

tstr:

.byte 13

.ascii "Hello, world!"

; attempt to colorize the background too.

overfoo:

; do a lissajous on the screen with the first sprite (arrow cursor)

;; X

ld ix, #(spritecoords)

ld bc, (timer)

rlc c ; *2

rlc c ; *2

call sine

rrca

and #0x7f

add #0x40

ld 0(ix), a

;; Y

ld bc, (timer)

;rlc c

call cosine

rrca

and #0x7f

add #0x40

ld 1(ix), a

jp foo

; do sprite two now..

;; X

ld ix, #(spritecoords)

ld bc, (timer)

rlc c ; *2

call sine

rrca

and #0x7f

add #0x40

ld 2(ix), a

;; Y

ld bc, (timer)

rlc c ; *2

call cosine

rrca

and #0x7f

add #0x40

August 22, 2003 20

ld 3(ix), a

; and sprite 3 while we’re at it...

;; x

ld ix, #(spritecoords)

ld bc, (timer)

ld d, c

rlc c

rlc c

call sine

rrca

rrca

and #0x3f

add a, d

ld 4(ix), a

;; Y

ld bc, (timer)

rlc c ; *2

rlc c ; *2

rlc c ; *2

call sine

rrca

and #0x7f

add #0x40

ld 5(ix), a

foo2:

ld a, (0x4d00)

add #6

ld b, a

ld a, (0x4d01)

add #8

ld c, a

call xy2offsB

ld ix, #0x4d00

ld a, 2(ix)

inc 0(ix) ; x

bit 4, 0(ix)

jp Z, .over

inc 1(ix)

ld 0(ix), #0x00

bit 4, 1(ix)

jp Z, .over

ld 1(ix), #0x00 ; y

inc 2(ix) ; color

.over:

August 22, 2003 21

push bc

ld bc, #colram

add hl, bc

pop bc

ld (hl), a

jp foo

; try to hug a screen refresh

ld bc, #1

call sleep

jp foo

halt

Root chunk (not used in this document).

Chapter 4

Kernel Services and API

This chapter describes and defines the interface that tasks use to access the
services of the OS kernel.

The services provided by the kernel are provided through the RST calls of the
Z80 processor. There are 8 of these calls, as well as an interrupt routine that
the Z80 provides. The interrupt routine is used by the task switcher, and is
described in §8, however an overview of the 8 RST functions is provided next.

Each of these start 8 bytes off from the previous, so we need to be sure that we
don’t overwrite previous ones, as well as be sure that we start each of them at
the right location. We can fill these with five nops, but instead, we’ll use the
.org directive on following calls. We just need to be sure that we don’t use
more than 8 bytes for each of these.

4.1 RST 00H - Startup/Reboot

This is the startup/reboot call. This will setup the system and restart it appro-
priately according to the initialization routines as defined and implemented in
§3. We will just call that routine from here.

The basic initialization starts off at 0x0000 in ROM. This doubles as the im-
plementation for RST 00. So we need to be sure that we are at 0x0000. This
simply jumps to the .startup routine.

22 〈RST 00 implementation 22〉≡
.org 0x000

.reset00: ; RST 00 - Init

jp .start

This code is used in chunk 102.

22

August 22, 2003 23

4.2 RST 08H - Semaphores

Semaphore control

23a 〈RST 08 implementation 23a〉≡
.org 0x0008

.reset08: ; RST 08 - Semaphore control

ret

This code is used in chunk 102.

4.3 RST 10H - TBD

TBD

23b 〈RST 10 implementation 23b〉≡
.org 0x0010

.reset10: ; RST 10 - TBD

ret

This code is used in chunk 102.

4.4 RST 18H - TBD

TBD

23c 〈RST 18 implementation 23c〉≡
.org 0x0018

.reset18: ; RST 18 - TBD

ret

This code is used in chunk 102.

4.5 RST 20H - TBD

TBD

23d 〈RST 20 implementation 23d〉≡
.org 0x0020

.reset20: ; RST 20 - TBD

ret

This code is used in chunk 102.

August 22, 2003 24

4.6 RST 28H - TBD

TBD
24a 〈RST 28 implementation 24a〉≡

.org 0x0028

.reset28: ; RST 28 - TBD

ret

This code is used in chunk 102.

4.7 RST 30H - TBD

TBD
24b 〈RST 30 implementation 24b〉≡

.org 0x0030

.reset30: ; RST 30 - TBD

ret

This code is used in chunk 102.

4.8 RST 38H - VBlank handler

VBLANK IRQ interrupt. This should never be called directly by a task. We
will simply jump to the .isr function from here, which sits after the below NMI
handler, in ROMspace.

24c 〈RST 38 implementation 24c〉≡
.org 0x0038

.reset38: ; RST 38 - Vblank Interrupt Service Routine

jp .isr

This code is used in chunk 102.

4.9 NMI handler

We’re not using an NMI in this implementation, but we’ll leave this here in case
we want to use it in the future. This sits at 0x0066, 38 bytes from the RST 38
handler. We’re basically wasting this space, but we might come back later and
fill it in or just drop the NMI handler altogether. Regardless, this handler is
here even though it’s not used in Pac/Pengo hardware.

24d 〈NMI implementation 24d〉≡
.org 0x0066

.nmi: ; NMI handler

retn

This code is used in chunk 102.

Chapter 5

Semaphores

This chapter describes how the semaphores are managed in Alpaca.

THESE DON’T SEEM TO WORK PROPERLY YET.

NOTE: We also should disable task switching and/or interrupts when we’re
locking a semaphore.

5.1 RAM allocation

For now, each semaphore is a single byte. We have 16 allocated for the system,
which should be more than enough for four tasks.

These are located at semabase in ram.

25 〈Semaphore RAM 25〉≡
; semaphores

semabase = (ram + 0x0ce0)

semamax = (semabase + 0x0F)

This code is used in chunk 102.

25

August 22, 2003 26

5.2 Locking a Semaphore

An attempt to lock a semaphore that is already locked will result in the task
blocking until the semaphore is released.

We’ll do some rudimentary range limiting on A by anding the passed-in semaphore
number in the accumulator with 0x0F, since we only have 16 semaphores.

We then will load HL with the base address of the semaphore ram, then add in
the above offset onto it.

Once it is released, it will re-set the semaphore, then return to the task.

26 〈Semaphore lock implementation 26〉≡
;; semalock - lock a semaphore

; in a which semaphore to lock

; out -

; mod -

semalock:

; set aside registers

push af

push bc

push hl

; set up the address

and #0x0f ; limit A to 0..15

ld c, a ; c is the current semaphore number

ld b, #0x00 ; make sure that b=0 (bc = 0x00SS)

ld hl, (semabase) ; hl = base address

add hl, bc ; hl = address of this semaphore

.sl2:

bit 1, (hl)

jr NZ, .sl2 ; while it’s set, loop

; set the bit

set 1, (hl) ; lock the semaphore

; restore registers

pop hl

pop bc

pop af

; return

ret

This code is used in chunk 102.

August 22, 2003 27

5.3 Releasing a Semaphore

Releasing a semaphore is even easier than locking one.

Just like the above, we’ll do some rudimentary range limiting on A by anding
the passed-in semaphore number in the accumulator with 0x0F, since we only
have 16 semaphores.

We then will load HL with the base address of the semaphore ram, then add in
the above offset onto it.

Then we simply clear the bit.

We can eventually combine the two of these if we want, to save a few bytes.
Even easier, just after the res we can jump to just after the set in the above
routine... that will save 1 or 2 bytes, but increase obfuscation quite a bit, so we
won’t do that just yet...

27 〈Semaphore release implementation 27〉≡
;; semarel - release a semaphore

; in a which semaphore to release

; out -

; mod -

semarel:

; set aside registers

push af

push bc

push hl

; set up the address

and #0x0F ; limit A to 0..15

ld c, a ; c is the current semaphore number

ld b, #0x00 ; b=0 (bc = 0x000S)

ld hl, (semabase) ; hl = base address

add hl, bc ; hl = address of this semaphore

; clear the semaphore

res 1, (hl) ; clear the bit

; restore registers

pop hl

pop bc

pop af

; return

ret

This code is used in chunk 102.

Chapter 6

Message Queue

This chapter describes how all of the messaging in the system is handled.

6.1 Message Format

TBD

6.2 Queue Implementation

Two pointers are maintained into the Message queue; the head and tail pointers.
There is also a variable which contains the number of messages currently in the
queue. These variables are global for all tasks, and thus the mechanisms for
queueing and dequeueing messages into the system are provided by the kernel.

28 〈Message RAM 28〉≡
; messages

msgbase = (ram + 0x0ca0)

msgmax = (msgbase + 0x003f)

This code is used in chunk 102.

28

August 22, 2003 29

6.2.1 Queueing a Message

We need a way to continue adding messages onto the queue while circulating
around the ram buffer, so we will have a ram buffer that is 256 bytes large, so
that we can just AND the offset with 0x00FF to determine the correct offset into
the message queue.

1. If number of messages is greater than 256, fail.

2. Store the message at the RAM location that the tail pointer references

3. Increment the tail pointer

4. AND the tail pointer with 0x00FF

5. Add the tail pointer with the base of the message queue

6. increment the number of messages

6.2.2 Dequeueing a Message

Similarly, we need a way to pop a message off of the queue, so a similar process
is used.

1. If number of messages is 0, fail

2. Set the message at the head pointer aside

3. Increment the head pointer

4. AND the head pointer with 0x00FF

5. Add the head pointer with the base of the message queue

6. Decrement the number of messages

7. Return the message

Chapter 7

Memory Management

This chapter describes how all of the memory management (allocation and free)
is performed within the system.

7.1 Memory Maintenance Structures

7.2 Memory Acquisition (malloc)

7.3 Memory Release (free)

30

Chapter 8

Interrupt Service Routine

This chapter describes the Interrupt Sercice Routine within the kernel. This
chapter covers the basic Timer as well as the whole task switching routine.

8.1 ISR Overall View

Here is the overall view of the interrupt service routine, which gets called 60
times a second, when the VBLANK happens in the video hardware:

31a 〈Interrupt Service Routine implementation 31a〉≡
.isr:

〈Interrupt disable interrupts and save regs 31b〉
〈Interrupt clear the watchdog 32b〉
〈Interrupt incrememnt global timer 32d〉
〈Interrupt task management 41a〉
〈Interrupt enable interrupts and restore regs 32a〉

This code is used in chunk 102.

We need to disable interrupts, both in the CPU was well as in the external in-
terrupt mechanism. In the process of doing this, we will dirty up a few registers,
so we might as well save them aside in here also.

31b 〈Interrupt disable interrupts and save regs 31b〉≡
di ; disable interrupts (no re-entry!)

push af ; store aside some registers

xor a ; a = 0

ld (irqen), a ; disable external interrupt mechanism

push bc

push de

push hl

push ix

push iy

This code is used in chunk 31a.

31

August 22, 2003 32

Later on, we’ll need to turn interrupts back on, and restore those registers.

32a 〈Interrupt enable interrupts and restore regs 32a〉≡
; restore the registers

pop iy

pop ix

pop hl

pop de

pop bc

ld a, #0x01 ; a = 1

ld (irqen), a ; enable external interrupt mechanism

pop af

ei ; enable processor interrupts

reti ; return from interrupt routine

This code is used in chunk 31a.

Anyway, we’ve still got a 0 loaded into a from the above disabling, so we can
just send that over to the watchdog as well.

Dealing with the watchdog timer in here prevents the user code (tasks) from
having to deal with it at all. The original intention of the watchdog reset
hardware is described in §2.1.

32b 〈Interrupt clear the watchdog 32b〉≡
ld (watchdog), a ; kick the dog

This code is used in chunk 31a.

Also, while in the interrupt routine we want to increment the global timer
variable.

The timer is a value in RAM that gets updated by the IRQ/Vblank routine.
32c 〈Timer RAM 32c〉≡

; timer counter (word)

timer = (ram + 21)

This code is used in chunk 102.

32d 〈Interrupt incrememnt global timer 32d〉≡
ld bc, (timer) ; bc = timer

inc bc ; bc++

ld (timer), bc ; timer = bc

This code is used in chunk 31a.

August 22, 2003 33

We could try to do the timer the following way instead, which is fewer bytes
of asm, but would only increment the lower byte of the timer, which we don’t
want. Our current timer is 16 bits, which means that it is only good for about
18 minutes before it overflowed. If we only used 8 bits, our timer would overflow
after four seconds. Conversely, a 24 bit timer would last for roughly 77 hours,
while a 32 bit timer would last for roughly 821 days... almost three years.

33 〈bad timer 33〉≡
; timer valid for only 4 seconds:

ld hl, #(timer) ; hl = &timer

inc (hl) ; inc the lower 8 bits of the timer.

Root chunk (not used in this document).

August 22, 2003 34

Future changes to the OS will include an updated timer with a 16 bit “epoch
counter” which will give us this 821 day uptime capability, but until then, 18
minutes is probably longer than we’ll go before we crash anyway. ;)

And that’s the basics. Without the task switching, the above is a useful and
fully functional ISR. The sections that follow will add in the task switching.

8.2 Task Switching

The tasks will run in the foreground, just going about their business. These
tasks will be interrupted and switched out by the Task Manager from within
the Interrupt routine. This will control how much time each task gets, managing
their stacks, and all of that fun stuff. Tasks can also give up their remaining
time if they are done, waiting for IO or a timer to complete or what have you.

The task switcher is also the backend for the exec and kill routines, which are
described in §10. That is to say that when a task is instantiated with the exec
command, or a task slot is cleared with the kill command, it really only sets
flags directly from those commands. All of the work of setting up the task to
run in a task slot is handled here in this routine.

The task switcher will also be the backend for the sleep routine, once that is
implemented correctly.

8.2.1 Design

The design described here supports up to four concurrently running tasks, se-
lected from up to 256 tasks available in the program ROM. There can be multiple
instances of the same task running.

Each of the four tasks has its own space in RAM for their own stack and local
variables. Each task gets 0x00c0 or (192) bytes of ram which they can use
for stack and local variables. Being that the tasks will be written in asm, this
should hopefully be more than enough.

There is a variable in RAM, ramBase which points to the base of RAM for
the currently running task. Tasks will need to define their local variables with
reference to this value. Once a task is started, this value will not change.

34 〈Task Constants 34〉≡
stacksize = 192 ; number of bytes per stack

This definition is continued in chunk 38c.
This code is used in chunk 102.

August 22, 2003 35

And here’s where we’ll define the stack ram itself:

35a 〈Task Stack RAM 35a〉≡
; stack regions for the four tasks

stackbottom = (stack-(stacksize*4)) ; 192 bytes (bottom of stack 3)

stack3 = (stack-(stacksize*3)) ; 192 bytes

stack2 = (stack-(stacksize*2)) ; 192 bytes

stack1 = (stack-(stacksize*1)) ; 192 bytes

stack0 = (stack-(0)) ; top of space - sprite ram

This code is used in chunk 102.

This leaves 0x4c00 thru 0x4cff for program/user ram.

We need to be able to access the above values from the program easily, so we’ll
set up a table in ROM.

35b 〈Task Switch ROM 35b〉≡
; table of stack/user RAM usage (stacks, ram)

stacklist:

.word stack0

.word stack1

.word stack2

.word stack3

.word stackbottom

This code is used in chunk 102.

The way this table is used is twofold. To find the initial stack pointer for a task
slot, just index into the stacklist ((task
slot number) * 2) bytes in. To find the value to put in ramBase, just go to
the next item in the array. (((task slot number + 1)
* 2).

Task Slot Indexes

There are two bytes in RAM per slot that the kernel uses to keep track of the
task running in those slots, as well as a way for the task slots to be controlled.
These are the slotIdx and slotCtrl arrays.

The task slot indexes (slotId) show which task is loaded in which task slot.
This is a single byte (8 bit) index into the tasklist, which we will define later.

35c 〈Task RAM 35c〉≡
; which task is in which slot (index into tasklist)

slotIdx = (ram + 0) ; 4 bytes, one per slot

slotIdx0 = (ram + 0)

slotIdx1 = (ram + 1)

slotIdx2 = (ram + 2)

slotIdx3 = (ram + 3)

This definition is continued in chunks 36–38.
This code is used in chunk 102.

August 22, 2003 36

To define these as ’open’, we use the following constant:

36a 〈Task RAM 35c〉+≡
slotOpen = 0xff

This code is used in chunk 102.

Here are the bytes to control each slot. By setting flags in these slots, the ISR
will do different things to the slot.

36b 〈Task RAM 35c〉+≡
; control information for each slot (to be handled by switcher)

slotCtrl = (ram + 4) ; 4 bytes, one per slot

slot0Ctrl = (ram + 4)

slot1Ctrl = (ram + 5)

slot2Ctrl = (ram + 6)

slot3Ctrl = (ram + 7)

This code is used in chunk 102.

And here are the bits we can set for the control:

First of all, if bit 7 is set, we know that the slot is in use.

36c 〈Task RAM 35c〉+≡
C_InUse = 7

This code is used in chunk 102.

If bit 4 is set, then the lower four bits are for extenstion commands. This means
that if a task wants to perform these actions on the slot, it will set bit 4, and
one of the lower three bits.

Bit 0 is the command to kill the task running in that slot. Bit 1 is the com-
mand to start up the task in that slot. Bit 2 is the command to relinquish the
remaining time for this slot. (Force a task switch, regardless of time left for the
slot.)

36d 〈Task RAM 35c〉+≡
C_EXT0 = 4

killSlot = 0

execSlot = 1

sleepSlot = 2

This code is used in chunk 102.

August 22, 2003 37

When a task is switched out, we really only need to store the current stack
pointer for that slot. That stack pointer is stored somewhere in the slotSP
array. NOTE : the stack pointer location for the currently running slot does
not contain valid data. For example, if Slot 2 is active, then slotSP2 contains
invalid data.

37a 〈Task RAM 35c〉+≡
; stack pointers for the four slots

slotSP = (ram + 8) ; 8 bytes, two per slot

slotSP0 = (ram + 8)

slotSP1 = (ram + 10)

slotSP2 = (ram + 12)

slotSP3 = (ram + 14)

This code is used in chunk 102.

When a task is running, we need a way to tell it what the base of ram for it is.
A task will define its variables in ram with reference to this base pointer. The
task can look at ramBase to retrieve this data pointer. For example, a task may
have one word stored in (ramBase) + 0, and a byte stored in (ramBase)
+ 2. This enables tasks to have their own distinct memory blocks so that you
can accurately run the same task code multiple times, without them interfering.

37b 〈Task RAM 35c〉+≡
; Base of ram for the currently active slot.

ramBase = (ram + 16) ; word

This code is used in chunk 102.

We also have one flag which the switcher uses to keep track of the state of the
slots. This is the taskFlag byte.

37c 〈Task RAM 35c〉+≡
; various flags about the task switcher system

taskFlag = (ram + 18) ; byte

This code is used in chunk 102.

The lower four bits will show if a slot is in use. If this bit is set, the slot is in
use.

37d 〈Task RAM 35c〉+≡
slot0use = 0

slot1use = 1

slot2use = 2

slot3use = 3

This code is used in chunk 102.

And the fun one. If the taskActive flag is set, then the task switching system
is running. Clear this, and no switching will take place.

37e 〈Task RAM 35c〉+≡
taskActive = 7

This code is used in chunk 102.

August 22, 2003 38

And of course, the switcher needs to know which slot is the currently active slot.
This is contained in the taskSlot byte.

38a 〈Task RAM 35c〉+≡
; the currently active slot number

taskSlot = (ram + 19) ; byte

This code is used in chunk 102.

8.2.2 Task Slot Timing

Each slot will be alotted a certain amount of time. This will change for each
slot based on if it is “sleeping”, or based on the priority of the task. Or at least,
that’s how it will be in the future. For now, this will be equally distributed,
and requested priorities are ignored. Also, for now, the “sleep” command is
dumb, and will just loop within the specified task. Future implementations of
“sleep” in the task switching system will interrupt other tasks when the sleep
timer expires, to insure that correct timing is given to time-specific tasks.

The switcher will count down the number of ticks that the current slot has
before it needs to switch it out. This value is simply set when a task is switched
in, and decremented subsequent times through the task switching code. This
slotTime value can only be up to 255, which is fine, considering that this is
about four seconds. Generally, each task should only be run for about 5-10 clock
ticks.

38b 〈Task RAM 35c〉+≡
; how many ticks does this slot have before it gets swapped out

slotTime = (ram + 20) ; byte

This code is used in chunk 102.

For phase one, we will always use a predefined time per task. Make this larger
to really show how processing switches from one task to the other. For now,
making this around 4 should be plenty. (4/60ths or 1/15th of a second)

38c 〈Task Constants 34〉+≡
slotTicks = 4 ; number of ticks per slot to start with

This code is used in chunk 102.

August 22, 2003 39

8.2.3 Task Search / Task List

Future versions of the OS might include a routine that scans through ROM to
find available tasks to run them. Thiw will allow for ROMs, cartridges, or banks
to be switched in while the system is live.

In the future, this will produce a 0 terminated list of pointers to the headers in
RAM, but for now, we will just have this so-called tasklist in ROM.

This is just a list of the headers, terminated with a 0

39a 〈Task List 39a〉≡
; list of all tasks available, null terminated

tasklist:

.word t0header

.word t1header

.word t2header

.word t3header

.word 0x0000

This code is used in chunk 102.

8.2.4 Task System Initialization

Now the initialization. This sets it up such that the above ram locations have
been initialized properly, and the task switcher in §8.2 knows that the task slot
is empty.

First, we need clear the flags, to insure that all of the slots are open, and that
the task switcher is disabled.

39b 〈Task System Initialization 39b〉≡
;; initialize tasks

; clear flags

xor a ; a = 0

ld (taskFlag), a ; clear all task flags

This definition is continued in chunks 39 and 40.
This code is used in chunk 17b.

We initialize the stack pointers. This will get replaced in the task switcher, but
for now, we will initialize it in here as well. We’ll just set them all to 0x0000

39c 〈Task System Initialization 39b〉+≡
; clear the dormant stack pointers (set all four to 0x0000)

xor a ; a = 0

ld b, #8 ; 8 bytes (4 one-word variables)

ld hl, #(slotSP) ; base of slot stack pointers

call memset256 ; clear it

This code is used in chunk 17b.

August 22, 2003 40

We set all of the task slots as ”open” in the slot index pointers as well. We do
this by setting the indexes to the special constant, openslot, defined above.

40a 〈Task System Initialization 39b〉+≡
; set all slots as open

ld a, #(slotOpen) ; a = openslot

ld b, #4 ; 4 bytes

ld hl, #(slotIdx) ; base of slot index bytes

call memset256

This code is used in chunk 17b.

Now we need to clear out all of the control bytes as well.

40b 〈Task System Initialization 39b〉+≡
; clear control bytes

xor a ; a = 0

ld b, #4 ; 4 bytes

ld hl, #(slotCtrl) ; base of slot control bytes

call memset256

This code is used in chunk 17b.

We also need to set the taskSlot variable to something.

40c 〈Task System Initialization 39b〉+≡
; clear taskSlot

xor a ; a = 0

ld (taskSlot), a ; taskSlot = 0

This code is used in chunk 17b.

Finally, enable the task switcher.

40d 〈Task System Initialization 39b〉+≡
; enable the task switcher

ld hl, (taskFlag)

set #taskActive, (hl) ; set the flag

This code is used in chunk 17b.

August 22, 2003 41

8.3 Task Slot Management Mechanism

This section defines the basic overall view of the task slot management routines
of the Interrupt Service Routine. The various things that can happen within
this framework are defined in §?? and §??.

First, we need the wrapper which checks to see if the task switching is active.
We simply check the taskActive bit of the taskFlag RAM byte. If the flag
was zero (Z) the bit is not set, and we need to skip over the control flag check
routine and the task switching routine. to the .doneTask label.

41a 〈Interrupt task management 41a〉≡
;; task management stuff

; check for disabled switching

ld hl, (taskFlag)

bit #taskActive, (hl) ; check to see if task switching is on

jr Z, .doneTask ; jp over if switching is disabled

〈Interrupt check control flags 41b〉
〈Interrupt attempt to switch to next task 43〉
.doneTask:

This code is used in chunk 31a.

8.3.1 Control Flag Check

Before we change active task slots, we need to check the control flags for all of
the slots to see if they need to be maintained.

41b 〈Interrupt check control flags 41b〉≡
; check to see if any of the control flags are set

; loop throgh all slots

; check for kill

; check for sleep

; check for start

This code is used in chunk 41a.

August 22, 2003 42

42 〈notes 42〉≡
GUI task should always be running (task 0)

never kill the gui task

for now, the gui task is just a tight loop, slot 0

slotMask = 0x03

current slot (taskSlot) is always valid

taskSlot = 0x4c??

**go to next valid slot:

**Start new task:

move SP into (slotSP)[curr]

set SP to base of slot

push (start point of task)

push (extra registers as 0x00)

move SP into (slotSP)[thisslot]

set this slot as ’in use’

clear slot flags

move (slotSP)[curr] into SP

**Kill,start, relinquish

all require a flags check loop before the main loop

(every time in the ISR, check the flags for all slots)

(tmp) = 0

.loop

check ctrl reg for changes:

if set to kill:

mark slot as not in use

if set to start:

**start new task

inc (tmp)

if (tmp) < 4, jp .loop

if set to relinquish time:

set (slottime) to 1

Root chunk (not used in this document).

August 22, 2003 43

8.3.2 Task Switch Routine

First, we need to wrap the task switcher with a check to see if it is time1 to
switch task slots yet. We simply look at the slotTime byte to see if it is greater
than 0. If it is greater than zero, then we skip over the task switching routine.

If we are still greater than zero, we skip over the task switch. Then we just
reload C with the slot time, decrement it, and store it back in Ram.

We could save a few bytes, and decrement the counter before we do anything,
but that would mean that the above sleep would set the time left to 1 instead
of 0 which seems wrong. For the few extra bytes that it saves us, it’s more
intuitive to do it this way.

43 〈Interrupt attempt to switch to next task 43〉≡
;; check to see if we need to task switch yet

ld hl, #slotTime ; hl = time address

ld c, (hl) ; c = current time for active slot

; check the current value

xor a ; a = 0

cp c ; is C >=0? (Carry set)

jp C, .noSwitch ; still greater than zero?

〈Interrupt switch to next task 44〉
.noSwitch:

; decrement the slot timer

ld hl, #slotTime ; hl = time address

ld c, (hl) ; c = current time for active slot

dec c ; current time --

ld (hl), c ; store the current time

This code is used in chunk 41a.

1...wait for it...

August 22, 2003 44

XXX Need to break this up and document it better XXX

44 〈Interrupt switch to next task 44〉≡
;; change to next dormant task (or this one...)

.tsNext:

ld a, (taskSlot) ; a = current task slot (a is try)

ld e, a ; de = current slot

.tsloop1:

inc a ; ++try

and a, #slotMask ; try &= 0x03

ld hl, #(slotCtrl) ; hl = slotCtrl base

ld c, a

ld b, #0x00 ; bc = task number

add hl, bc ; hl = control for this task

bit #C_InUse, (hl) ; check the flag

jr NZ, .tsloop1 ; if not active, inc again

; compare selected task with "current"

ld a, e ; A = current (again)

cp c ; compare A(curr) and C(try)

jr Z, .overslot1 ; skip this next bit if we’re there

.storeTheSP:

; snag the SP into IX

ld ix, #0x0000 ; zero ix

add ix, sp ; ix = SP

; setup HL as ram location to store SP

ld hl, #(slotSP) ; hl = base of slotSP array

ld d, #0x00 ; de = current slot

rlc e ; = current slot * 2

; bc still contains the try value

add hl, de ; hl = base of current slot SP

push ix ; de

pop de ; = SP

; store the current SP

ld (hl), e ; (hl) =

inc hl

ld (hl), d ; = de (really SP)

.loadInTheSP:

; swap in the new SP

ld d, #0

ld e, c ; de = new slot number

rlc e ; = new slot number * 2

ld hl, #(slotSP) ; hl = base of slotSP array

add hl, de ; hl = base of new slot SP

; snag it and shove it into place

ld e, (hl) ; de =

inc hl

ld d, (hl) ; = new sp

ld h, d ; hl =

ld l, e ; = sp

August 22, 2003 45

ld sp, hl ; new SP!

.setupVars:

; set up reference variables

ld a, c ; a = c

ld (taskSlot), a ; taskSlot = new slot number

; set up ramBase

ld hl, #(stackList) ; hl = base of stackList array

ld e, c ; e = new slot

inc e ; e = new slot + 1

rlc e ; e = (new slot + 1) * 2

ld d, #0 ; de = (new slot + 1) * 2

add hl, de ; = index of this slot + 1 word

ld c, (hl) ; bc =

inc hl

ld b, (hl) ; = new ramBase item

ld hl, #(ramBase)

ld (hl), c ; ramBase =

inc hl

ld (hl), b ; = correct value!

.overslot1:

ld hl, #slotTime ; hl = time address

ld (hl), #slotTicks ; reset the ticks for this task

This code is used in chunk 43.

Chapter 9

The Core Task

This chapter describes the core task. This is the task that deals with doing all
of the things that the ISR doesn’t have time to do, or doesn’t need to do as
often. For example, checking I/O.

This task will eventually be replaced with the GUI task. This task occupies
task slot 0. This leaves 3 task slots to be used by user code.

9.1 Core Runtime Loop

This loop will be run by the OS, and will eventually contain things like timer
and message distribution, as well as joystick movement-to-position as well as
IO-to-click message handlers.

46 〈.coretask implementation 46〉≡
.coretask:

; set up sprite 1 as the flying llama

ld ix, #(sprtbase)

ld a, #(LlamaFS*sprtMult)

ld sprtIndex(ix), a

ld a, #(3) ; decent llama color

ld sprtColor(ix), a

;; set up sprite 2 and 3

ld ix, #(sprtbase)

ld a, #4 ;(hardcoded for now)

ld 2+sprtIndex(ix), a

ld 4+sprtIndex(ix), a

ld a, #(3) ;0x12

ld 2+sprtColor(ix), a

ld 4+sprtColor(ix), a

foo:

46

August 22, 2003 47

; do a lissajous on the screen with the first sprite (arrow cursor)

;; X

ld ix, #(spritecoords)

ld bc, (timer)

rlc c ; *2

rlc c ; *2

call sine

rrca

and #0x7f

add #0x40

ld sprtIndex(ix), a

;; Y

ld bc, (timer)

;rlc c

call cosine

rrca

and #0x7f

add #0x40

ld sprtColor(ix), a

; try to hug a screen refresh

ld bc, #1

call sleep

jp foo

halt

This code is used in chunk 102.

Chapter 10

Task Exec

This chapter describes how a task is started up within the Alpaca system. We
also describe how a task needs to be formated within the ROMspace such that
the kernel can find the tasks, run them and interact with them.

10.1 Task Format Header

This is basically just a simple header that has all of the information that the OS
needs to work with a task. The four byte cookie is there for the task searcher,
which is not currently implemented, but will be in future versions of Alpaca.

• 4 bytes - magic cookie 0xc9 0x4a 0x73 0x4c (’ret’ ’J’ ’s’ ’L’) (for the
searcher)

• 1 byte - task format version 0x01 (version 1)

• 1 byte - requested priority. This is the number of timeslices the task wants
at a particular run between switching out.

• 2 bytes - pointer to an pascal/asciz string for task name. The data this
points to should consist of a byte with the string length in it, followed
immediately by that string, null terminated.

• 2 bytes - task entry point. This is just the address to the task’s main
routine.

10.2 Task Entry Point

This is the routine that the “exec” will jump to when the task is started up.
This routine should not return. It should end with a halt opcode, and possibly
call the kill routine to dequeue itself from the system, and open the slot.

48

August 22, 2003 49

10.3 Start Task (exectask)

This will take in two values. First is a value which specifies which task to run.
This is used as an index into the tasklist array, defined in §8.2.3. Secondly, it
takes in a value which specifies in which slot to run that task.

The name “execute” is really a misnomer. The task will not really be executed
in this section, but rather, the task will be scheduled to be run in a specified
task slot. This task will then be started within the task switcher routine, in
§8.2.

And this is why all of the information about actually starting a task or killing
a task (later on) is covered in §8.

In a nutshell, to start up a task in a slot, we set the task number into A, and the
slot into D. This will set the control register for the specific slot at taskctrl[d]
with the task to run. We just need to be sure that bit 7 of the task number is
clear. We also need to limit the slot to [0..3].

49 〈Exec start implementation 49〉≡
;; execstart - starts up a new task

; in E task number to start

; in D task slot to use (0..3)

; out -

; mod -

execstart:

; save registers we’re using

push af

push de

push bc

push hl

; limit E (task) to 127

res 7, e ; limit task number to 127

; limit D (slot)

ld a, d ; a=d

and #0x03 ; slot is 0,1,2, or 3

ld c, a ; c=a

ld b, #0x00 ; b=0x00, bc = 0x000S

; set the control value

ld hl, #(taskctrl) ; set up the control register

add hl, bc ; hl = base + offset

ld (hl), e ; taskctrl[d] = e

; restore the registers

pop hl

pop bc

pop de

pop af

; return

ret

This code is used in chunk 102.

August 22, 2003 50

10.4 Stop Task (kill)

We also might need a way to stop or “kill” a task. In traditional *NIX systems,
“kill” sends a signal to the program to tell it to stop running. We don’t have
signals (yet), so we will just implement this in the same mindset as the above.
We will just signal the task switcher to remove the references to this task. Again,
this does not happen in here, but rather, over in §8.2.

We basically just set the value in the appropriate

50 〈Exec kill implementation 50〉≡
;; execkill - kills a running task

; in D task slot to kill

; out -

; mod -

execkill:

; save registers we’re using

push af

push de

push bc

push hl

; limit D (slot) and shove it into C

ld a, d ; a=d

and #0x03 ; slot is 0,1,2, or 3

ld c, a ; c=a

ld b, #0x00 ; b=0x00, bc = 0x000S

; set the control value

ld hl, #(taskctrl) ; set up the control register

add hl, bc ; hl = base + offset

ld (hl), #(killslot) ; taskctrl[d] = KILL!

; restore the registers

pop hl

pop bc

pop de

pop af

; return

ret

This code is used in chunk 102.

August 22, 2003 51

10.5 Sleep for some time (sleep)

One thing that is very useful to have is a way for a process to wait for a specified
amount of time. This is accomplished through this “sleep” command. The task
puts the number of ticks to wait (60 per second) into BC then calls this routine.

Future versions might relinquish remaining clock cycles to other tasks by this
communicating somehow to the task switcher, but this one just sits in a loop,
waiting for the clock to be the right value.

But for this version, we will compute the timeout current time +
ticks to wait, and just store it in BC while we loop.

The loop simply loads the current time into HL, then subtracts BC from it. We
then compare it with a sbc, and loop if we’re not there yet.

NOTE that this is not completely accurate. There might be 1-N more ticks
between when this routine returns past when you expect it to return. This is
due to the multitasking nature of /OS. Your timer might be up, but another
task has the processing cycles currently. As soon as we have the cpu again, we
will time out and return.

51 〈Exec sleep implementation 51〉≡
;; sleep - wait a specified number of ticks

; in bc number of ticks to wait

; out -

; mod -

sleep:

; set side some registers

push bc

push af

push hl

;; this is where we would set the flag for

;; the exec system to relinquish the rest of our time.

; compute the timeout into BC

ld hl, (timer) ; hl = timer

add hl, bc ; hl += ticks to wait

push hl ; bc =

pop bc ; = hl

.slp:

; loop until the timeout comes

ld hl, (timer) ; hl = current time

sbc hl, bc ; set flags

jp M, .slp ; if (HL >= BC) then JP .slp2

; restore the registers

pop hl

pop af

pop bc

; return

ret

This code is used in chunk 102.

August 22, 2003 52

Here’s what I had originally wrote. Notice that it keeps the timeout persistant
by keeping it on the stack. This required an extra pop and push for each
iteration through the loop, and also required an extra push and pop wrapped
around that.

The above implementation only uses the stack to move the value of hl over into
bc, and that happens once per call.

52 〈original sleep implementation 52〉≡
;; oldsleep - wait a specified number of ticks

; in bc number of ticks to wait

; out -

; mod -

oldsleep:

; set aside some registers

push bc

push af

push hl

; compute the timeout into HL

ld hl, (timer) ; hl = timer

add hl, bc ; hl += ticks to wait

push hl ; top of stack now contains the timeout value

.slp2:

; loop until the timeout comes

pop hl ; restore hl...

push hl ; ...and shove it back on the stack

ld bc, (timer) ; bc = current time

sbc hl, bc ; set flags

jr P, .slp2 ; if (HL < BC) then JR .slp2

pop hl

; restore the registers

pop hl

pop af

pop bc

; return

ret

Root chunk (not used in this document).

Chapter 11

Task 0: Pac Tiny User
Interface (PTUI)

This chapter implements the GUI for the system called “PTUI”. This task will
be loaded into the system as task number 0.

11.1 Graphics

As you can see in figures 11.1 - 11.4, The GUI widgets, window ornamentations,
and cursor are stored in various locations in the graphics banks. (Use the
checkerboard image to identify the sprite numbers for each of the graphical
elements.

The tile graphics in bank 1, figure 11.1 are pretty basic. It simply contains
alphanumerics for text, as well as the widgets needed for the windows.

The sprite graphics in bank 2, figure 11.3 contain just the cursor that the joystick
will be moving around for the GUI.

These banks are the same for Pac-Man and Pengo. Pengo has one other char-
acter bank, and one other sprite bank, both of which are not used for this task.

Figure 11.1: Graphics Bank 1: Tile Graphics

53

August 22, 2003 54

Figure 11.2: Bank 1 Checkerboard Image

Figure 11.3: Graphics Bank 2: Sprite Graphics

This next set of blocks defines those graphical element reference numbers, as
well as the colors for those elements.

54 〈Task 0 constants 54〉≡
; GUI constants

〈GUI cursor and wallpaper 55a〉
〈GUI flags 55b〉
〈GUI frame and dragbar 56〉
〈GUI widgets 57〉
〈GUI widget types 58a〉

This code is used in chunk 58b.

Figure 11.4: Bank 2 Checkerboard Image

August 22, 2003 55

11.1.1 Cursor and Wallpaper

55a 〈GUI cursor and wallpaper 55a〉≡
; cursor and wallpaper

PcursorS = 0 ; sprite 0 for the cursor

PcursorC = 9 ; color 9 for the cursor

CrosshFS = 1 ; crosshair for window movement

CrosshC = 0x09 ; crosshair color

PwpS = 162 ; wallpaper sprite

PwpC = 0x10 ; wallpaper color 0x13- blues

LlamaC = 0x10 ; llama color (might be the same as PwpC above)

LlamaS = 0x7b ; base of llama tile

LlamaFS = 2 ; llama floating sprite

CprtC = 0x14 ; copyright color 11

This code is used in chunk 54.

11.1.2 Flags

55b 〈GUI flags 55b〉≡
; flags

F_Noframe = 1 ; no frame in render (hard flag)

F_Frame = 2 ; frame in render (hard flag)

F_Dirty = 1 ; frame needs redraw (soft flag)

F_Focus = 2 ; frame is capturing focus currently

This code is used in chunk 54.

August 22, 2003 56

11.1.3 Frame and Dragbar

56 〈GUI frame and dragbar 56〉≡
; -- frame widgets --

; close

PcloseS = 128 ; close widget sprite

PcloseCS = 1 ; close widget selected color (5)

PcloseCU = 0x1e ; close widget unselected color

; raise

PraiseS = 131 ; raise widget sprite

PraiseCS = 1 ; raise widget selected color (5)

PraiseCU = 0xc ; raise widget unselected color

; -- frame ornaments --

PfrmTSel = 9 ; dragbar text selected color 0x14 0xb

PfrmTUns = 1 ; dragbar text unselected color

PfrmCSel = 1 ; frame selected color

PfrmCUns = 0x1e ; frame unselected color

; bottom corners

PSWcornS = 138 ; southwest corner

PSEcornS = 139 ; southeast corner

; top corners

PNWcornS = 1 ; northwest corner 140

PNEcornS = 1 ; northeast corner 141

; top bar

PfN_W = 129 ; top left (145 or 129)

PfN_N = 32 ; top center (146 or 32)

PfN_E = 130 ; top right (147 or 130)

; left bar

PfW_N = 132 ; left top

PfW_W = 133 ; left center

PfW_S = 134 ; left bottom

; right bar

PfE_N = 135 ; right top

PfE_E = 136 ; right center

PfE_S = 137 ; right bottom

; bottom bar

PfS_W = 142 ; bottom left

PfS_S = 143 ; bottom center

PfS_E = 144 ; bottom right

This code is used in chunk 54.

August 22, 2003 57

11.1.4 Widgets

57 〈GUI widgets 57〉≡
; widgets

PwC = 1 ; generic widget color

PwBGS = 127 ; window background sprite

; button

PwbLuS = 148 ; [button left unselected sprite

PwbRuS = 149 ;] button right unselected sprite

; selected button

PwbLsS = 150 ; [[button left selected sprite

PwbRsS = 151 ;]] button right selected sprite

; checkbox

PwcuS = 152 ; [] checkbox unselected sprite

PwcsS = 153 ; [X] checkbox selected sprite

; radio box

PwruS = 154 ; () radio unselected sprite

PwrsS = 155 ; (X) radio selected sprite

; slider

PwsnS = 156 ; === slider notch sprite

PwsbS = 157 ; =|= slider bar sprite

; progress bar

PwpoS = 158 ; progress bar open sprite

PwpfS = 159 ; ### progress bar filled sprite

; spin

PwHsS = 160 ; <> horizontal spin controller

PwVsS = 161 ; ^v vertical spin controller

This code is used in chunk 54.

August 22, 2003 58

11.1.5 Widget Type Flags

58a 〈GUI widget types 58a〉≡
; Widget Types (for the frame-widget table)

W_End = 0 ; end of the widget list

W_Frame = 1 ; window frame (needs to be first)

; frame flags:

FF_Border = 1 ; use a border on the frame

FF_NClose = 2 ; no close button

FF_NRaise = 4 ; no raise button

W_MButton = 2 ; momentary button

W_SButton = 3 ; sticky button

W_Radio = 4 ; radio button (flags is the group number)

W_Check = 5 ; check button

W_SText = 6 ; static text (text is the idx of a string)

W_DText = 7 ; dynamic text (data is idx of ram)

W_DInt = 8 ; dynamic integer (data is idx in the ram)

W_HSlider = 9 ; horizontal slider

W_VSlider = 10 ; vertical slider

W_HSpin = 11 ; horizontal spin

W_VSpin = 12 ; vertical spin

This code is used in chunk 54.

11.2 Implementation

58b 〈Task 0 implementation 58b〉≡
;; Task 0 - PTUI

; constants

〈Task 0 constants 54〉

; header

〈Task 0 header 59a〉

; routines

〈Task 0 process routine 59b〉
This code is used in chunk 102.

August 22, 2003 59

11.3 Header

59a 〈Task 0 header 59a〉≡
t0header:

.byte 0xc9, 0x4a, 0x73, 0x4c ; cookie

.byte 0x01 ; version

.byte 0x04 ; requested timeslices

.word t0name ; name

.word t0process ; process function

t0name:

.byte 6 ; strlen

.asciz "Task 0" ; name

This code is used in chunk 58b.

11.4 Process routine

59b 〈Task 0 process routine 59b〉≡
t0process:

ld hl, #(colram) ; base of color ram

ld a, #0x01 ; clear the screen to 0x00

ld b, #0x04 ; 256*4 = 1k

call memsetN ; do it.

t0p2:

ld hl, #(vidram) ; base of video ram

ld a, #0x41 ; ’A’

ld b, #0x04 ; 256*4 = 1k

call memsetN

ld hl, #(vidram) ; base of video ram

ld a, #0x42 ; ’B’

ld b, #0x04 ; 256*4 = 1k

call memsetN

ld hl, #(vidram) ; base of video ram

ld a, #0x43 ; ’C’

ld b, #0x04 ; 256*4 = 1k

call memsetN

jp t0p2

halt

This code is used in chunk 58b.

Chapter 12

Task 1: TBD Example

This chapter implements a simple task which will be loaded into the system as
task number 1.

60a 〈Task 1 implementation 60a〉≡
;; Task 1 - TBD

; header

〈Task 1 header 60b〉

; routines

〈Task 1 process routine 61〉
This code is used in chunk 102.

12.1 Header

60b 〈Task 1 header 60b〉≡
t1header:

.byte 0xc9, 0x4a, 0x73, 0x4c ; cookie

.byte 0x01 ; version

.byte 0x04 ; requested timeslices

.word t1name ; name

.word t1process ; process function

t1name:

.byte 6 ; strlen

.asciz "Task 1" ; name

This code is used in chunk 60a.

60

August 22, 2003 61

12.2 Process routine

61 〈Task 1 process routine 61〉≡
t1process:

ld hl, #(colram) ; base of color ram

ld a, #0x01 ; clear the screen to blue

ld b, #0x04 ; 256*4 = 1k

call memsetN

ld hl, #(colram) ; base of color ram

ld a, #0x09 ; clear the screen to red

ld b, #0x04 ; 256*4 = 1k

call memsetN

jp t1process

halt

This code is used in chunk 60a.

Chapter 13

Task 2: TBD Example

This chapter implements a simple task which will be loaded into the system as
task number 2.

62a 〈Task 2 implementation 62a〉≡
;; Task 2 - TBD

; header

〈Task 2 header 62b〉

; routines

〈Task 2 process routine 63〉
This code is used in chunk 102.

13.1 Header

62b 〈Task 2 header 62b〉≡
t2header:

.byte 0xc9, 0x4a, 0x73, 0x4c ; cookie

.byte 0x01 ; version

.byte 0x04 ; requested timeslices

.word t2name ; name

.word t2process ; process function

t2name:

.byte 6 ; strlen

.asciz "Task 2" ; name

This code is used in chunk 62a.

62

August 22, 2003 63

13.2 Process routine

63 〈Task 2 process routine 63〉≡
t2process:

ld hl, #(colram) ; base of color ram

ld a, #0x01 ; clear the screen to 0x00

ld b, #0x04 ; 256*4 = 1k

call memsetN

ld hl, #(vidram) ; base of video ram

ld a, #0x61 ; ’a’

ld b, #0x04 ; 256*4 = 1k

call memsetN

ld hl, #(vidram) ; base of video ram

ld a, #0x62 ; ’b’

ld b, #0x04 ; 256*4 = 1k

call memsetN

ld hl, #(vidram) ; base of video ram

ld a, #0x63 ; ’c’

ld b, #0x04 ; 256*4 = 1k

call memsetN

jp t2process

halt

This code is used in chunk 62a.

Chapter 14

Task 3: TBD Example

This chapter implements a simple task which will be loaded into the system as
task number 3.

64a 〈Task 3 implementation 64a〉≡
;; Task 3 - TBD

; header

〈Task 3 header 64b〉

; routines

〈Task 3 process routine 65〉
This code is used in chunk 102.

14.1 Header

64b 〈Task 3 header 64b〉≡
t3header:

.byte 0xc9, 0x4a, 0x73, 0x4c ; cookie

.byte 0x01 ; version

.byte 0x04 ; requested timeslices

.word t3name ; name

.word t3process ; process function

t3name:

.byte 6 ; strlen

.asciz "Task 3" ; name

This code is used in chunk 64a.

64

August 22, 2003 65

14.2 Process routine

65 〈Task 3 process routine 65〉≡
t3process:

ld hl, #(colram) ; base of color ram

ld a, #0x01 ; clear the screen to 0x00

ld b, #0x04 ; 256*4 = 1k

call memsetN

ld hl, #(vidram) ; base of video ram

ld a, #0x78 ; ’X’

ld b, #0x04 ; 256*4 = 1k

call memsetN

ld hl, #(vidram) ; base of video ram

ld a, #0x79 ; ’Y’

ld b, #0x04 ; 256*4 = 1k

call memsetN

ld hl, #(vidram) ; base of video ram

ld a, #0x7a ; ’Z’

ld b, #0x04 ; 256*4 = 1k

call memsetN

jp t3process

halt

This code is used in chunk 64a.

Chapter 15

Utility Functions

This chapter describes and implements a few functions that are usable by tasks,
and have some sort of utility value.

15.1 memset256 - set up to 256 bytes of memory
to a certian byte

Here we will implement a function that sets a region of memory to a certian
value. Load the value into a, the base address into hl, and the number of bytes
into b. We might want to use this in task space, so we’ll make it a utility
function.

66 〈Utils memset256 implementation 66〉≡
;; memset256 - set up to 256 bytes of ram to a certain value

; in a value to poke

; in b number of bytes to set 0x00 for 256

; in hl base address of the memory location

; out -

; mod hl, bc

memset256:

ld (hl), a ; *hl = 0

inc hl ; hl++

djnz memset256 ; decrement b, jump to memset256 if b>0

ret ; return

This code is used in chunk 102.

66

August 22, 2003 67

15.2 memsetN - set N blocks of memory to a
certian byte

Here we will implement a function that sets a region of memory to a certian
value. Load the value into a, the base address into hl, and the number of blocks
of 256 bytes into b. We might want to use this in task space, so we’ll make it a
utility function.

67 〈Utils memsetN implementation 67〉≡
;; memsetN - set N blocks of ram to a certain value

; in a value to poke

; in b number of blocks to set

; in hl base address of the memory location

; out -

; mod hl, bc

memsetN:

push bc ; set aside bc

ld b, #0x00 ; b = 256

call memset256 ; set 256 bytes

pop bc ; restore the outer bc

djnz memsetN ; if we’re not done, set another chunk.

ret ; otherwise return

This code is used in chunk 102.

August 22, 2003 68

15.3 cls - clear the screen

The screen ram is two chunks of ram from 0x4000 through 0x43FF as well as
0x4400 through 0x47FF. We will clear these to black.

We’ll basically nest two loops, both using the djnz. The inner loop happens in
the memset function. The outer loop happens 8 times, since we need to do 256
bytes 8 times. (djnz only looks at 8 bits of register ’b’.)

68 〈Utils cls implementation 68〉≡
;; cls - clear the screen (color and video ram)

; in -

; out -

; mod -

cls:

push hl ; set aside some registers

push af

push bc

ld hl, #(vidram) ; base of video ram

ld a, #0x00 ; clear the screen to 0x00

ld b, #0x08 ; need to set 256 bytes 8 times.

call memsetN ; do it.

pop bc ; restore the registers

pop af

pop hl

ret ; return

This code is used in chunk 102.

August 22, 2003 69

15.4 guicls - clear the screen to GUI background

Basically, this will just do a cls, but it will draw the textured background to
the screen insteas of just leaving it blank. The tiles to use for this are defined
in the task0 definition, in §11.1.1.

Due to the fact that we’re going to be using a different value for the tile and
color, we need to have distinct, seperate loops for the color ram and video ram,
unfortunately.

69a 〈Utils guicls implementation 69a〉≡
;; guicls - clear the screen to the GUI background

; in -

; out -

; mod -

guicls:

push hl ; set aside some registers

push af

push bc

; fill the screen with the background color

ld hl, #(colram) ; color ram

ld a, #(PwpC) ; color

ld b, #0x04 ; 4 blocks

call memsetN

; fill the screen with the background tile

ld hl, #(vidram) ; character ram

ld a, #(PwpS) ; background tile

ld b, #0x04 ; 4 blocks

call memsetN

pop bc ; restore the registers

pop af

pop hl

ret ; return

This code is used in chunk 102.

15.5 rand - get a random number

This function returns a pseudorandom number in register A.

We need a byte for persistance, to get the previous Random number we gave
out:

69b 〈Rand RAM 69b〉≡
; random assistance register (byte)

randval = (ram + 23)

This code is used in chunk 102.

August 22, 2003 70

The algorithm I’m doing here is just a standard mutilating calculation like so:

70a 〈calculation 70a〉≡

new random number = current timer + sine(last random number) + R

Root chunk (not used in this document).

It’s just something simple that we can replace with something better later.
In the meantime, it should give something reasonably random, although not
decently distributed throughout [0..256].

We also will include the memory refresh register, since that one is constantly
changing. If our application used sound, and we’re on Pac hardware, we could
also add in the accumulator registers from the sound hardware as well.

We can pull out the items between .r01 and .r02 if we’ve determined that the
R register adds nothing useful to the randomization of the system

70b 〈Utils rand implementation 70b〉≡
;; rand - get a random number

; in -

; out a random number 0..256

; mod flags

rand:

; set aside registers

push hl

push bc

; compute a random number

ld hl, (randval) ; hl = last random number

push hl

pop bc ; bc = hl

call sine ; a = sine (c)

ld c, a ; c = sine (last value)

.r01:

ld a, r ; a = R

add a, c ; a += sine(last value)

ld c, a ; c = sine(last value) + R

.r02:

add hl, bc ; rnd += sin (last value) + R

ld bc, (timer)

add hl, bc ; rnd += timer

ld (randval), hl ; hl = computed random (rnd)

ld a, (randval) ; a = rnd

; restore registers

pop bc

pop hl

; return

ret

This code is used in chunk 102.

August 22, 2003 71

15.6 sine - return the sine

This function returns the modified sine of the angle passed in in register C. It
returns this value in register A.

To simplify this, instead of expecting rotational angle on a range of [0..360]
degrees, we will instead expect the rotational angle to be on a range of 256 units
per complete circle. We will also return a value from [-127..127] instead of
[-1..1] since we can’t work with decimal values easily. This should be good
enough for most uses.

71 〈Utils sine implementation 71〉≡
;; sine - get the sine of a

; in c value to look up

; out a sine value 0..256

; mod -

sine:

; set aside registers

push hl

push bc

; look up the value in the sine table

ld hl, #(.sinetab) ; hl = sinetable base

ld b, #0x00 ; b = 0

add hl, bc ; hl += bc

ld a, (hl) ; a = sine(c)

; restore registers

pop bc

pop hl

; return

ret

This code is used in chunk 102.

August 22, 2003 72

Since we’re here, we might as well throw in a cosine function as well. We just
add 0x7f onto the angle passed in via C, and look up that value in the sine table
using the above method.

72 〈Utils cosine implementation 72〉≡
;; cosine - get the cosine of a

; in c value to look up

; out a cosine value 0..256

; mod f

cosine:

; set aside registers

push bc

; add 180 degrees, call sine

ld a, #0x3f

add a, c

ld c, a

call sine

; restore registers

pop bc

; return

ret

This code is used in chunk 102.

August 22, 2003 73

73 〈Utils sine table 73〉≡
.sinetab:

.byte 0x80, 0x83, 0x86, 0x89, 0x8c, 0x8f, 0x92, 0x95

.byte 0x99, 0x9c, 0x9f, 0xa2, 0xa5, 0xa8, 0xab, 0xae

.byte 0xb1, 0xb4, 0xb6, 0xb9, 0xbc, 0xbf, 0xc2, 0xc4

.byte 0xc7, 0xc9, 0xcc, 0xcf, 0xd1, 0xd3, 0xd6, 0xd8

.byte 0xda, 0xdc, 0xdf, 0xe1, 0xe3, 0xe5, 0xe7, 0xe8

.byte 0xea, 0xec, 0xee, 0xef, 0xf1, 0xf2, 0xf3, 0xf5

.byte 0xf6, 0xf7, 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd

.byte 0xfd, 0xfe, 0xfe, 0xff, 0xff, 0xff, 0xff, 0xff

.byte 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xfe, 0xfd

.byte 0xfd, 0xfc, 0xfb, 0xfb, 0xfa, 0xf9, 0xf8, 0xf7

.byte 0xf5, 0xf4, 0xf3, 0xf1, 0xf0, 0xee, 0xed, 0xeb

.byte 0xe9, 0xe8, 0xe6, 0xe4, 0xe2, 0xe0, 0xde, 0xdb

.byte 0xd9, 0xd7, 0xd5, 0xd2, 0xd0, 0xcd, 0xcb, 0xc8

.byte 0xc6, 0xc3, 0xc0, 0xbd, 0xbb, 0xb8, 0xb5, 0xb2

.byte 0xaf, 0xac, 0xa9, 0xa6, 0xa3, 0xa0, 0x9d, 0x9a

.byte 0x97, 0x94, 0x91, 0x8e, 0x8b, 0x87, 0x84, 0x81

.byte 0x7e, 0x7b, 0x78, 0x74, 0x71, 0x6e, 0x6b, 0x68

.byte 0x65, 0x62, 0x5f, 0x5c, 0x59, 0x56, 0x53, 0x50

.byte 0x4d, 0x4a, 0x47, 0x44, 0x42, 0x3f, 0x3c, 0x39

.byte 0x37, 0x34, 0x32, 0x2f, 0x2d, 0x2a, 0x28, 0x26

.byte 0x24, 0x21, 0x1f, 0x1d, 0x1b, 0x19, 0x17, 0x16

.byte 0x14, 0x12, 0x11, 0x0f, 0x0e, 0x0c, 0x0b, 0x0a

.byte 0x08, 0x07, 0x06, 0x05, 0x04, 0x04, 0x03, 0x02

.byte 0x02, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00

.byte 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x02

.byte 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09

.byte 0x0a, 0x0c, 0x0d, 0x0e, 0x10, 0x11, 0x13, 0x15

.byte 0x17, 0x18, 0x1a, 0x1c, 0x1e, 0x20, 0x23, 0x25

.byte 0x27, 0x29, 0x2c, 0x2e, 0x30, 0x33, 0x36, 0x38

.byte 0x3b, 0x3d, 0x40, 0x43, 0x46, 0x49, 0x4b, 0x4e

.byte 0x51, 0x54, 0x57, 0x5a, 0x5d, 0x60, 0x63, 0x66

.byte 0x6a, 0x6d, 0x70, 0x73, 0x76, 0x79, 0x7c, 0x7f

This code is used in chunk 102.

August 22, 2003 74

That table was generated with this perl snippet:
74 〈sinegen.pl 74〉≡

$across = 8; # number to print horizontally

$current = $across +1;

print ".sinetab:";

for ($x=0 ; $x < 256 ; $x++)

{

$rads = ($x/255.0) * 6.283185307;

#printf "%3d %f\n",$x, 128 + 128 *(sin $rads);

$value = 128 + 128 *(sin $rads);

if ($current >= $across)

{

print "\n\t.word\t";

$current = 0;

}

$current ++;

printf "0x%02x", $value;

if (($x < 255) && ($current < $across))

{

printf ", ";

}

}

print "\n";

Root chunk (not used in this document).

August 22, 2003 75

15.7 textcenter - centers text to be drawn

This function modifies the coordinates in BC based on the pascal string contained
in HL. It simply replaces the value in B with a value that will result in the text
being centered on the screen.

75 〈Utils textcenter implementation 75〉≡
;; textcenter - adjust the x ordinate

; in hl pascal string

; in b x ordinate

; in c y ordinate BC -> 0xXXYY

; out -

; mod b adjusted for center

hscrwide = 14

textcenter:

; set aside registers

push af

; halve the width

ld b, (hl) ; b = length of text

jp NC, .tcrr ; make sure carry is cleared

ccf

.tcrr:

rr b ; b = half of text length

; add on the center position

ld a, #hscrwide ; a = screenwidth/2

sub b ; a = screenwidth/2 - textlength/2

ld b, a ; b = that result

; restore registers

pop af

; return

ret

This code is used in chunk 102.

August 22, 2003 76

15.8 textright - right justifies text to drawn

This function modifies the coordinates in BC based on the pascal string contained
in HL. It simply replaces the value in B with a value that will result in the text
being right justified off of that location.

76 〈Utils textright implementation 76〉≡
;; textright - adjust the x ordinate

; in hl pascal string

; in b x ordinate

; in c y ordinate BC -> 0xXXYY

; out -

; mod b adjusted for right

textright:

; set aside registers

push af

; halve the width

ld a, b ; a = start location

ld b, (hl) ; b = length of text

sub b ; a = start loc - length

ld b, a ; b = new position

; restore registers

pop af

; return

ret

This code is used in chunk 102.

August 22, 2003 77

Figure 15.1: Video Screen Layout

August 22, 2003 78

15.9 Screen Region A tools

Screen region A is the topmost two rows of characters of the screen. The charac-
ters are addressed right-to-left for the top row, then right-to-left for the second
row. These are shown in figure 15.1 as the topmost two purple rows “E” and
“F”.

We now provide routines for converting XY for this region into offsets into the
color or video ram, as well as routines for drawing out text.

15.9.1 xy2offsAC - convert X,Y into offsets in screen re-
gion A and C

Since regions A and C are pretty muc hthe same thing, we will use the same
function for both regions. We will define the bottom two rows (“A” and “B”
in figure 15.1) as rows 2 and 3, while the top two rows, “E” and “F” will be
defined as rows 0 and 1.

78 〈Utils acoffs table 78〉≡
.acoffs:

.word 0x03dd ; Region A row ’E’ -> AC row 0

.word 0x03fd ; Region A row ’F’ -> AC row 1

.word 0x001d ; Region C row ’A’ -> AC row 2

.word 0x003d ; Region C row ’B’ -> AC row 3

This code is used in chunk 102.

August 22, 2003 79

To make the decoding a little easier, we first will define this table of four offset
addresses. To decode the offset from the XY position passed in via BC, we use
C as the index into this table, then we just add on B to that, and return the
computed value in HL.

79 〈Utils xy2offsAC implementation 79〉≡
;; xy2offAC - get the vid/color buffer offset of the X Y coordinates

; in b x ordinate

; in c y ordinate BC -> 0xXXYY

; out hl offset

; mod -

xy2offsAC:

; set aside registers

push bc

push de

push ix

; generate the X component into DE

ld d, #0x00 ; d = 0

ld e, b ; e = X

; get the base offset

ld ix, #(.acoffs) ; ix = offset table base

; add in the y component. (BC)

ld b, #0x00 ; zero B (top of BC)

rlc c ; y *= 2

add ix, bc ; offset += index

; retrieve that value into HL

ld b, 1(ix)

ld c, 0(ix)

push bc

pop hl ; hl = acroffs[x]

; subtract out the X component.

sbc hl, de ; hl -= DE hl = acoffs[y]-x

; restore registers

pop ix

pop de

pop bc

; return

ret

This code is used in chunk 102.

August 22, 2003 80

15.9.2 putstrA - draw a string on region A of the screen

Since regions A and C are pretty much the same thing, just with different start
positions, we will have hooks in here for C to jump into.

80 〈Utils putstrA implementation 80〉≡
;; putstrA - get the vid/color buffer offset of the X Y coordinates

; in hl pointer to the string (asciz)

; in b x position

; in c y position

; in a color

; out -

; mod -

putstrA:

; set aside registers

push bc

.psChook: ; this is where putstrC joins in...

push hl

push de

push ix

push iy

; compute the offsets

push hl ; set aside the string pointer

call xy2offsAC

push hl

pop ix ; move the offset into ix (char ram)

push hl

pop iy ; move the offset into iy (color ram)

ld de, #(vidram) ; base of video ram

add ix, de ; set IX to appropriate location in vid ram

ld de, #(colram) ; base of color ram

add iy, de ; set IY to appropriate location in color ram

; prep for the loop

pop hl

ld b, (hl) ; b is the number of bytes (pascal string)

inc hl ; HL points to the text now

.pstra1:

; loop for each character

ld c, (hl) ; c = character

ld (ix), c ; vidram[b+offs] = character

ld (iy), a ; colram[b+offs] = color

; adjust pointers

inc hl ; inc string location

dec ix ; dec char ram pointer

dec iy ; dec color ram pointer

djnz .pstra1 ; dec b, jump back if not done

; restore registers

pop iy

pop ix

pop de

August 22, 2003 81

pop hl

pop bc

; return

ret

This code is used in chunk 102.

15.10 Screen Region C tools

Since region C is addressed similarly to region A, we will discuss that next
instead of going into region B. In fact, this section leverages heavily on the
previous section.

Screen region C is the bottommost two rows of characters of the screen. The
characters are addressed right-to-left for the second-to-bottom row, then right-
to-left for the bottom row. These are shown in figure 15.1 as the bottommost
two purple rows “A” and “B”.

We now provide routines for drawing out text.

15.10.1 putstrC - draw a string on region C of the screen

Since regions A and C are pretty much the same thing, just with different start
positions, we simply massage the input position data, and jump into the above
putstrA function.

81 〈Utils putstrC implementation 81〉≡
;; putstrC - get the vid/color buffer offset of the X Y coordinates

; in hl pointer to the string (asciz)

; in b x position

; in c y position

; in a color

; out -

; mod -

putstrC:

; set aside registers

push bc

inc c ; just change indexing 0,1 into 2,3

inc c

jp .psChook ; jump back into putstrA

This code is used in chunk 102.

August 22, 2003 82

15.11 Screen Region B tools

Screen Region B is the main body of the screen. It’s characters are addressed
from top-to-bottom for the rightmost column, then top-to-bottom for the col-
umn just to the left of that, and so on for 28 columns. These are shown in figure
15.1 as the center blue area, starting at column “C”, then “D”.

We now provide routines for converting XY for this region into offsets into the
color or video ram, as well as routines for drawing out text.

15.11.1 xy2offsB - convert X,Y into offsets in screen re-
gion B

Since a lot of what we’re doing involves interacting with the screen, we might as
well have a method in here for converting X,Y (from the upper left) to screen
offsets. The offset generated by this can be added to either the base video or
color ram to determine screen locations in RAM.

Basically, you load B with the X component, and C with the Y component. You
then call this utility, and the correct offset gets loaded into HL. You can then
add in the base for video or color ram to draw your characters to the screen, or
retrieve information from the screen.

It should be noted that the location X,Y == (0,0) is in the upper left of the
screen, two character tiles from the top of the visible area of the screen, due to
the existence of Region A.

82 〈Utils xy2offsB implementation 82〉≡
;; xy2offsB - get the vid/color buffer offset of the X Y coordinates

; in b x ordinate

; in c y ordinate BC -> 0xXXYY

; out hl offset

; mod -

xy2offsB:

; set aside registers

push af

push bc

push de

push ix

; set aside Y for later in DE

ld d, #0x00 ; d = 0

ld e, c ; shove Y into E

; get the base offset

ld ix, #(.scroffs) ; ix = offset table base

; add in X component

;; XXXXJJJJJ This can probably be shortened if we

;; drop the range check.

ld a, b ; shove X into A

and a, #0x1f ; make sure X is reasonable

August 22, 2003 83

rlc a ; x *= 2

ld c, a ; c = offset * 2

ld b, #0x00 ; b = 0

add ix, bc ; ix += bc

; retrieve that value into HL

ld b, 1(ix)

ld c, 0(ix)

push bc

pop hl ; hl = scroffs[x]

; add in Y component

add hl, de ; hl += DE hl = scroffs[x]+y

; restore registers

pop ix

pop de

pop bc

pop af

; return

ret

This code is used in chunk 102.

This looks into the following table of screen offsets, which define where each
column (left-to-right) starts in the color or video buffers. These just need to
be added on to either of those buffer base addresses, then simply add in the y
position.

83 〈Utils scroffs table 83〉≡
.scroffs:

.word 0x03a0, 0x0380, 0x0360, 0x0340

.word 0x0320, 0x0300, 0x02e0, 0x02c0

.word 0x02a0, 0x0280, 0x0260, 0x0240

.word 0x0220, 0x0200, 0x01e0, 0x01c0

.word 0x01a0, 0x0180, 0x0160, 0x0140

.word 0x0120, 0x0100, 0x00e0, 0x00c0

.word 0x00a0, 0x0080, 0x0060, 0x0040

This code is used in chunk 102.

August 22, 2003 84

That table was generated with this perl snippet:

84 〈scroffs.pl 84〉≡
#!/usr/bin/perl

$wide = 28;

$tall = 36;

screen offset = .scroffs[x] + y;

$across = 4;

$current = $across +1;

printf ".scroffs:";

for ($x=0 ; $x<$wide ; $x++)

{

if($current >= $across)

{

print"\n\t.byte\t";

$current = 0;

}

$current++;

printf "0x%04x", (928 - ($tall-4) * $x);

if(($x < $wide) && ($current < $across))

{

printf ", ";

}

}

printf "\n";

Root chunk (not used in this document).

August 22, 2003 85

15.11.2 putstrB - draw a string on region B of the screen

This is just a simple routine to draw out a pascal string to the screen within the
vertical scanning region. (ie not the top two or bottom two rows of the screen,
which are addressed differently.

Simply load the color into A, the X,Y position into B,C, and the pointer to the
pascal string into HL.

In a single loop, it draws out the character and sets the color for the text it is
drawing.

It should be noted that there are no safeguards around this, so if your text
is longer than 28 characters wide, it will get truncated, and might overwrite
program RAM, which is a very bad thing to do.

The code simply sets up the char and color pointers into IX and IY, and incre-
ments them by -32 for each iteration through the loop, while at the same time,
it draws the correct character and color through those pointers.

85 〈Utils putstrB implementation 85〉≡
;; putstrB - get the vid/color buffer offset of the X Y coordinates

; in hl pointer to the string (asciz)

; in b x position

; in c y position

; in a color

; out -

; mod -

offsadd = -32

putstrB:

; set aside registers

push hl

push bc

push de

push ix

push iy

push hl

; compute the offsets

call xy2offsB ; hl = core offset

push hl

pop ix ; move the offset into ix (char ram)

push hl

pop iy ; move the offset into iy (color ram)

ld de, #(vidram) ; base of video ram

add ix, de ; set IX to appropriate location in vid ram

ld de, #(colram) ; base of color ram

add iy, de ; set IY to appropriate location in color ram

; prep for the loop

pop hl

ld b, (hl) ; b is the number of bytes (pascal string)

inc hl ; HL points to the text now

ld de, #offsadd ; set up the column offset

August 22, 2003 86

.pstrb1:

; loop for each character

ld c, (hl) ; c = character

ld (ix), c ; vidram[b+offs] = character

ld (iy), a ; colram[b+offs] = color

; adjust pointers

inc hl ; inc string location

add ix, de ; add in offset into char ram

add iy, de ; add in offset into color ram

djnz .pstrb1 ; dec b, jump back if not done

; restore registers

pop iy

pop ix

pop de

pop bc

pop hl

; return

ret

This code is used in chunk 102.

August 22, 2003 87

Here’s an older implementation, which did more stack pushing and popping. It
is 54 bytes long, and uses two loops to draw the text. One to draw the text,
and one to draw the color.

The previous routine is 47 bytes long, and does it all within one loop.

87 〈Utils 54 byte putstr implementation 87〉≡
;; putstr - get the vid/color buffer offset of the X Y coordinates

; in iy pointer to the string (asciz)

; in b x position

; in c y position

; in d color

; out -

; mod -

offsadd = -32

putstr:

; set aside registers

push hl

push af

push bc

push iy

push de

; retrieve the offset

call xy2offsB ; hl = core offset

push hl ; store it on the stack

pop hl

push hl

ld de, #(vidram) ; base of video ram

add hl, de ; set HL to appropriate location in vid ram

; draw out the string

ld de, #offsadd ; setup the column offset

ld b, (iy) ; b is the number of bytes (pascal string)

.pstr1:

inc iy ; iy is now the string offset

ld a, (iy) ; a contains a character to draw

ld (hl), a ; send it to the screen

add hl, de ; add in the offset to the screen

djnz .pstr1 ; dec b, jump back if not done

; set the color

pop hl ; restore offset value

ld de, #(colram) ; base of color ram

add hl, de ; set HL to appropriate location in color ram

pop de ; restore the color info

ld a, d

; draw up the color

pop iy ; restore the string pointer (for length)

ld b, (iy) ; b is the number of bytes (pascal string)

ld de, #offsadd ; setup the column offset

.pstr2:

August 22, 2003 88

ld (hl), a ; fill in the color

add hl, de ; add in the offset to the screen

djnz .pstr2 ; dec b, jump back if not done

; restore registers

pop bc

pop hl

pop af

; return

ret

Root chunk (not used in this document).

15.11.3 mult8 - 8 bit multiply

88 〈mult8 protocode 88〉≡
HL=H*E

LD L, 0

LD D, L ; L = 0 and D = 0

LD B, 8

MULT: ADD HL, HL

JR NC, NOADD

ADD HL, DE

NOADD: DJNZ MULT

Root chunk (not used in this document).

Chapter 16

System Errors

This chapter describes how system errors are handled in Alpaca.

The System error routines are formatted similarly to the task routines. When
the kernel finds an error during its interrupt routine, it will push the correct
address for the error routine then return from the interrupt handler.

Each error routine should disable interrupts, clear the watchdog timer, and draw
some kind of informative information on the screen for the user to see.

Errors are currently unimplemented.

89

Chapter 17

Appendix

90

Appendix A

Development Schedule

The development cycles for Alpaca have been broken down into a few phases.
Each of the phases will be completed before then next one will be started.

A.1 Phase 1

• task startup with hardcoded entry points

• task switching with hardcoded priorites/delays

• init and process routines for tasks

A.2 Phase 2

• task exec with ROM Task searcher

• simple message queue (not useful)

A.3 Phase 3

• task switching with wait(0), requested priorities

• more advanced message queue

• shutdown routine for tasks

• perhaps allow for multiple execs of the same process (this collides with
the searcher’s functionality)

91

Appendix B

Hardware memory
constants

This chapter lists off all of the addresses for all of the bits of hardware that we
will have to deal with. This chapter includes information about Pac-Man as
well as Pengo hardware.

B.1 Pac-Man Configuration

92a 〈PAC Global Constants 92a〉≡
stack = 0x4ff0

This definition is continued in chunks 92–96.
This code is used in chunk 100a.

92b 〈PAC Global Constants 92a〉+≡
vidram = 0x4000

colram = 0x4400

ram = 0x4c00

dsw0 = 0x5080

in1 = 0x5040

in0 = 0x5000

specreg = 0x5000

speclen = 0x00C0

sprtbase = 0x4ff0

sprtlen = 0x0010

This code is used in chunk 100a.

92

August 22, 2003 93

The bits for player 1 joystick
93a 〈PAC Global Constants 92a〉+≡

p1_port = in0

p1_up = 0

p1_left = 1

p1_right = 2

p1_down = 3

This code is used in chunk 100a.

The bits for player 2 joystick
93b 〈PAC Global Constants 92a〉+≡

p2_port = in1

p2_up = 0

p2_left = 1

p2_right = 2

p2_down = 3

This code is used in chunk 100a.

The bits for joystick buttons. Since Pac hardware has no fire buttons, we’ll just
absorb the start buttons instead.

93c 〈PENGO Global Constants 93c〉≡
p1_bport = in1

p1_b1 = 5

p2_bport = in1

p1_b1 = 6

This definition is continued in chunks 96–99.
This code is used in chunk 100b.

The bits for start buttons
93d 〈PAC Global Constants 92a〉+≡

start_port = in1

start1 = 5

start2 = 6

This code is used in chunk 100a.

The bits for coin inputs
93e 〈PAC Global Constants 92a〉+≡

coin_port = in0

coin1 = 5

coin2 = 6

coin3 = 7

This code is used in chunk 100a.

August 22, 2003 94

And the bits for cabinet, test and service switches:
94a 〈PAC Global Constants 92a〉+≡

rack_port = in0

racktest = 4

svc_port = in1

service = 4

cab_port = in1

cabinet = 7

This code is used in chunk 100a.

B.1.1 Sprite Hardware

This constants 8 pairs of two bytes:

• byte 1, bit 0 - Y flip

• byte 1, bit 1 - X flip

• byte 1, bits 2-7 - sprite image number

• byte 2 - color

When drawing the sprite, we need to multiply the sprite number to clear the
XY flip bits.

94b 〈PAC Global Constants 92a〉+≡
sprtMult = 4

This code is used in chunk 100a.

And we should have offset numbers, to help out with IX and IY indexing of the
sprite array.

94c 〈PAC Global Constants 92a〉+≡
sprtColor = 1

sprtIndex = 0

This code is used in chunk 100a.

sprtXFlip defines the byte offset which contains the X flip bit. bitXFlip defines
the bit number to use if using SET or RES opcodes. valXFlip defines the value
to use if creating a byte to poke in.

94d 〈PAC Global Constants 92a〉+≡
sprtXFlip = 0

bitXFlip = 0

valXFlip = 1

sprtYFlip = 0

bitYFlip = 1

valYFlip = 2

This code is used in chunk 100a.

August 22, 2003 95

Here’s the base of the sprite RAM.
95a 〈PAC Global Constants 92a〉+≡

spritebase = 0x4ff0

This code is used in chunk 100a.

And there are 8 sprites total:
95b 〈PAC Global Constants 92a〉+≡

nsprites = 0x08

This code is used in chunk 100a.

And for the coordinates, these are xy pairs for 8 sprites.
95c 〈PAC Global Constants 92a〉+≡

spritecoords = 0x5060

This code is used in chunk 100a.

B.1.2 Sound Hardware

Three voices. Voice 1:

95d 〈PAC Global Constants 92a〉+≡
v1_acc = 0x5040

v1_wave = 0x5045

v1_freq = 0x5050

v1_vol = 0x5055

This code is used in chunk 100a.

Voice 2:
95e 〈PAC Global Constants 92a〉+≡

v2_acc = 0x5046

v2_wave = 0x504a

v2_freq = 0x5056

v2_vol = 0x505a

This code is used in chunk 100a.

Voice 3:
95f 〈PAC Global Constants 92a〉+≡

v3_acc = 0x504b

v3_wave = 0x504f

v3_freq = 0x505b

v3_vol = 0x505f

This code is used in chunk 100a.

August 22, 2003 96

B.1.3 Enablers

96a 〈PAC Global Constants 92a〉+≡
irqen = 0x5000

sounden = 0x5001

flipscreen = 0x5003

coincount = 0x5007

watchdog = 0x50C0

This code is used in chunk 100a.

B.1.4 Extras for Pac

96b 〈Pac Global Constants 96b〉≡
strtlmp1 = 0x5004

strtlmp2 = 0x5005

coinlock = 0x5006

Root chunk (not used in this document).

B.2 Pengo Configuration

96c 〈PENGO Global Constants 93c〉+≡
stack = 0x8ff0

This code is used in chunk 100b.

96d 〈PENGO Global Constants 93c〉+≡
vidram = 0x8000

colram = 0x8400

ram = 0x8800

dsw0 = 0x9040

in1 = 0x9080

in0 = 0x90c0

specreg = 0x9000

speclen = 0x00ff

sprtbase = 0x8ff2

sprtlen = 0x0010

This code is used in chunk 100b.

The bits for player 1 joystick
96e 〈PENGO Global Constants 93c〉+≡

p1_port = in0

p1_up = 0

p1_down = 1

p1_left = 2

p1_right = 3

This code is used in chunk 100b.

August 22, 2003 97

The bits for player 2 joystick
97a 〈PENGO Global Constants 93c〉+≡

p2_port = in1

p2_up = 0

p2_down = 1

p2_left = 2

p2_right = 3

This code is used in chunk 100b.

The bits for joystick buttons
97b 〈PENGO Global Constants 93c〉+≡

p1_bport = in0

p1_b1 = 7

p2_bport = in1

p1_b1 = 7

This code is used in chunk 100b.

The bits for start buttons
97c 〈PENGO Global Constants 93c〉+≡

start_port = in1

start1 = 5

start2 = 6

This code is used in chunk 100b.

The bits for coin inputs
97d 〈PENGO Global Constants 93c〉+≡

coin_port = in0

coin1 = 4

coin2 = 5

coin3 = 6

This code is used in chunk 100b.

And the bits for service
97e 〈PENGO Global Constants 93c〉+≡

svc_port = in1

service = 4

This code is used in chunk 100b.

August 22, 2003 98

B.2.1 Sprite Hardware

This constants 8 pairs of two bytes:

• byte 1, bit 0 - Y flip

• byte 1, bit 1 - X flip

• byte 1, bits 2-7 - sprite image number

• byte 2 - color

When drawing the sprite, we need to multiply the sprite number to clear the
XY flip bits.

98a 〈PENGO Global Constants 93c〉+≡
sprtMult = 4

This code is used in chunk 100b.

And we should have offset numbers, to help out with IX and IY indexing of the
sprite array.

98b 〈PENGO Global Constants 93c〉+≡
sprtColor = 1

sprtIndex = 0

This code is used in chunk 100b.

sprtXFlip defines the byte offset which contains the X flip bit. bitXFlip defines
the bit number to use if using SET or RES opcodes. valXFlip defines the value
to use if creating a byte to poke in.

98c 〈PENGO Global Constants 93c〉+≡
sprtXFlip = 0

bitXFlip = 0

valXFlip = 1

sprtYFlip = 0

bitYFlip = 1

valYFlip = 2

This code is used in chunk 100b.

Here’s the base of the sprite RAM.

98d 〈PENGO Global Constants 93c〉+≡
spritebase = 0x8ff2

This code is used in chunk 100b.

And there are 8 sprites total:
98e 〈PENGO Global Constants 93c〉+≡

nsprites = 0x06

This code is used in chunk 100b.

August 22, 2003 99

And for the coordinates, these are xy pairs for 8 sprites.
99a 〈PENGO Global Constants 93c〉+≡

spritecoords = 0x9022

This code is used in chunk 100b.

B.2.2 Sound Hardware

Three voices. Voice 1:
99b 〈PENGO Global Constants 93c〉+≡

v1_wave = 0x9005

v1_freq = 0x9011

v1_vol = 0x9015

This code is used in chunk 100b.

Voice 2:
99c 〈PENGO Global Constants 93c〉+≡

v2_wave = 0x900a

v2_freq = 0x9016

v2_vol = 0x901a

This code is used in chunk 100b.

Voice 3:
99d 〈PENGO Global Constants 93c〉+≡

v3_wave = 0x900f

v3_freq = 0x901b

v3_vol = 0x901f

This code is used in chunk 100b.

B.2.3 Enablers

99e 〈PENGO Global Constants 93c〉+≡
irqen = 0x9040

sounden = 0x9041

flipscreen = 0x9043

coincount = 0x9044

watchdog = 0x9070

This code is used in chunk 100b.

B.2.4 Extras for Pengo

99f 〈PENGO Global Constants 93c〉+≡
palbank = 0x9042

collutbank = 0x9046

spritebank = 0x9047

This code is used in chunk 100b.

Appendix C

The .asm File

This is where we gather together all of the asm blocks defined above into two
cohesive .asm files.

C.1 Pac-Man ASM

100a 〈pacalpaca.asm 100a〉≡
;;

; PacAlpaca.asm

;

; ALPACA: A Multitasking operating system for Pac-Man Z80 arcade hardware

;

〈commontop.asm 101〉
〈PAC Global Constants 92a〉
〈commonbottom.asm 102〉

Root chunk (not used in this document).

C.2 Pengo ASM

100b 〈pengoalpaca.asm 100b〉≡
;;

; PengoAlpaca.asm

;

; ALPACA: A Multitasking operating system for Pengo Z80 arcade hardware

;

〈commontop.asm 101〉
〈PENGO Global Constants 93c〉
〈commonbottom.asm 102〉

Root chunk (not used in this document).

100

August 22, 2003 101

C.3 Common Top

101 〈commontop.asm 101〉≡
; Written by

; Scott "Jerry" Lawrence

; alpaca@umlautllama.com

;

; This source file is covered by the LGPL:

;

〈license short version 125〉
;

;;

;

; This file is machine generated. Do not edit it by hand!

;

;;

.title alpaca

.module alpaca

;;

; some constants:

This code is used in chunk 100.

August 22, 2003 102

C.4 Common Bottom

102 〈commonbottom.asm 102〉≡

; constants for the task system

〈Task Constants 34〉

;;

; RAM allocation:

〈Task RAM 35c〉
〈Timer RAM 32c〉
〈Rand RAM 69b〉
〈Message RAM 28〉
〈Semaphore RAM 25〉
〈Task Stack RAM 35a〉

;;

; area configuration

; we want absolute dataspace, with this area called "CODE"

.area .CODE (ABS)

;;

; RST functions

; RST 00

〈RST 00 implementation 22〉

; RST 08

〈RST 08 implementation 23a〉

; RST 10

〈RST 10 implementation 23b〉

; RST 18

〈RST 18 implementation 23c〉

; RST 20

〈RST 20 implementation 23d〉

; RST 28

〈RST 28 implementation 24a〉

; RST 30

〈RST 30 implementation 24b〉

; RST 38

〈RST 38 implementation 24c〉

August 22, 2003 103

; NMI

〈NMI implementation 24d〉

;;

; interrupt service routine:

〈Interrupt Service Routine implementation 31a〉

;;

; the core OS stuff:

; initialization and splash screen

〈.start implementation 13a〉

; the core task

〈.coretask implementation 46〉

;;

; some helpful utility functions

; memset256

〈Utils memset256 implementation 66〉

; memsetN

〈Utils memsetN implementation 67〉

; clear screen

〈Utils cls implementation 68〉

; clear screen (gui tile version)

〈Utils guicls implementation 69a〉

; rand

〈Utils rand implementation 70b〉

; sine

〈Utils sine implementation 71〉

; cosine

〈Utils cosine implementation 72〉

; text justification

〈Utils textcenter implementation 75〉

August 22, 2003 104

〈Utils textright implementation 76〉

; xy2offs

〈Utils xy2offsB implementation 82〉

〈Utils xy2offsAC implementation 79〉

; putstr

〈Utils putstrA implementation 80〉

〈Utils putstrB implementation 85〉

〈Utils putstrC implementation 81〉

;;

; semaphore control

; lock semaphore

〈Semaphore lock implementation 26〉

; release semaphore

〈Semaphore release implementation 27〉

;;

; task exec, kill, and sleep routines

〈Exec start implementation 49〉

〈Exec kill implementation 50〉

〈Exec sleep implementation 51〉

;;

; The tasks

; task list -- list of all available tasks

〈Task List 39a〉

;;;;;;;;;;;;;;;;;;;;

; task number 0

〈Task 0 implementation 58b〉

August 22, 2003 105

;;;;;;;;;;;;;;;;;;;;

; task number 1

〈Task 1 implementation 60a〉

;;;;;;;;;;;;;;;;;;;;

; task number 2

〈Task 2 implementation 62a〉

;;;;;;;;;;;;;;;;;;;;

; task number 3

〈Task 3 implementation 64a〉

;;

; The Data

; splash strings

〈Init splash data 17a〉

; Some tables for the Task Switcher

〈Task Switch ROM 35b〉

; The sine table

〈Utils sine table 73〉

; The XY-offset table

〈Utils scroffs table 83〉

; The Region A and C offset table

〈Utils acoffs table 78〉

This code is used in chunk 100.

Appendix D

Auxiliary Data Files

This chapter defines all of the extra files needed to convert the generated ASM
as well as the auxiliary PCX image files into the ROM files that we need to
generate.

The two types of files, .ROMS and .INI are needed for the external genroms and
turacoCL programs, which are used to generate the ROM images.

D.1 genroms .ROMS files

These files are the data files used by “genroms” to produce ROM image files
from the generated Intel Hex File (.IHX) by the makefile.

The basic fields are:

• start address

• rom size

• rom filename

• rom reference name

D.1.1 Ms. Pac-Man

106 〈mspacman.roms 106〉≡
program space

begin program

0x0000 0x1000 boot1 program_1

0x1000 0x1000 boot2 program_2

0x2000 0x1000 boot3 program_3

0x3000 0x1000 boot4 program_4

0x8000 0x1000 boot5 program_5

106

August 22, 2003 107

0x9000 0x1000 boot6 program_6

end

graphics bank 1

begin graphics

0x0000 0x1000 5e graphics_1

graphics bank 2

0x0000 0x1000 5f graphics_2

end

color proms

begin color

0x0000 0x0020 82s123.7f palette

0x0020 0x0100 82s126.4a colorlookup

end

sound proms

begin sound

0x0000 0x0100 82s126.1m sound_a

0x0100 0x0100 82s126.3m sound_timing

end

Root chunk (not used in this document).

August 22, 2003 108

D.1.2 Pac-Man

108 〈pacman.roms 108〉≡
program space

begin program

0x0000 0x1000 pacman.6e program_1

0x1000 0x1000 pacman.6f program_2

0x2000 0x1000 pacman.6h program_3

0x3000 0x1000 pacman.6j program_4

end

graphics bank 1

begin graphics

0x0000 0x1000 pacman.5e graphics_1

graphics bank 2

0x0000 0x1000 pacman.5f graphics_2

end

color proms

begin color

0x0000 0x0020 82s123.7f palette

0x0020 0x0100 82s126.4a colorlookup

end

sound proms

begin sound

0x0000 0x0100 82s126.1m sound_a

0x0100 0x0100 82s126.3m sound_timing

end

Root chunk (not used in this document).

August 22, 2003 109

D.1.3 Pengo 2u

109 〈pengo2u.roms 109〉≡
begin program

0x0000 0x1000 pengo.u8 program_1

0x1000 0x1000 pengo.u7 program_2

0x2000 0x1000 pengo.u15 program_3

0x3000 0x1000 pengo.u14 program_4

0x4000 0x1000 pengo.u21 program_5

0x5000 0x1000 pengo.u20 program_6

0x6000 0x1000 pengo.u32 program_7

0x7000 0x1000 pengo.u31 program_8

end

graphics bank 1

begin graphics

0x0000 0x2000 ic92 graphics_1

graphics bank 2

0x0000 0x2000 ic105 graphics_2

end

color and palette proms proms

begin color

0x0000 0x0020 pr1633.078 palette

0x0020 0x0400 pr1634.088 colorlookup

end

sound proms

begin sound

0x0000 0x0100 pr1635.051 sound_a

0x0100 0x0100 pr1636.070 sound_timing

end

Root chunk (not used in this document).

August 22, 2003 110

D.2 turaco .INI file

These files are used to convert the .pcx files into graphics ROM image files by
“turacoCL”. The exact format of this file will not be described here since it is
outside of the scope of this document.

For more detail about what is going on here, please refer to the documentation
and sample .ini driver contained in the “turacoCL” package.

D.2.1 (Ms.) Pac-Man

110 〈pacman.ini 110〉≡
[Turaco]

FileVersion = 1.0

DumpVersion = 2

Author = Jerry / MAME 0.65.1 Dump

URL = http://www.cis.rit.edu/~jerry/Software/turacoCL

[General]

Name = pacman

Grouping = pacman

Year = 1980

Manufacturer = [Namco] (Midway license)

CloneOf = puckman

Description = Pac-Man (Midway)

[Layout]

GfxDecodes = 2

[GraphicsRoms]

Rom1 = 0 4096 pacman.5e

Rom2 = 4096 4096 pacman.5f

[Decode1]

start = 0

width = 8

height = 8

total = 256

orientation = 0

planes = 2

planeoffsets = 0 4

xoffsets = 56 48 40 32 24 16 8 0

yoffsets = 64 65 66 67 0 1 2 3

charincrement = 128

[Decode2]

start = 4096

width = 16

height = 16

August 22, 2003 111

total = 64

planes = 2

planeoffsets = 0 4

xoffsets = 312 304 296 288 280 272 264 256 56 48 40 32 24 16 8 0

yoffsets = 64 65 66 67 128 129 130 131 192 193 194 195 0 1 2 3

charincrement = 512

[Palette]

Palette1 = 4 0 0 0 220 220 220 0 0 90 220 0 0

Palette2 = 4 0 0 0 0 220 0 0 0 90 220 150 20

Palette3 = 4 0 0 0 0 0 220 255 0 0 255 255 0

Palette4 = 4 0 0 0 220 0 0 90 90 0 220 220 220

Palette5 = 4 0 0 0 220 0 0 0 220 0 220 220 220

Palette6 = 4 0 0 0 150 150 0 0 220 0 90 90 0

Palette7 = 4 0 0 0 220 220 0 90 90 220 220 220 220

Palette8 = 4 0 0 0 220 0 0 90 90 0 220 220 220

Palette9 = 4 0 0 0 0 150 220 0 220 0 220 220 220

Palette10 = 4 0 0 0 0 0 0 90 90 220 220 220 220

Palette11 = 4 255 0 0 255 255 255 0 255 0 0 0 220

Palette12 = 4 0 0 0 255 255 255 0 0 0 0 0 220

Root chunk (not used in this document).

August 22, 2003 112

D.2.2 Pengo

112 〈pengo2u.ini 112〉≡
[General]

Description = Pengo (set 2 not encrypted)

[Layout]

GfxDecodes = 4

Orientation = 5

[GraphicsRoms]

Rom1 = 0 8192 ic92

Rom2 = 8192 8192 ic105

[Decode1]

start = 0

width = 8

height = 8

total = 256

planes = 2

planeoffsets = 0 4

xoffsets = 64 65 66 67 0 1 2 3

yoffsets = 0 8 16 24 32 40 48 56

charincrement = 128

[Decode2]

start = 4096

width = 16

height = 16

total = 64

planes = 2

planeoffsets = 0 4

xoffsets = 64 65 66 67 128 129 130 131 192 193 194 195 0 1 2 3

yoffsets = 0 8 16 24 32 40 48 56 256 264 272 280 288 296 304 312

charincrement = 512

[Decode3]

start = 8192

width = 8

height = 8

total = 256

planes = 2

planeoffsets = 0 4

xoffsets = 64 65 66 67 0 1 2 3

yoffsets = 0 8 16 24 32 40 48 56

charincrement = 128

[Decode4]

start = 12288

width = 16

August 22, 2003 113

height = 16

total = 64

planes = 2

planeoffsets = 0 4

xoffsets = 64 65 66 67 128 129 130 131 192 193 194 195 0 1 2 3

yoffsets = 0 8 16 24 32 40 48 56 256 264 272 280 288 296 304 312

charincrement = 512

[Palette]

Palette1 = 4 0 0 0 220 220 220 0 0 90 220 0 0

Palette2 = 4 0 0 0 0 220 0 0 0 90 220 150 20

Palette3 = 4 0 0 0 0 0 220 255 0 0 255 255 0

Root chunk (not used in this document).

Appendix E

Building Alpaca

This chapter explains what is necessary to build Alpaca, as well as how to do
so.

E.1 Required software

To start off with, you will need some software packages installed to build any-
thing:

To do anything:

• gnu make (gmake)

• noweb/notangle

• unix tools: cat, cd, cp, dd, uname, zip

To build the document:

• ImageMagick tools: convert

• LaTeX / PDFLaTeX

To build the romset:

• genroms

• turaco CL

• ZCC package or asz80 and aslink

To test the romset:

• MAME or some other emulator

114

August 22, 2003 115

E.2 Makefile targets

Once you have the correct software installed, as explained in the previous sec-
tion, you should just be able to type “gmake”1 and have it build this document
docs/alpaca-development.pdf as well as the rom image files as specified in the
makefile. See below on how to specify Pac-Man or Pengo roms.

As a side effect, a well commented Z80 ASM file will be in “code/alpaca.asm”
for your viewing pleasure. To make things a little easier to see, you might want
to do a make listing to generate the “code/alpaca.lst” listing file.

In a nutshell, you can just type make targetname to make that specific target’s
files. The valid targets are:

paclisting builds: code/pacalpaca.lst listing file

pacprog builds: code/pacalpaca.asm, code/pacfinal.ihx

pacroms builds: roms/pacman/* (graphics and code)

pacromzip builds a zip of the above roms

pactest builds the above roms, runs MAME to test them out

pengolisting builds: code/pengoalpaca.lst listing file

pengoprog builds: code/pengoalpaca.asm, code/pengofinal.ihx

pengoroms builds: roms/pengo2u/* (graphics and code)

pengoromzip builds a zip of the above roms

pengotest builds the above roms, runs MAME to test them out

docs builds: doc/alpaca.pdf

dview builds: doc/alpaca.pdf, runs acroread

clean gets rid of all targets

tidy cleans the doc directory of intermediate files

all builds: doc/alpaca.pdf, code/pacalpaca.asm, code/pacalpaca.lst, code/pengoalpaca.asm,
code/pengoalpaca.lst, pac and pengo rom image files into roms/

dist builds: “all”, then puts it in a new directory

backup builds a .tar.gz file of the whole source tree

You may need to change the paths to the MAME program and ROM directories
in the makefile if you want to run the test targets on your system.

1or “make” on OS X

August 22, 2003 116

E.3 The Makefile

116 〈GNUmakefile 116〉≡
GNUMakefile for the Alpaca project

#

Scott "Jerry" Lawrence

#

It’s not pretty. Sorry about that.

#

#

$Id: build.nw,v 1.9 2003/08/14 14:51:55 jerry Exp $

#

##

Targets:

paclisting builds: code/pacalpaca.lst listing file

pacprog builds: code/pacalpaca.asm, code/pacfinal.ihx

pacroms builds: roms/pacman/pacman.* (graphics and code)

pacromzip builds a zip of the above roms

pactest builds the pac-man roms, runs MAME to test them out

#

pengolisting builds: code/pacalpaca.lst listing file

pengoprog builds: code/pacalpaca.asm, code/pacfinal.ihx

pengoroms builds: roms/pengo/pengo.* (graphics and code)

pengoromzip builds a zip of the above roms

pengotest builds the pengo roms, runs MAME to test them out

#

docs builds: doc/alpaca.pdf

dview builds: doc/alpaca.pdf, runs acroread

#

clean gets rid of all targets

tidy cleans the doc directory of intermediate files

#

dist web-ready distribution

backup source distribution (everything)

#

all builds: docs, roms, listing

##

all: docs paclisting pengolisting pacroms pengoroms

##

test: paclisting pactest

##

HAS_NOWEB := 1

##

program name

August 22, 2003 117

PROG := alpaca

VERSION := 0.7

extra programs

GENROMS := genroms

TURACOCL := turacocl

DD := dd

ZIP := zip

TAR := tar --exclude=CVS --exclude=.*

BLDSYS := $(shell uname -s)

directories

CODEDIR := code

ROMSROOT := roms

ROMSOURCE := roms/dummy

DISTDIR := $(PROG)_$(VERSION)

backup files

THISDIR := alpaca

TARFILE := $(PROG)_$(VERSION)_src.tar

###

emulator selection

- for testing romsets

if we want to use xmame on OS X, set EMULATOR to ForceXMame

EMULATOR := ForceXMame

the name of the xmame executable

XMAME := xmame

the name of the xmame executable with the debugger compiled in

XMAMED := xmamed -debug

parameters for all Xmame versions:

MAMEPARAMS := -skip_disclaimer -skip_gameinfo

and the xmame to use. (set XMAMED to XMAME for no debugger)

XMAMEUSE := $(XMAME) $(MAMEPARAMS)

apps and dirs for OS X testing of Pac-Man

osx app to use to test Pac roms

PMTAPP := /Applications/jerry/Games/MacPacMAME\ 0.58/MacPacMAME\ 0.58

dir to copy pac roms into

PMTRD := /Applications/jerry/Games/MacPacMAME\ 0.58/ROMS/pengman

August 22, 2003 118

apps and dirs for OS X testing of Pengo

osx app to use to test Pengo roms

PGTAPP := /Applications/jerry/Games/MacMAME/MacMAME.app

dir to copy pengo roms into

PGTRD := /Applications/jerry/Games/MacMAME/ROMs/pengo2u

##

ifdef HAS_NOWEB

NWS := \

nws/title.nw \

nws/overview.nw \

nws/arch.nw \

nws/init.nw \

nws/kernserv.nw \

nws/semaphores.nw \

nws/messages.nw \

nws/malloc.nw \

nws/isr.nw \

nws/coretask.nw \

nws/exec.nw \

nws/task0.nw \

nws/task1.nw \

nws/task2.nw \

nws/task3.nw \

nws/utils.nw \

nws/error.nw \

\

nws/appendix.nw \

nws/schedule.nw \

nws/hardware.nw \

nws/asm.nw \

nws/auxdata.nw \

nws/build.nw \

nws/license.nw \

nws/end.nw

PCX :=\

gfx/pacscreen.pcx \

gfx/pac_1.pcx \

gfx/pac_1c.pcx \

gfx/pac_2.pcx \

gfx/pac_2c.pcx

PCXPDF := $(PCX:%.pcx=%.pdf)

endif

August 22, 2003 119

STYLE := doc/alpaca.sty

DOC := doc/$(PROG).pdf

docs: $(DOC)

dview: docs

open $(DOC)

##

PACTARG := $(CODEDIR)/pacfinal.ihx

PACASMS := $(CODEDIR)/pacalpaca.asm

PENGOTARG := $(CODEDIR)/pengofinal.ihx

PENGOASMS := $(CODEDIR)/pengoalpaca.asm

DEPS :=

DATA :=

CLEAN := Release Build $(DISTDIR)

ifdef HAS_NOWEB

CLEAN += $(PENGOTARG) $(PENGOTARG:%.ihx=%.map)

CLEAN += $(PENGOASMS) $(PENGOASMS:%.asm=%.rel)

CLEAN += $(PACTARG) $(PACTARG:%.ihx=%.map)

CLEAN += $(PACASMS) $(PACASMS:%.asm=%.rel)

CLEAN += doc/alpaca* code/*.lst

CLEAN += roms/pacman/pacman.* pac*.zip

CLEAN += roms/pengo2u/pengo*.* pengo*.zip

CLEAN += roms/pengo2u/ic*

endif

TIDY := $(COMMON_OBJS) $(STYLE) \

$(DOC:%.pdf=%.tex) $(DOC:%.pdf=%.aux) \

$(DOC:%.pdf=%.log) $(DOC:%.pdf=%.toc) \

$(PCXPDF) $(DOC:%.pdf=%.out)

##

Pac builds

various config

PACROMDIR := $(ROMSROOT)/pacman

PACBACKDIR := ../..

PACGENROMSFILE := $(CODEDIR)/pacman.roms

PACTURACOINI := $(CODEDIR)/pacman.ini

PACROMNAME := pacman

August 22, 2003 120

CLEAN += $(PACGENROMSFILE)

CLEAN += $(PACTURACOINI)

pacprog: $(PACTARG)

.PHONY: pacprog

pacroms: $(PACTARG) $(PACGENROMSFILE) $(PACTURACOINI)

cd $(PACROMDIR) ;\

$(GENROMS) $(PACBACKDIR)/$(PACGENROMSFILE)\

$(PACBACKDIR)/$(PACTARG)

$(DD) if=/dev/zero of=$(PACROMDIR)/pacman.5e bs=4096 count=1

$(DD) if=/dev/zero of=$(PACROMDIR)/pacman.5f bs=4096 count=1

$(TURACOCL) -inf IMG -bnk 1 -rod $(PACROMDIR)\

-rom $(PACROMDIR) -ini $(PACTURACOINI)\

-dbf gfx/pac_1.pcx

$(TURACOCL) -inf IMG -bnk 2 -rod $(PACROMDIR)\

-rom $(PACROMDIR) -ini $(PACTURACOINI)\

-dbf gfx/pac_2.pcx

.PHONY: pacroms

pacromzip: pacroms

mkdir $(PACROMNAME)

cp $(PACROMDIR)/8* $(PACROMDIR)/p* $(PACROMNAME)

$(ZIP) -r $(PACROMNAME).zip $(PACROMNAME)

rm -rf $(PACROMNAME)

.PHONY: pacromzip

##

PAC test targets

automagically choose the correct one..

ifeq ($(BLDSYS),Darwin)

ifeq ($(EMULATOR),ForceXMame)

pactest: pacroms mamepactest

else

pactest: pacroms osxpactest

endif

else

pactest: pacroms mamepactest

endif

.PHONY: pactest

osxpactest:

cp -f $(PACROMDIR)/pacman.* $(PMTRD)

cp -f $(PACROMDIR)/82*.* $(PMTRD)

open -a $(PMTAPP)

August 22, 2003 121

.PHONY: osxpactest

mamepactest:

$(XMAMEUSE) -rp $(ROMSROOT) pacman

.PHONY: mamepactest

##

Pengo builds

various config

PENGOROMDIR := $(ROMSROOT)/pengo2u

PENGOBACKDIR := ../..

PENGOGENROMSFILE := $(CODEDIR)/pengo2u.roms

PENGOTURACOINI := $(CODEDIR)/pengo2u.ini

PENGOROMNAME := pengo2u

CLEAN += $(PENGOGENROMSFILE)

CLEAN += $(PENGOTURACOINI)

pengoprog: $(PENGOTARG)

.PHONY: pengoprog

pengoroms: $(PENGOTARG) $(PENGOGENROMSFILE) $(PENGOTURACOINI)

cd $(PENGOROMDIR) ;\

$(GENROMS) $(PENGOBACKDIR)/$(PENGOGENROMSFILE)\

$(PENGOBACKDIR)/$(PENGOTARG)

$(DD) if=/dev/zero of=$(PENGOROMDIR)/ic92 bs=8192 count=1

$(DD) if=/dev/zero of=$(PENGOROMDIR)/ic105 bs=8192 count=1

$(TURACOCL) -inf IMG -bnk 1 -rod $(PENGOROMDIR)\

-rom $(PENGOROMDIR) -ini $(PENGOTURACOINI)\

-dbf gfx/pen_1.pcx

$(TURACOCL) -inf IMG -bnk 2 -rod $(PENGOROMDIR)\

-rom $(PENGOROMDIR) -ini $(PENGOTURACOINI)\

-dbf gfx/pen_2.pcx

$(TURACOCL) -inf IMG -bnk 3 -rod $(PENGOROMDIR)\

-rom $(PENGOROMDIR) -ini $(PENGOTURACOINI)\

-dbf gfx/pen_3.pcx

$(TURACOCL) -inf IMG -bnk 4 -rod $(PENGOROMDIR)\

-rom $(PENGOROMDIR) -ini $(PENGOTURACOINI)\

-dbf gfx/pen_4.pcx

.PHONY: pengoroms

pengoromzip: pengoroms

mkdir $(PENGOROMNAME)

cp $(PENGOROMDIR)/ic* $(PENGOROMDIR)/p* $(PENGOROMNAME)

$(ZIP) -r $(PENGOROMNAME).zip $(PENGOROMNAME)

August 22, 2003 122

rm -rf $(PENGOROMNAME)

.PHONY: pengoromzip

##

PENGO test targets

automagically choose the correct one..

ifeq ($(BLDSYS),Darwin)

ifeq ($(EMULATOR),ForceXMame)

pengotest: pengoroms mamepengotest

else

pengotest: pengoroms osxpengotest

endif

else

pengotest: pengoroms mamepengotest

endif

.PHONY: pengotest

osxpengotest:

cp -f $(PENGOROMDIR)/pengo.* $(PGTRD)

cp -f $(PENGOROMDIR)/ic* $(PGTRD)

cp -f $(PENGOROMDIR)/pr163*.* $(PGTRD)

open -a $(PGTAPP)

.PHONY: osxpengotest

mamepengotest:

$(XMAMEUSE) -rp $(ROMSROOT) pengo2u

.PHONY: mamepengotest

##

clean: tidy

rm -rf $(CLEAN)

tidy:

rm -rf $(TIDY)

dist: docs paclisting pacromzip pengolisting pengoromzip

rm -rf $(DISTDIR)

mkdir $(DISTDIR)

cp $(DOC) $(DISTDIR)

cp $(PACLSTS) $(PACASMS) $(DISTDIR)

cp $(PACROMNAME).zip $(DISTDIR)

cp $(PENGOLSTS) $(PENGOASMS) $(DISTDIR)

cp $(PENGOROMNAME).zip $(DISTDIR)

backup: clean

August 22, 2003 123

cd ..; $(TAR) -cvf $(TARFILE) $(THISDIR)

gzip -f ../$(TARFILE)

##

PACRELS := $(PACASMS:%.asm=%.rel)

PACLSTS := $(PACASMS:%.asm=%.lst)

PENGORELS := $(PENGOASMS:%.asm=%.rel)

PENGOLSTS := $(PENGOASMS:%.asm=%.lst)

paclisting: $(PACLSTS)

pengolisting: $(PENGOLSTS)

%.lst: %.asm

asz80 -l $<

.SECONDARY: $(PACASMS) $(PENGOASMS)

OPTS := -O

$(PACTARG): $(PACRELS)

aslink -i -m -o $(PACTARG) -b_CODE=0x0000 $(PACRELS)

$(PENGOTARG): $(PENGORELS)

aslink -i -m -o $(PENGOTARG) -b_CODE=0x0000 $(PENGORELS)

%.rel: %.asm

asz80 $<

%.rel: %.c

zcc -c -v $(OPTS) -D$(ARCH) -D$(TEST) -I../include $(ADDS) $<

.SECONDARY: $(PACTARG)

.SECONDARY: $(PENGOTARG)

##

ifdef HAS_NOWEB

$(CODEDIR)/%.asm: $(NWS)

-@$(MKDIR_CMD)

notangle -R$*.asm $^ | cpif $@

$(CODEDIR)/%.roms: $(NWS)

-@$(MKDIR_CMD)

notangle -R$*.roms $^ | cpif $@

$(CODEDIR)/%.ini: $(NWS)

August 22, 2003 124

-@$(MKDIR_CMD)

notangle -R$*.ini $^ | cpif $@

%.pdf: %.tex

-@$(MKDIR_CMD)

(\

cd $(@D); \

oldFingerprint="ZZZ" ; \

if [-f $*.aux]; then \

fingerprint="‘sum $*.aux‘" ; \

else \

fingerprint="YYY" ; \

fi ; \

while [! "$${oldFingerprint}" = "$${fingerprint}"]; do \

oldFingerprint="$${fingerprint}" ; \

pdflatex $(<F) ; \

fingerprint="‘sum $(*F).aux‘" ; \

done ; \

)

$(DOC:%.pdf=%.tex): $(PCXPDF) $(NWS)

-@$(MKDIR_CMD)

cat $(NWS) | noweave -delay -index | cpif $@

doc/%.sty: nws/%.sty

-@$(MKDIR_CMD)

cp $< $@

%.pdf: %.pcx

convert $< $@

endif

##

.PHONY: all

.PHONY: docs

.PHONY: clean

.PHONY: tidy

#.SECONDARY: $(TIDY)

##

$(DOC): $(PCXPDF) $(STYLE)

##

Root chunk (not used in this document).

Appendix F

Software License

This software, “Alpaca” is covered by the GNU Lesser General Public License.
The terms of this license are covered as follows:

F.1 The Short Version

125 〈license short version 125〉≡
;; Alpaca - A Multitasking operating system for Z80 arcade hardware

;; Copyright (C) 2003 Scott "Jerry" Lawrence

;; alpaca@umlautllama.com

;;

;; This is free software; you can redistribute it and/or modify

;; it under the terms of the GNU Lesser General Public License

;; as published by the Free Software Foundation; either version

;; 2 of the License, or (at your option) any later version.

;;

;; This software is distributed in the hope that it will be

;; useful, but WITHOUT ANY WARRANTY; without even the implied

;; warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR

;; PURPOSE. See the GNU Lesser General Public License for

;; more details.

;;

;; You should have received a copy of the GNU Lesser General

;; Public License along with this library; if not, write to

;; the Free Foundation, Inc., 59 Temple Place, Suite 330,

;; Boston, MA 02111-1307 USA

This code is used in chunk 101.

125

August 22, 2003 126

F.2 The Long Version

126 〈license long version 126〉≡
GNU LESSER GENERAL PUBLIC LICENSE

Version 2.1, February 1999

Copyright (C) 1991, 1999 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies

of this license document, but changing it is not allowed.

[This is the first released version of the Lesser GPL. It also counts

as the successor of the GNU Library Public License, version 2, hence

the version number 2.1.]

Preamble

The licenses for most software are designed to take away your

freedom to share and change it. By contrast, the GNU General Public

Licenses are intended to guarantee your freedom to share and change

free software--to make sure the software is free for all its users.

This license, the Lesser General Public License, applies to some

specially designated software packages--typically libraries--of the

Free Software Foundation and other authors who decide to use it. You

can use it too, but we suggest you first think carefully about whether

this license or the ordinary General Public License is the better

strategy to use in any particular case, based on the explanations below.

When we speak of free software, we are referring to freedom of use,

not price. Our General Public Licenses are designed to make sure that

you have the freedom to distribute copies of free software (and charge

for this service if you wish); that you receive source code or can get

it if you want it; that you can change the software and use pieces of

it in new free programs; and that you are informed that you can do

these things.

To protect your rights, we need to make restrictions that forbid

distributors to deny you these rights or to ask you to surrender these

rights. These restrictions translate to certain responsibilities for

you if you distribute copies of the library or if you modify it.

For example, if you distribute copies of the library, whether gratis

or for a fee, you must give the recipients all the rights that we gave

you. You must make sure that they, too, receive or can get the source

code. If you link other code with the library, you must provide

complete object files to the recipients, so that they can relink them

with the library after making changes to the library and recompiling

it. And you must show them these terms so they know their rights.

August 22, 2003 127

We protect your rights with a two-step method: (1) we copyright the

library, and (2) we offer you this license, which gives you legal

permission to copy, distribute and/or modify the library.

To protect each distributor, we want to make it very clear that

there is no warranty for the free library. Also, if the library is

modified by someone else and passed on, the recipients should know

that what they have is not the original version, so that the original

author’s reputation will not be affected by problems that might be

introduced by others.

Finally, software patents pose a constant threat to the existence of

any free program. We wish to make sure that a company cannot

effectively restrict the users of a free program by obtaining a

restrictive license from a patent holder. Therefore, we insist that

any patent license obtained for a version of the library must be

consistent with the full freedom of use specified in this license.

Most GNU software, including some libraries, is covered by the

ordinary GNU General Public License. This license, the GNU Lesser

General Public License, applies to certain designated libraries, and

is quite different from the ordinary General Public License. We use

this license for certain libraries in order to permit linking those

libraries into non-free programs.

When a program is linked with a library, whether statically or using

a shared library, the combination of the two is legally speaking a

combined work, a derivative of the original library. The ordinary

General Public License therefore permits such linking only if the

entire combination fits its criteria of freedom. The Lesser General

Public License permits more lax criteria for linking other code with

the library.

We call this license the "Lesser" General Public License because it

does Less to protect the user’s freedom than the ordinary General

Public License. It also provides other free software developers Less

of an advantage over competing non-free programs. These disadvantages

are the reason we use the ordinary General Public License for many

libraries. However, the Lesser license provides advantages in certain

special circumstances.

For example, on rare occasions, there may be a special need to

encourage the widest possible use of a certain library, so that it becomes

a de-facto standard. To achieve this, non-free programs must be

allowed to use the library. A more frequent case is that a free

library does the same job as widely used non-free libraries. In this

case, there is little to gain by limiting the free library to free

software only, so we use the Lesser General Public License.

In other cases, permission to use a particular library in non-free

August 22, 2003 128

programs enables a greater number of people to use a large body of

free software. For example, permission to use the GNU C Library in

non-free programs enables many more people to use the whole GNU

operating system, as well as its variant, the GNU/Linux operating

system.

Although the Lesser General Public License is Less protective of the

users’ freedom, it does ensure that the user of a program that is

linked with the Library has the freedom and the wherewithal to run

that program using a modified version of the Library.

The precise terms and conditions for copying, distribution and

modification follow. Pay close attention to the difference between a

"work based on the library" and a "work that uses the library". The

former contains code derived from the library, whereas the latter must

be combined with the library in order to run.

GNU LESSER GENERAL PUBLIC LICENSE

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License Agreement applies to any software library or other

program which contains a notice placed by the copyright holder or

other authorized party saying it may be distributed under the terms of

this Lesser General Public License (also called "this License").

Each licensee is addressed as "you".

A "library" means a collection of software functions and/or data

prepared so as to be conveniently linked with application programs

(which use some of those functions and data) to form executables.

The "Library", below, refers to any such software library or work

which has been distributed under these terms. A "work based on the

Library" means either the Library or any derivative work under

copyright law: that is to say, a work containing the Library or a

portion of it, either verbatim or with modifications and/or translated

straightforwardly into another language. (Hereinafter, translation is

included without limitation in the term "modification".)

"Source code" for a work means the preferred form of the work for

making modifications to it. For a library, complete source code means

all the source code for all modules it contains, plus any associated

interface definition files, plus the scripts used to control compilation

and installation of the library.

Activities other than copying, distribution and modification are not

covered by this License; they are outside its scope. The act of

running a program using the Library is not restricted, and output from

such a program is covered only if its contents constitute a work based

on the Library (independent of the use of the Library in a tool for

writing it). Whether that is true depends on what the Library does

August 22, 2003 129

and what the program that uses the Library does.

1. You may copy and distribute verbatim copies of the Library’s

complete source code as you receive it, in any medium, provided that

you conspicuously and appropriately publish on each copy an

appropriate copyright notice and disclaimer of warranty; keep intact

all the notices that refer to this License and to the absence of any

warranty; and distribute a copy of this License along with the

Library.

You may charge a fee for the physical act of transferring a copy,

and you may at your option offer warranty protection in exchange for a

fee.

2. You may modify your copy or copies of the Library or any portion

of it, thus forming a work based on the Library, and copy and

distribute such modifications or work under the terms of Section 1

above, provided that you also meet all of these conditions:

a) The modified work must itself be a software library.

b) You must cause the files modified to carry prominent notices

stating that you changed the files and the date of any change.

c) You must cause the whole of the work to be licensed at no

charge to all third parties under the terms of this License.

d) If a facility in the modified Library refers to a function or a

table of data to be supplied by an application program that uses

the facility, other than as an argument passed when the facility

is invoked, then you must make a good faith effort to ensure that,

in the event an application does not supply such function or

table, the facility still operates, and performs whatever part of

its purpose remains meaningful.

(For example, a function in a library to compute square roots has

a purpose that is entirely well-defined independent of the

application. Therefore, Subsection 2d requires that any

application-supplied function or table used by this function must

be optional: if the application does not supply it, the square

root function must still compute square roots.)

These requirements apply to the modified work as a whole. If

identifiable sections of that work are not derived from the Library,

and can be reasonably considered independent and separate works in

themselves, then this License, and its terms, do not apply to those

sections when you distribute them as separate works. But when you

distribute the same sections as part of a whole which is a work based

on the Library, the distribution of the whole must be on the terms of

this License, whose permissions for other licensees extend to the

August 22, 2003 130

entire whole, and thus to each and every part regardless of who wrote

it.

Thus, it is not the intent of this section to claim rights or contest

your rights to work written entirely by you; rather, the intent is to

exercise the right to control the distribution of derivative or

collective works based on the Library.

In addition, mere aggregation of another work not based on the Library

with the Library (or with a work based on the Library) on a volume of

a storage or distribution medium does not bring the other work under

the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public

License instead of this License to a given copy of the Library. To do

this, you must alter all the notices that refer to this License, so

that they refer to the ordinary GNU General Public License, version 2,

instead of to this License. (If a newer version than version 2 of the

ordinary GNU General Public License has appeared, then you can specify

that version instead if you wish.) Do not make any other change in

these notices.

Once this change is made in a given copy, it is irreversible for

that copy, so the ordinary GNU General Public License applies to all

subsequent copies and derivative works made from that copy.

This option is useful when you wish to copy part of the code of

the Library into a program that is not a library.

4. You may copy and distribute the Library (or a portion or

derivative of it, under Section 2) in object code or executable form

under the terms of Sections 1 and 2 above provided that you accompany

it with the complete corresponding machine-readable source code, which

must be distributed under the terms of Sections 1 and 2 above on a

medium customarily used for software interchange.

If distribution of object code is made by offering access to copy

from a designated place, then offering equivalent access to copy the

source code from the same place satisfies the requirement to

distribute the source code, even though third parties are not

compelled to copy the source along with the object code.

5. A program that contains no derivative of any portion of the

Library, but is designed to work with the Library by being compiled or

linked with it, is called a "work that uses the Library". Such a

work, in isolation, is not a derivative work of the Library, and

therefore falls outside the scope of this License.

However, linking a "work that uses the Library" with the Library

creates an executable that is a derivative of the Library (because it

August 22, 2003 131

contains portions of the Library), rather than a "work that uses the

library". The executable is therefore covered by this License.

Section 6 states terms for distribution of such executables.

When a "work that uses the Library" uses material from a header file

that is part of the Library, the object code for the work may be a

derivative work of the Library even though the source code is not.

Whether this is true is especially significant if the work can be

linked without the Library, or if the work is itself a library. The

threshold for this to be true is not precisely defined by law.

If such an object file uses only numerical parameters, data

structure layouts and accessors, and small macros and small inline

functions (ten lines or less in length), then the use of the object

file is unrestricted, regardless of whether it is legally a derivative

work. (Executables containing this object code plus portions of the

Library will still fall under Section 6.)

Otherwise, if the work is a derivative of the Library, you may

distribute the object code for the work under the terms of Section 6.

Any executables containing that work also fall under Section 6,

whether or not they are linked directly with the Library itself.

6. As an exception to the Sections above, you may also combine or

link a "work that uses the Library" with the Library to produce a

work containing portions of the Library, and distribute that work

under terms of your choice, provided that the terms permit

modification of the work for the customer’s own use and reverse

engineering for debugging such modifications.

You must give prominent notice with each copy of the work that the

Library is used in it and that the Library and its use are covered by

this License. You must supply a copy of this License. If the work

during execution displays copyright notices, you must include the

copyright notice for the Library among them, as well as a reference

directing the user to the copy of this License. Also, you must do one

of these things:

a) Accompany the work with the complete corresponding

machine-readable source code for the Library including whatever

changes were used in the work (which must be distributed under

Sections 1 and 2 above); and, if the work is an executable linked

with the Library, with the complete machine-readable "work that

uses the Library", as object code and/or source code, so that the

user can modify the Library and then relink to produce a modified

executable containing the modified Library. (It is understood

that the user who changes the contents of definitions files in the

Library will not necessarily be able to recompile the application

to use the modified definitions.)

August 22, 2003 132

b) Use a suitable shared library mechanism for linking with the

Library. A suitable mechanism is one that (1) uses at run time a

copy of the library already present on the user’s computer system,

rather than copying library functions into the executable, and (2)

will operate properly with a modified version of the library, if

the user installs one, as long as the modified version is

interface-compatible with the version that the work was made with.

c) Accompany the work with a written offer, valid for at

least three years, to give the same user the materials

specified in Subsection 6a, above, for a charge no more

than the cost of performing this distribution.

d) If distribution of the work is made by offering access to copy

from a designated place, offer equivalent access to copy the above

specified materials from the same place.

e) Verify that the user has already received a copy of these

materials or that you have already sent this user a copy.

For an executable, the required form of the "work that uses the

Library" must include any data and utility programs needed for

reproducing the executable from it. However, as a special exception,

the materials to be distributed need not include anything that is

normally distributed (in either source or binary form) with the major

components (compiler, kernel, and so on) of the operating system on

which the executable runs, unless that component itself accompanies

the executable.

It may happen that this requirement contradicts the license

restrictions of other proprietary libraries that do not normally

accompany the operating system. Such a contradiction means you cannot

use both them and the Library together in an executable that you

distribute.

7. You may place library facilities that are a work based on the

Library side-by-side in a single library together with other library

facilities not covered by this License, and distribute such a combined

library, provided that the separate distribution of the work based on

the Library and of the other library facilities is otherwise

permitted, and provided that you do these two things:

a) Accompany the combined library with a copy of the same work

based on the Library, uncombined with any other library

facilities. This must be distributed under the terms of the

Sections above.

b) Give prominent notice with the combined library of the fact

that part of it is a work based on the Library, and explaining

where to find the accompanying uncombined form of the same work.

August 22, 2003 133

8. You may not copy, modify, sublicense, link with, or distribute

the Library except as expressly provided under this License. Any

attempt otherwise to copy, modify, sublicense, link with, or

distribute the Library is void, and will automatically terminate your

rights under this License. However, parties who have received copies,

or rights, from you under this License will not have their licenses

terminated so long as such parties remain in full compliance.

9. You are not required to accept this License, since you have not

signed it. However, nothing else grants you permission to modify or

distribute the Library or its derivative works. These actions are

prohibited by law if you do not accept this License. Therefore, by

modifying or distributing the Library (or any work based on the

Library), you indicate your acceptance of this License to do so, and

all its terms and conditions for copying, distributing or modifying

the Library or works based on it.

10. Each time you redistribute the Library (or any work based on the

Library), the recipient automatically receives a license from the

original licensor to copy, distribute, link with or modify the Library

subject to these terms and conditions. You may not impose any further

restrictions on the recipients’ exercise of the rights granted herein.

You are not responsible for enforcing compliance by third parties with

this License.

11. If, as a consequence of a court judgment or allegation of patent

infringement or for any other reason (not limited to patent issues),

conditions are imposed on you (whether by court order, agreement or

otherwise) that contradict the conditions of this License, they do not

excuse you from the conditions of this License. If you cannot

distribute so as to satisfy simultaneously your obligations under this

License and any other pertinent obligations, then as a consequence you

may not distribute the Library at all. For example, if a patent

license would not permit royalty-free redistribution of the Library by

all those who receive copies directly or indirectly through you, then

the only way you could satisfy both it and this License would be to

refrain entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable under any

particular circumstance, the balance of the section is intended to apply,

and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any

patents or other property right claims or to contest validity of any

such claims; this section has the sole purpose of protecting the

integrity of the free software distribution system which is

implemented by public license practices. Many people have made

generous contributions to the wide range of software distributed

through that system in reliance on consistent application of that

August 22, 2003 134

system; it is up to the author/donor to decide if he or she is willing

to distribute software through any other system and a licensee cannot

impose that choice.

This section is intended to make thoroughly clear what is believed to

be a consequence of the rest of this License.

12. If the distribution and/or use of the Library is restricted in

certain countries either by patents or by copyrighted interfaces, the

original copyright holder who places the Library under this License may add

an explicit geographical distribution limitation excluding those countries,

so that distribution is permitted only in or among countries not thus

excluded. In such case, this License incorporates the limitation as if

written in the body of this License.

13. The Free Software Foundation may publish revised and/or new

versions of the Lesser General Public License from time to time.

Such new versions will be similar in spirit to the present version,

but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library

specifies a version number of this License which applies to it and

"any later version", you have the option of following the terms and

conditions either of that version or of any later version published by

the Free Software Foundation. If the Library does not specify a

license version number, you may choose any version ever published by

the Free Software Foundation.

14. If you wish to incorporate parts of the Library into other free

programs whose distribution conditions are incompatible with these,

write to the author to ask for permission. For software which is

copyrighted by the Free Software Foundation, write to the Free

Software Foundation; we sometimes make exceptions for this. Our

decision will be guided by the two goals of preserving the free status

of all derivatives of our free software and of promoting the sharing

and reuse of software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO

WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.

EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR

OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY

KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE

LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME

THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN

August 22, 2003 135

WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY

AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU

FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR

CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE

LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING

RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A

FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF

SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH

DAMAGES.

END OF TERMS AND CONDITIONS

Root chunk (not used in this document).

	Overview
	This Document
	Hardware Limitations
	Project Goals

	System Architecture
	Hardware Architecture
	RAM Allocation
	Sprite Ram
	Task Stacks
	Semaphores
	Message Queue
	Kernel and Task Globals

	System Initialization
	Hardware Initialization
	Display Splash Screen
	Initialize Tasks
	Start Runtime

	Kernel Services and API
	RST 00H - Startup/Reboot
	RST 08H - Semaphores
	RST 10H - TBD
	RST 18H - TBD
	RST 20H - TBD
	RST 28H - TBD
	RST 30H - TBD
	RST 38H - VBlank handler
	NMI handler

	Semaphores
	RAM allocation
	Locking a Semaphore
	Releasing a Semaphore

	Message Queue
	Message Format
	Queue Implementation
	Queueing a Message
	Dequeueing a Message

	Memory Management
	Memory Maintenance Structures
	Memory Acquisition (malloc)
	Memory Release (free)

	Interrupt Service Routine
	ISR Overall View
	Task Switching
	Design
	Task Slot Timing
	Task Search / Task List
	Task System Initialization

	Task Slot Management Mechanism
	Control Flag Check
	Task Switch Routine

	The Core Task
	Core Runtime Loop

	Task Exec
	Task Format Header
	Task Entry Point
	Start Task (exectask)
	Stop Task (kill)
	Sleep for some time (sleep)

	Task 0: Pac Tiny User Interface (PTUI)
	Graphics
	Cursor and Wallpaper
	Flags
	Frame and Dragbar
	Widgets
	Widget Type Flags

	Implementation
	Header
	Process routine

	Task 1: TBD Example
	Header
	Process routine

	Task 2: TBD Example
	Header
	Process routine

	Task 3: TBD Example
	Header
	Process routine

	Utility Functions
	memset256 - set up to 256 bytes of memory to a certian byte
	memsetN - set N blocks of memory to a certian byte
	cls - clear the screen
	guicls - clear the screen to GUI background
	rand - get a random number
	sine - return the sine
	textcenter - centers text to be drawn
	textright - right justifies text to drawn
	Screen Region A tools
	xy2offsAC - convert X,Y into offsets in screen region A and C
	putstrA - draw a string on region A of the screen

	Screen Region C tools
	putstrC - draw a string on region C of the screen

	Screen Region B tools
	xy2offsB - convert X,Y into offsets in screen region B
	putstrB - draw a string on region B of the screen
	mult8 - 8 bit multiply

	System Errors
	Appendix
	Development Schedule
	Phase 1
	Phase 2
	Phase 3

	Hardware memory constants
	Pac-Man Configuration
	Sprite Hardware
	Sound Hardware
	Enablers
	Extras for Pac

	Pengo Configuration
	Sprite Hardware
	Sound Hardware
	Enablers
	Extras for Pengo

	The .asm File
	Pac-Man ASM
	Pengo ASM
	Common Top
	Common Bottom

	Auxiliary Data Files
	genroms .ROMS files
	Ms. Pac-Man
	Pac-Man
	Pengo 2u

	turaco .INI file
	(Ms.) Pac-Man
	Pengo

	Building Alpaca
	Required software
	Makefile targets
	The Makefile

	Software License
	The Short Version
	The Long Version

